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THE CATEGORY OF DISINTEGRATION
by Michael WENDT

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXV-4 (1994)

Resume. Nous pr6seiitoiis deux categories pour etablir un cadre pour
les X-fatnilles abstraites (.Y un espace de mesure finie). Les morphismes
sont ceux qui reflechissent les ensembles de mesure nulle et ceux que l’on
nomme "disintegrations." La seconde cat6gorie est la meilleure parce
qu’elle possède des proprietes d’autozindexation et qu’elle encode, et le

théorème de Fubini et la d6riv6e de Radon-Nikodym de façon essentielle.

1 Introduction 

We present some categories of measure spaces appropriate for an understanding of
the direct integral of Hilbert spaces (see, for example, [5]) in the context of indexed
category theory (of [8]). Specifically, this paper grows out of two "directives."

In [4], Breitsprecher suggested that (measure theoretic) disintegrations (see, for

example, [10]) should be understood from the point of view of category theory. We
address this directive in the last section. In [11], we sought a framework for the
direct integral. That is, we sought to understand what .1B -farnilies of Hilbert spaces
should be for X a measure space (of finite measure; finiteness being forced on us
for technical reasons). An appropriate morphism of measure spaces is required. We
address this directive by describing two categories (in increasing order of utility) and
inserting, from time to time, certain criteria required of an "appropriate category
of measure spaces."

The first criterion is that the lnorphisms be measurable (or that a forgetful
functor to measurable spaces exists). Measure theory is, in particular, "measurable
theory." Mble denotes the category of measurable spaces (sets equipped with a
(7-algebra of subsets), (.Y, A), and measurable functions ( f : (X, A)-(Y, B);
f-1(B) E A for all B E B). An excellent description of this category is given in [9].

Mble and Top (the category of topological spaces and continuous functions)
are similar. Mble is both complete and cocomplete. The construction of limits,
for example, is analogous (put the coarsest or-algebra structure on the Set-limit
to rnake the projections measurable). In fact, using the total opfibrations of [12],
Mble is seen to be totally cocoicylete (this is a consequence of the adjunctions
Discr’ele -1 Forget -1 Indiscrete : Mble -&#x3E; Set). Mble and Top are both topolog-
ical over Set (see, for example, [1]). 

The two categories are different, of course. The differences arise out of the
arities of the operations (in particular, intersection and union) that cr-algebras and
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topologies are t,o be closest under. Our ultimate goal in [11] was to understand the
differences in relation to abstract, families (for a categorical treatment of indexing
by topological spaces, see [7]).

The difference between Top and Mble becomes apparent when one naively
translates topological notions into measure theory, encountering "mistakes" of triv-
iality. For example, suppose we translate the notion of homotopy to measure the-
ory by defining a "loop" as a measurable function 1 : ([0, 1], L) -&#x3E; (X, A) such
that 1(0) = /(1) and homotopy in an obvious way (in this paper, (-, L, A) denotes
Lebesgue measure). Unfortunately, this definition makes the "fundatnental groups"
of the disc and the annulus the same (=1). In essence, the difference between "con-
tinuous" and "measurable" is that we are allowed to measurably cut a loop but not
continuously cut it.

This brings another similar example to mind. In the study of covering spaces,
one has the nontrivial "spiral over the circle" example. Translated into measure

theory, this exarnple is trivial; it is simply a product of Z copies of the circle over
the circle (we are allowed to measurably cut countably many times).

In each of the next two sections, we will introduce a category of measure spaces.
Bringing measures into the indexing results in a whole new level of difficulty. "Nice"
properties of Mhlo seem to disappear. The problem of inajor concern as far as
indexed category theory is concerned is the disappearance of products. It turns

out that, in some sense, the best we can hope for is a monoidal category. As we
shall see in the sequel, we are forced to take a more complex approach to indexing
by measure spaces and this complexity is the essence of the difference between

continuous families and measurable families.

2 Measure Zero Reflecting Functions
The first category of measure spaces we introduce involves measure zero reflecting
functions:

Definition 1 A function f : (X, A, 03BC)-&#x3E;(Y, B, v) is said to be measure zero

reflecting if it is measurable and if u(B) = 0 =&#x3E; 03BC(f-1 B) = 0. D

Remark: A comment t,o t,lm term "reflecting": in analogy to "functor reflect-

ing isomorphisms," one might, consider measure zero reflecting as being v(f (A)) =
0 =&#x3E; /t(A) = 0. For corriplete measure spaces, these two definitions are equivalent:
assurne the former and suppose v(f(A)) = 0. Then 03BC(A)  03BC(f-1 f(A)) = 0.

Conversely, assume the latter definition and suppose v(B) = 0. Then, since

ff-1(B) C B, v(ff-1(B)) = 0 =&#x3E; 03BC(f-1 (B)) = 0 as required. 11
One might consider measure preserving functions between measure spaces as

providing a good category. Measure preservation is too stringent a requirement for
morphisms, however. These are simply too much like equivalences. The existence
of a measure preserving morphism between X and Y says that they are more or less
the same space (there may be inany rnore A E A than those of the form f-1 (B) so
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the spaces aren’t really indistinguishable). It is our contention that measure zero

reflecting (abbreviated MOR) is the least requirement for a reasonable category of
measure spaces.

In analysis, one often has the caveat "to within E." Continuous functions, then,
are the appropriate morphisrn for this caveat (of course, the opposite is the initial
wa,y of looking at the caveat; continuous functions force the "to within f"). In

measure theory, the caveat is often "alrnost everywhere" (which means "to within a
set of measure zero"). And so, it seems appropriate to require that our morphisms
be MOR. We wish to apply our constructions to measure theory.

MOR’s are required whenever one considers the (Boolean) algebraic properties
of .A and N, its ideal of measure zero sets (note: in general, we do not require our
measure spaces to be complete so when we say JV is downclosed, for example, this
means N E N, A E A, A C N =&#x3E; A E Af frorn the monotonicity of the measure).
For exarnple, there is a well known metric on A/N by d([A], [B]) := 03BC(A^B) where
6 denotes the usual symmetric difference of sets. If f : (X, A, 03BC)-&#x3E;(Y, B, v) is
MOR, then we have a m ap /-1 . B/M -&#x3E; A/N. We see that measure zero

reflecting is the least requirernent for this map to be defined (after which, one may
explore various properties of interest to metric space enthusiasts).

In practice, we will be interested in spaces of finite measure (as usual, referred
to as "finite measure spaces"). The identity is measure zero reflecting and measure
zero reflecting functions compose so:

Definition 2 MOR is the category whose objects are finite 1ueasure spaces and
’whose morphisms are 1neasure zero reflecting functions. El

It, is time for sorne examples. In sorne of the examples below, we will temporarily
ignore the finiteness requirement.
Example 1: Let (X, A, it), (1’,,C), v) be two finite measure spaces. The projection
p : (X x Y, AX B, 03BCXv) -&#x3E;(X, A, Jl) is a MOR for it(A) = 0 =&#x3E; (03BCXv)(p-1 A) =
1,(A) - v(Y) = 0 since v(Y)  00. If we use the common convention 00 0 = 0, we
can allow the spaces to have infinite measure. D

(Couliter)exalmple 2: 6 : ([0, 1], L , h)-&#x3E;([0, 1] x [0, 1], LXL, hXh) is not MOR.
The diagonal has plane measure zero hut nonzero length. 11
Remarks: 1. A o Li denotes the smallest IT-algebra containing the measurable
rectangles. If It and z,, are complete, then it lg v is not necessarily complete. A-58
and 03BCXv denote the completion. Eacli D E AXB is of the form D = E B F with
E e Rcr8 (countable intersections of countable unions of measurable rectangles) and
F of measure zero. We will use (X x Y, A X B, It W v) since A oo l1 is the product in
Mble and since we do not require our spaces to be complete.
2. 6[0, 1] is, in fact, an Rcr8 (take intersections of unions of "little squares" that
cover the diagonal) so example 2 works for LXL and A7A restricted to nab subsets
of the diagonal. Neither o iior 16 gives the product in MOR. We will interpret od
as a tensor below, however. 0

Example 3: Let (X, A, It) be a iiieasiire space with lt(A) = 0, VA E A (i.e.
It(X) = 0). Then any measurable function out of X is MOR. 0
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Example 4: Let (Y, l1, v) be a discrete space with counting measure. Then any
measurable function into it is MOR since the only set of measure zero is the empty
set. 0
Example 5: A terminal ob ject of MOR is (1, Z, i) where 1 = {*} is a one point
set, I = {0, {*}}, and i, is the counting measure. This follows from example 4 and
the fact that (1,I) is a terrriinal ob ject in Mble. D
Example 6: As another "special case" of example 4, consider the measure space,
(N, P(N), counting), where N is the set of natural numbers. Now, this space is not
finite (it is cr-finite) but any measurable function into it is MOR. In fact a MOR,
f : (X, A, 03BC) -&#x3E; (N, P(N), counting), is the same as a measurable partition of
X f-1(i)iEN. 0
Remark: From example 4, we see that, but for finiteness, we would have an
adjunction IJ H D where h : Set -&#x3E; MOR is the discrete space functor and U is

the forgetful functor. Notice that, in example 3, we allowed an arbitrary measurable
space structure so a left adjoint to the underlying functor does not exist. 0

Colimits in MOR seem to be more well-behaved than limits:

Proposition 2.1 MOR ha.s (a) an initial object given by (0, {0}, 0), (b) binary
coproducts, and (c) these coproducts ar-c di.sjoint.

Proof: a): There is only one measurable function out of (0, {0}) and it is MOR.
b) The coproduct of (X, A, Jt) a.nd (Y, B, v) is (X + Y, A + B, 03BC + v); X + Y is
the disjoint union of X and Y, A + ,C consists of sets of the form A + B where
A E A, B E B, and (it + v)(A + B) := pA + vB. It is a simple matter to
check that this does indeed define the coproduct. Notice, for example, that if
i : (X, A, 03BC)-&#x3E;(X + Y, A + l1, It + v) denotes tlie injection and (03BC+v)(A+B) =
0, then 03BC(A) = v(B) = 0 so 03BC(i-1 (A + B)) = 0.
c) Consider the cliagral:
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Now, j!y = i!x -!X+Y. Since c.oproduc.ts are disjoint in Set, there are no maps
f, g satisfying jg = i f (and no rnap (T, T, T) -&#x3E; (0, {0},0)), if T # 0, and exactly
one map, the identity, which is MOR, if T = 0. Thus the square is a pullback square
as required.. 
( Coumter)exaimple 7: Constant functions are not, in general, MOR. 0

(Counter)example 8: The "element of" function, r xl: 1 -&#x3E; X, is not, in

general MOR (unless x: E X is an atom, 03BC({x}) &#x3E; 0). D

Finally, we note that MOR. has an interesting continuity property.

Propositioii 2.2 Let f : (X, A, 03BC) -&#x3E; (Y, B, v) E MOR and {Bn} be a sequence of
nteasurable sets ’with

since f E MOR

Remarks: 1. The proposition says that if the Bn’s get small, the f-1(Bn)’s
get small. flowever, there is not, necessarily a relationship between the rates of
convergence to 0.

2. Interesting connections with the metric defined above (d([A], [B]) = Jl(A6B))
will be explored in future work. D

3 Disintegrations
In the introduction, we noted that Breitspecher [4] suggested that disintegrations
should be studied from a categorical point of view. We now construct a category
whose IIlorphisn1s are "disintegration-like" (we ernploy the concept of disintegration
in a new way). This turns out, to be a useful category in the sense that a disinte-
gration is like a family of measure spaces indexed by a measure space and, needless
to say, (see [8]) this is a good thing as far as indexed category theory is concerned.
As we shall see, disintegrations have a forgetful functor to MOR.

To motivate this category, let tis recall a "naive theory of disintegrations." Let

(X, A, 03BC) be a measure space and (P, P, p) 1)(, another measure space, the I)ara?tzeier
space. A diszntegration of Ee with respect to p is a collection of measures, Itp, on

,Y, indexed hy p E P, such that VA E A, lip(A) is a measurable function of p and
r

Example 1: Constant : Let, p(P) = 1 and 1

is measurable (as a const-ant function) and

p(P) # 0, then we can take
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Example 2: Produce Let V -- (It x R, LX L, hX h). Let 1) = (R, L, h). For a

measurable A C R x R, put, (Am h)p(A) := h({y|(p, y) E A}).

Now, by Fubini’s theorem (applied to XA), Ap := {y|(p, y) E A} is a measurable

subset of the real line and fP hp (A) dh = (A E0 h)(A). 0

Remarks: 1. In the space (X x Y, AXB, 03BCXv), if D E AXB then Dx E 8, dx E X
(fix x E X , let Kx be the set of all E C X x Y such that Ex E 8, then Kx contains
the measurable rectangles and is a u-algebra, hence contains A X B, the smallest
(7-algebra that contains the measurable rectangles).
2. We note that (R x R, ,C 69 £, A t4 A) is not the Lebesgue plane. Fubini’s theorem
says, for an A E 0 Ap is measurable for almost all p E R. "Slicing" by p,
however, works for members of Rcr8 (remark 1). The "almost all p" arises out of
subsets of sets of measure zero (i.(,. during the completion part of the process and
not. before) so (hXh)p(A) = À( 1B,)) would provide an "almost everywhere" example
of a disintegration. D

This is an irnportant example for our purposes, as will be seen below. We
will describe many more examples later. Given two measure spaces, one doesn’t

necessarily possess a disintegration with respect to the other. The main thrust of
research in this field is to determine conditions for the existence of such. A definitive

answer has not yet been given although there are some important existence theorems
(see [10]).

An object, of Disimt is a linite measure space. We will use the projection from
the product as suggested by example 2 above as the rnotivation for our notion of
morphism.

Definition 3 A morphism (X, A, 03BC) -&#x3E; (Y, B, v) in Disint consists of

o a Jal1U/y (Xy, Ay, 03BCy)yEY of finite spaces, zuhere Xy := f-’(y) and

subject to llae axioms:

Remarks: 1. Ay = {A n f-1 (y) A E A} is a cr-algebra (this follows immediately
frorn the fact that A is a cr-algebra).
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2. We call these morphisms disintegration as well and will refer to axiom 1 as
"measure boundedness."
3. For boundedness, it is enough to say 03BCy(X fl f-1(y)) E Loo(Y) because of
monotonicity of measures (of course, the measurability condition for all A E A is
still necessary).
4. Every disintegration has a "norm" via IIJty(A fl f -1 (y))||oo. We will not explore
this in this paper.
5. Each jiy (Xy)  oo. Measure boundedness is a condition on the 03BCy(Xy)’s over
yEY. 0

Since the paradigm for a morphism of Disint is the product example above, we
think of the fibres over the y’s as slicing up A:

Notation: The fibre measurable spaces depend solely upon f . We write .

(I, (Ity )YEY) or (f, ity) for a morphisrn in Disint. 0
We make this into a category with the following definitions:

Identity: Define the identity in Disimt as (1X, lx) : (X, A, 03BC)-&#x3E;(X, A, Jl) where
1X is the identity function and iz is counting measure onl., = {An1-1(x)|A E A},
the discrete u-algebra on {x}.
Axiom 1: x i-&#x3E; lx(A n {x}) is measurable and bounded since it is just XA and A is
a measurable set. D

Axiom 2: L tz(A n {x})d03BC(x) = fXXAd03BC(x) = Jt(A) as required. D

Coinposition: Consider the diagram:

where 0z is defined as:

Note that v z is defined on and the union being

disjoint and
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Axiom 1: We wish to show that I is a mea-

surable function of z. Before we do that, however, we must determine that the
integral makes sense.

Proposition 3.1 For each z E Z and for each E E A, ity (E n f-1(y)) is a vz-
1neasurab/e function.

Proof: iiy (E nf-1(y)) is a v-measurable function (by axiom 1 for the JJ" ’8). Let
a £ R, then B = {y £ Y I ity(Enf -1 (y)) a}E B and Bng-1(z)={y £ g-1(z) I
03BCy(Enf-1(y))a}E Bz for all z E Z. II ,

Proposition 3.2 is a measurable function of z for k(y) a

non-negative v-measurable function (in particular for key) = 03BCy(Enf-1(y))).

Proof: Case which is

z-measurable by axiom 1 for vz .
Llase k = a simple function: Apply the above case and linearity of the integral.
(Jase k = a non-negative measurable function. Let On(y)&#x3E; be a sequence of simple
functions increasing to k. Then

by the monotone convergence theorem. Each

-measurable by the above case and the limit of a sequence

of measurable functions is measurable.
Remark: The technique used in the above proposition is a very useful one. We
will use the "build it up from simple functions" idea in many of our results. D

Propositioii 3.3 0z is a meagre for each z.
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Proposition 3.4 9z is a bounded fiinction (over z E Z).

Proof: Certainly, is finite for

) is bounded and vx is a finite measure). Fur-

thermore, suppose Vz and iiy are bounded by K and M respectively, say. Then
t r 

Axiom 2:

Proposition 3.5

Proof: By axiom 2 for the

Thus, we must show (*) = (**). We will show that

for all (positive) measurable functions k(y).

by axiom 2 for vz .

by linearity of the integral and the above

Case k(y) = a positive measurable function: Let §n I k(y) be a sequence of simple
r

functions increasing to k. Then

iz i g- 11 (Z) 

repeated application of the monotone convergence theorem. Now, by the above case,
r

and applying the monotone convergence theorem again, we

Unit laws: Consider:
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required. 0

Associativity: Consider the diagram:

To prove associativity, we must show nt = yt for all t E T. But,

and we have:

Proposition 3.6 j 
positive, measurable functions k(y).
Proof: Apply the proof of proposition 3.5 with

We next list some examples and basic properties.
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Proposition 3.7 ( f, liy) : (X, A, 03BC)-&#x3E;(Y, B V) E Disiiit =&#x3E; f £ MOR

Proof: Let v(B) = 0. Then we have: 

Remark: In view of this proposition and counterexample 2 above, we see that the
diagonal is not in Disiiit. 0

Example 1: Let (X, A, it) and (Y, B, v) be two finite measure spaces. Define

(p, (it 0 v)x) : (X x Y, A 0 B, 03BC X v)----+(X, A, p) as follows: p is the projection
to the first factor, p-1(x) = f x) x Y and (AXB)x = {Dnp-1(x) D E AXB} =
{x} xB (certainly, we have D (take D = {x}xB); conversely, for D = A x B E AXB,

both of which are in {x} x B and since {x} x B

is a cr-algebra, we have C). So, define (/t X v)x(D n p-1(x)) : := v(Dr) where D. is
considered as an element of B (more precisely, we define (03BCXv)x({x} x B) := v(B)
but will, however, abuse notation on occasion).

We have already noted that the slices Dx are all measurable. One may exhibit
axioms 1 and 2 in a similar manner. Let D be the collection of those D’s (in AXB)
for which x -&#x3E; v(D.,) is (A-)measurable and for which 
It is straightforward to show that Ð contains all measurable rectangles and is a (7-
algebra, whence D = AX B. Axiom 2 is a special case of Fubini’s theorem. D
Example 2: Let Ao be a measurable subset of X = (X, A, ti). We may interpret
the inclusion i : (A0, A0, 03BC0) -&#x3E; (X, A, 03BC), where A0 = JA C AolA E A} and
03BC0(A) = Jt(A), as a disintegration. If x E Ao, Zx = {A n i-1(x) I A E A} =
{0, {x}}; put ito. = counting measure. If z g Ao, Zx = {0}; put 03BC0x = 0. So,
Itox (A n i-1 (x)) = XA nA O. The proof that axioms 1 and 2 hold is exactly the same
as that for the identity disint,egration. 0
Remark: This example does not "contradict" the fact that the diagonal is not
a disintegration. Interpreting the diagonal as a subspace of the plane would give
(X, A, 0)-&#x3E;(X x X, A 0 A, It X 03BC). 0
Example 3: Let (X, A, It) be such that Jt(A) = 0, VA E A. Then any measur-
able function f : (X, A, 03BC)-&#x3E;(Y, B, v) may be interpreted as a disintegration by
defining jiy (A fl f-1(y)) = 0, for all A EA and y E Y. 0

Example 4: A terminal object of Disint is (1, 2, counting). The unique map,
!X : (X, A, 03BC) -&#x3E;(1, 2, counting) has (X*, A*) = (X, A) and ti, = It. Suppose
(!, B* J3) : (X, A, 03BC)-&#x3E;(1, 2, counting) is another disintegration. By axiom 2
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Example 5: The initial object of Disillt is (0, {0}, 0), which is a special case of
example 2. D

Proposition 3.8 Disint has (a) binary coproducts and (b) these coproducts are
disjoint.

Proof: a) Referring to proposition 2.1, the injection is a disintegration
(i, 03BCt) : (X, A, p)-(X + Y, A + 8, it + v), with At = {0} and pt = 0 if t E Y
and At = {0, {t}} and 03BCt(Ani-1(t)) = XA(t) if t E X.
b) Again, referring to the diagram of proposition 2.1. If T = 0, then we may insert
the identity disintegration, T --i 0. If T # 0, then there is no map, T -&#x3E; 0 and
no maps making the "outside" square commute. I
Example 6: Let (X, A, J.l) and (Y, B, v) be two finite, discrete spaces. That is, X
and Y are finite sets, .A = 2X , ,G = 2Y , and p and v are counting measures. Every
function, f : X-&#x3E;Y, is measurable. Let (f, 03BCy) : (X, A, 03BC)-&#x3E;(V,B,v) be a
disintegration. , . To satisfy
axiom 2, liy must be counting measure. And, such will automatically satisfy axiom
1. Thus, every measurable function yields a unique disintegration. That is, there is
a full functor D : Seti -Disint. 0
Example 7: Consider 1X : (X, A, 03BC)-&#x3E;(X , B, v). To say 1X is measurable is
to say B C A. To say 1X E MOR is to say, in addition, v(B) = 0 =&#x3E; 03BC(B) = 0 or
11   v (p restricted to B).

Suppose we wish to put a disintegration structure on this. Each pz is a mea-
sure on 1-1 (x) = {x}, i.e. a nonnegative real number, m(x). For each A E A,

ll.(A n {x}) = 771(x) x E A = ni(X) - XA. Now, ni(x) is measurable by ax-

iom 1 (take A = X) and axiom 2 implies

Thus, the Radon-Nikodym derivative.

Conversely, given Jt   v, there is a nonnegative measurable function m(x)
r -1..1

XA and we have a disintegration structure.

Thus, the identity function, if it is MOR, has an automatic disintegration struc-
ture. Of course, the Radon-Nikodym derivative is unique (up to a.e. equivalence),
so there is essentially only one disintegration structure on the identity. 0
Example 8: Let us expand on example 7 by computing isomorphisms. Consider
f : (X, A, 03BC) -&#x3E; - (Y,,U, v) : g. To say f is an isomorphism in MOR is to say: 1.

f g = 1Y and g,f = I x (i.e. f is a bijection), 2. f(A) E B iff A E A, and 3. Jl(A) = 0
iff v( f (A)) = 0.

Again, let us put a disintegration structure on this: ( f, ii,), (g, vz), (gf, 0x), and

I determines a function, m(y):
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Axiom 1 says m(y) is

measurable and axiom 2 says , Similarly, there is a

nonnegative measurable function, n(x), such that

Proposition 3.9 Define a meagre by 03BC’(A) = v(f (A) (in the situation above).
Then, for any positive measurable function, m(y), we have

Proof: We prove only the basic case ni(y) = xB

which yields a Radon-

Nikodyin derivative for It « 03BC’ (and similarly for v « an appropriately defined
1//).

Conversely, given f an isomorphism in MOR, p « JL’ : = v o f so there is a

nonnegative measurable function k(x) with p(A) = fA k(x)d03BC’(x). Putting m(y) :=
k(f-1(y)) and Ily(A fl f-1(y)) := m(y). X f(A) gives a disintegration structure (and
likewise for v).

Thus, an isomorphism in MOR determines a unique (up to a.e. equivalence)
isomorphism in Disint. And so, to prove that two objects are isomorphic in Disint,
it is enough to show they are isomorphic in MOR. 0

As our final example, we note that not every MOR can be made into a disinte-
gration.
Example 9: Let (X, A, it) be the region of the plane bounded by the positive
axes, the curve y = I=’ and the line x = 1 with ,C X£ and A CO A restricted. Let

(Y, B, v) = ([0, 1],,C, A) and let f be projection. Then f E MOR. Suppose we have
1

a disintegration structure (f, 03BCy). Consider the set Then

Now, a disintegration
has measure boundedness, so suppose 03BCy(A n f-1 (y))  K for all y so that the

integral  K- 1 whence 1  K- 1. But, for any K, there is an 71 large enough
n yn it 

g

so that this is false. D
Mble has products which make it into a monoidal category. The unit is a (fixed)

terminal object (1, 2). Disiiit is also monoidal. More precisely,
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Proposition 3.10 (Disint, X, (1, 2, counting)) is a monoidal category. X denote
tlae u.sual product of (not necessarily complete) measure spaces. For

(03BCOp)(y,t)(D) = (03BCy Xpt)(D) with D considered as an element of Ay x Ct.
Leiuuia 3.1 03BCy opt satisfies axio1ns I and 2.

Proof: Axiom 1: k(y, t) = (03BCy X pt)(D n f-1(y) x g-l(t)) is measurable and
bounded:

If D = A x (7 is a measurable rectangles, then k(y, t) = py(A n f-1(y)). pt(C n
g-’(t)) is measurable and bounded since it is a product of two such (axiom 1 for
03BCy and pt). Furthermore, k(y, t)  (03BCy X pt)(X x Znf-1(y) x g-1(t))  oo. That

is, k is bounded for any D. We need only check that it is measurable.

is a disjoint, union of rectangles, then k(y, t)

is a sum of measurable functions so is mea-

surable. Now an arbitrary (countable) union can be written as a disjoint (count-

able) union (for example, for

the Bi’s are disjoint). For finite intersections, use, for y a finite measure, y(Dl n
D2) = y(D1) + y(D2) - y(D1 U D2). Finally, for countable intersections, use

oo n

Axiom 2: Again, the process is exactly as for axiom 1 (disjoint unions use additiv-
ity ; increasing limits and sums pull out of integrals by the monotone convergence
theorem). We only check the basic case, D = A x 0:

Proof: (of proposition :3.10): It is straightforward to check that (1, 2, counting) is
a unit. We exhibit bifunctoriality of oo.

In (1 x 1, (i X i)(x,y)) : (X x X, AXA, 03BCX03BC)-&#x3E;(X x X, AX A, 03BCX03BC), we
have (t 6J t)(,,y) = lx 0 ty = l,(x,Y). Now, suppose
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and

denote two compositions in Disillt and consider:

where We show that on the

generators of (
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MOR is also monoidal. Our proof, however, is quite complicated and uses
"disintegration machinery" (part of our ongoing investigation is to find a more

elementary and elegant proof). Here we prove the special case: f E M0R =&#x3E;

f x 1Z E MOR (after which, it is straightforward to exhibit MOR as monoidal).
Consider the square: 

J

with p and q projections (this square is a special case of a pull-back-like construction
(not universal) which we will consider in the sequel).

By Fubini’s theorem (or, see example 1), for E E A 0 C, (y 0 p)(E)

nat,e description:
is the constantly p measure (example 1 of a disintegration) so

11

Next, suppose ( We wish to show (
We have a disintegration, so

composite of the integrand in (4) (which is, in particular, a positive, measurable
function) and f(x) so our result will be established if we prove the following:

Proof: As usual, we proceed in steps:
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and both of measure zero: j
(-,’ase t a nonnegative measurable function: let Sn T t be a sequence of simple
functions. Then

Remark: Finiteness of measure is irriportant for consider the following example: let

([0, 1 , A, 03BC) denote the Lebesgue measurable sets but with ii(A) 0 h(A) = 0(L J ( ) oo h(A) # 0
and form 1 x 1 = 1 : ([0, 1] x [0,1], A Co A, it X 03BC) -&#x3E;([0,1] x [0, 1],,C 0,C,,B (9 A).
The diagonal has A (9 A-meastire zero. But, if we cover it in A XA by any collection
of rectangles (of nonempty interior say), the measure of such a cover is infinite;,
whence (it X 03BC)(1-1 (diagonal)) 74* 0. 0
Epilogue: We consider the work here as providing a background for our framework
for X-families (of Hilbert spaces, for example, but ultimately, of many other types
of objects as well). Indeed, in the sequel, we will interpret MOR and Disint in
the context of fibrations (for B6naboti style indexed category theory, [2]). The
material presented in this paper also stands alone, however. We have constructed
two monoidal categories. With Disint, we have addressed a suggestion given long
ago by Breitsprecher. Disint (more precisely, examples 7 and 8) seems to encode
the Radon-Nikodym derivative and Fubini’s theorem (example 1) in a categorical
way (and in a way that is different from [3] and [6]). 0
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