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ON ACCUMULATION POINTS
by Petr SIMON

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XXXV-4 (1994)

Risum6. On etudie les classes des espaces topologiques AC et AP introduites
rdcemment par A. Pultr et A. Tozzi. On définit une autre classe, wAP, qui est
comprise entre les deux, et on prouve que ces classes sont des sous-classes

propres et distingudes de Top. Finalement on prouve que ni AP ni wAP ne sont
stables par produit.

Recently, Ales Pultr and Anna Tozzi introduced two classes of spaces, called
AP and AC (see the definition below). The class AC arose naturally from lattice-
theoretical investigations of quotient mappings, while AP is a subclass of AC and is
easier to deal with. It turns out that both classes are interesting also on their own.
The aim of the present paper is to present several examples, indicating additional
properties of the classes in question.

Definition. [6] A topological space X satisfies the condition of approximation by
closed sets (abbr. AC), if for each non-open set M C X there are open sets U, V C X
and a closed set F C X such that U U ( V n M) = U U ( V fl F) and the set U U (V n F)
is not open.
A topological space X has the property of approximation by points (abbr. AP),

if for every M C X and for every point E M B int M there is a C C X such that
C n M = O and C n M = {x}.

Clearly, every AP space is AC, provided very mild separation is assumed. Con-
sider X to be, say, Tl. Choose M not open, pick a point E M B int M and
let C C X B M satisfy C n M = {x}; here we have used AP. Put V = X,
U - X B C, F = {x}. Then U, V are open, F closed (because X is Ti) and
U U (V n M) = (X B C) U {x} = U U (V rl F), which is not open. So X has AC. (In
fact, less than Tl may be assumed, see Prop. 5.2 from [6].)

Obviously, there was no need to use the full strength of AP in the above proof,
which leads to the following definition.

Definition. A topological space X has the weak property of approximation by
points (abbr. wAP), if for every not open M C X there is a point x E M B int M
andasetCCX such that CnM = O and CnM= {x}.

The previous observation gives immediately
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Proposition. In the class of Tl spaces, AP C wAP C AC.

Notice that the class AP is a natural generalization of Frechet spaces and the
class wAP contains all sequential spaces. Indeed, if M C X is not open, then, if

X is Fr6chet, for each x E M B int M there is a sequence xn&#x3E; ranging in X B M
and converging to x; and there is such a point and such a sequence provided X is
sequential. For C = {xn : n E w) one has C fl M = {x} in both cases.

The next observation is trivial, however, it points on a rich source of AP spaces.

Observation. Every space with a unique non-isolated point satisfies AP.

Proof. Denote the space by X and the non-isolated point by x. If M C X is not

open, then x E M and every neighborhood of x meets the set X B M. So it is enough
to set C = X B M. D

Proposition. Every generalized ordered topological space has wAP.

Proof. Recall that a generalized ordered space is a linearly ordered set, where

neighborhood base at a point x is either {(y, x] : y  x} or {[x, y) : x  y}
or {(y, z) : y  x  z} depending on x; here (y, x] = {z E X : y  z  x},
[y, x) = {z E X : y  z  x} and (y, x) = {z E X : y  z  x}. If M C X and
x E M B int M, then there is some cardinal r and a (possibly transfinite) sequence
xa : a  r) with each xa belonging to the set X B M and converging to x. This
is a clear consequence of the fact that the space is generalized ordered. Let T(x) be
the minimal such T and let K = min{T(x) : x E M B int M}. For x E M B int M
with 7-(x) = tc and for C = {xa : a  K} we obviously have C C X B M, however,
Cn M = {x} is true, too: If not, then there is some y E M, y # x, y E C. So there
must be some  k with y E {xa : a  E}, because xa : a  K) converges to x.
But this contradicts to the minimality of k. D

In [6, Example 5.3], the authors showed that the ordinal space w1+1 with standard
topology does not have AP. Combined with the previous Proposition, we get
Theorem 1. AP C# wAP. 0

We regret that we were unable to remove the set-theoretical assumption from the
second half of the next theorem.

Theorem 2. There are two spaces, both having AP, such that their product fails
to have wAP. Hence the classes AP and wAP are not productive.

Under the assumption of Contonuum Hypothesis, there are two countable spaces
having AP such that their product does not satisfy AP.

Proof. Let X be the closed unit interval [0,1] with the usual metric topology, let
Y be the one-point Lindel6fication of a discrete space of size 2w. It is obvious that
both spaces have AP.

In order to show that X x Y does not satisfy wAP, we shall represent for conve-
nience the space Y as follows: Y = [0,1] U {oo}, where the basic neighborhood of a
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point x E [0, 1] is {x}, the point oo does not belong to [0, 1] and its neighborhood
basis consists of all sets {oo} U (Y B C), where C is at most countable subset of Y.

Let M = X x Y B {x, x&#x3E; : x E [0,1]}. The set M is not open: Let x E [0,1] be
arbitrary and let V be its open neighborhood in X. Let C C [0, 1] be an arbitrary
countable set. Since V is uncountable, there is some y E VBC. If U = (YBC) U {oo},
then y, y&#x3E; E V x U, so (x, 00) ft. int M.

If C C {x, x) : x E [0,1]} is countable, then C is closed in X x Y and so C does
not meet M. If C is uncountable, then one can find two distinct points y, z E X
such that every neighborhood of y as well as every neighborhood of z meets the set
{x : x, x) E C} in an uncountable subset. So C contains at least two points from
M, namely (y, oo) and (z, oo), which shows that X x Y does not satisfy wAP.

Now, let us prove the second statement from the Theorem. In fact, we need much
less than the full strength of CH. What we really need is only that there exist two
selective ultrafilters p, q on w, which are incomparable in Rudin-Keisler order. It is

well known that this is a consequence also of MA and independent of it. However,
it is also consistent that there are no selective ultrafilters at all [3, Th. 5.1].

For the reader’s convenience, let us recall the definition and several basic prop-
erties of selective ultrafilters. An ultrafilter s on w is called selective, if s is non-

principal and whenever {Rn : n E w} is a partition of w, then either there is some
n E w with Rn E s or there is some S E s with |S n Rn |  1 for all n E w . Such a
set is called a selector of the partition {Rn : n E w}. An ultrafilter s is selective if
and only if it is Ramsey [2, Theorem 9.6], which means that for every n, k E w and
every p : [w]n -&#x3E; {0,1,..., k} there is some S E s such that cp [ [S]n is a constant

mapping.
The Rudin-Keisler order Rx of ultrafilters is defined by p RK q if there is

a mapping f : w -&#x3E; w such that for each U E q one has f [U] E p; here it is

not necessary to consider a mapping with domain w, dom f E q suffices. So two
ultrafilters p, q are RK-incomparable, if for every f : w -&#x3E; w there is some U E p
with f-1[wBU] E q and some V E q with f-1(wBV] E p.
We shall define X = w U {p} and Y = w U {q} with the topology of a subspace of

(3fN, i.e., U C X is open iff either U C w or p E U and U fl w E p.
Both spaces have unique non-isolated point, hence both satisfy AP.
Before showing that X x Y does not have AP, we shall state two claims.

Claim 1. Let s be a selective ultrafilter on w, let C be a point-finite family of finite
subsets of w. Then there is an S E s such that for every two distinct n, m E S,
St(n, C) fl St(m, C) = O. (Here St (n, C) denotes the set U{C E C : n E C}.)

Define a mapping cp : [W]2 -&#x3E; {0,1} by cp({n, m}) = 0 if St(n, C) fl St(m, C) 0 O,
cp({n, m}) = 1 otherwise. Let S E s be homogeneous for cp. Since S is infinite, C
is point-finite and consists of finite sets, the constant value of cp l[S]2 cannot be 0.
Hence for distinct n, m E S, cp({n, m}) = 1, which means that St(n, C) fl St(m, C) =
0.
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Claim 2. Let p, s be RK-in comparable ultrafilters on w wi th s selective. Le t o be a
one-to-finite set-mapping from w to w such that for some U E p, the family {g(n) :
n E U} is point-finite. Then there is a set V E p such that UlLo(n) : n E V}£ s.

Consider the family C = {g(n) : n E U}. Applying Claim 1, choose S E s
such that St(n, C) fl St(k, C) = 0 for distinct n, k E S. For n E U, let f (n) be
the member of S which belongs to Lo(n), if there is any; if S n u(n) = 0, then
f (n) is undefined. If dom f £ p, then it is enough to set V = U B dom f and clearly
U{g(n) : n E V}nS = o . If dom f E p, then f[dom f] g S, however, p and s are RK-
incomparable, so there is some T E p with /[T] % s. Put V = U n dom fnT. Now we
have f[V] g 5’ and SBf[V] E s. By the choice of S, SB[V] = SBU{g(n) : n E V}.
So U{g(n) : n E V] $ s, which was to be proved.
Now we are ready to show that X x Y has not AP. Conider the set M = (X x

Y ) B (w x w). The set M has empty interior, M = {p} x w U w x {q} U {p, q&#x3E;}. Let
C C w x w be arbitrary. Our aim is to show the following: There is no C C w x w
with en M = {p, q&#x3E;} . To this end, let C = w x w be arbitrary and suppose that C
does not meet {p} x w U w x {q}.

For each n E w there are sets Un E p and Vn E q such that Un x {n} n C = o,
{n} x Vn n C = 0, because p, n&#x3E; $ C and (n, q) 0 C. By selectivity, there are
sets S E p and T E q such that for each n E w, is n nin Ui B nin+1 Ui|1 and
|T n nin Vi B nin+1 Vi  1. If n E w is arbitrary, T B Vn is finite, consequently
{n} x TnC is finite, too. For n E w define g(n) = f e w : (n, k) C {n} x TnC}.
We have just observed that the set-mapping o is one-to-finite.

By the choice of S, the set S x {k} n C is finite for each k E w . This immediately
implies that the family {g(n) : n E S} is point-finite. Since q is selective and p, q are
RK-incomparable, we are ready to use Claim 2. Let V E p and W E q be such that
W n U{g(n) : n E V} = 0. Then the set (V U {p}) x (W U {g}) is a neighborhood
of the point (p, q) in X x Y, which is disjoint with C. So (p, q&#x3E; $ C, which was to
be proved. 0

Now, we shall find a compact Hausdorff space which satisfies AC and which has
not wAP.

Theorem 3. wAP C# AC.
Proof. The space which satisfies AC and fails to have wAP is a special compactifica-
tion of w which was constructed for different purpose in [7] and [5]. For the present
proof, we need to repeat the definition of the space. We shall adopt the standard
notation when dealing with infinite subsets of w : A C * B denotes that A B B is
finite, A =* B stands for (A B B) U (B B A) is finite, A, B are called almost disjoint,
if A fl B is finite. A C#* B abbreviates A C* B and B B A is infinite.

There is a family A C [w]’ with the following properties: (a) For any pair A, B
of members of A either A and B are almost disjoint, or A C * B or B C * A, (b) for
each Z E [w]w there is some A E A with A C Z, (c) (,A, D* ) is a tree. The existence
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of such a family was proved in [1]. Let 8 C P(w) be the Boolean algebra, generated
by A U [w]w. The desired space X is the Stone space of B. Alternative description
of X is as follows: X = 3wl f"OtJ, where the equivalence relation ~ is defined by x ~ y
ifeitherxEw, yEw and x = y or x,y E Bw Bw and for allAEA, A £ x if and
only if A E y.

The space X does not satisfy wAP: Let M = X B Ý.1. Since the set w is open and
dense in X , M B int M = M. Let C C X B M be arbitrary. If C is finite, then C = C,
hence C fl M = O. If C is infinite, choose two infinite disjoint subsets Cl , C2 C C
and find two sets A, B E A satisfying A C Cl , B C C2 . If p is an ultrafilter in B

containing all cofinite subsets of w and such that A E p, and if q is an analogous
one with B E q, then p E C and q E C, too. Therefore one cannot find a subset

of X B M, the closure of which would meet M in exactly one point, which violates
wAP. 

The space X satisfies AC: Let M C X be an arbitrary non-empty non-open set.
Consider its subset M B w in the remainder X B w. We shall distinguish two cases:
Case 1. The set M B w is open in X B w.

Since M is not open in X, there is a point x E M B int M. Certainly x $ w, since
every point in w is an open subset of X. According to the definition of X, there is
some B E B such that x E B and B B w C M B w . However, since x E X B M and B
is a neighborhood of x and x $ (B B M) B w = O, x E BB M.

Put U = B n M, V = B and F = X ( w. As a subset of an open discrete set w,
U is open. Since B E B and X is the Stone space of B, the set B is open in X, too.
The set F is obviously closed. It is easy to check that U U ( V fl M) = U U ( V fl F),
because both sides meet w in the set B n M and both sides meet the remainder X B w
in the set B B w. The point x is the witness that U U (V n M) is not open.
Case 2. The set M B w is not open in X B w.

Here we need a more close examination of the structure of X B W. We claim the
following: If a set Z is not closed in the space X B w, z E XBw and z E Z’, then
there is some ordinal T and a (transfinite) sequence (xa : a  T) ranging in Z and
converging to z. (Here Z’ denotes the set of all accumulation points of Z, that is,
Z’ = {x E X : Each neighborhood of x contains at least 2 points from Z}.)

To see this, notice that the system A is a tree under the order D*. Thus one

may assign to each member A E A an ordinal a(A), the order type of the set
{B E A : B )* A}. As x may be viewed as an ultrafilter on B containing no
finite set, we may put a(z) = sup{a(A) + 1 : A E A and A E z} (equivalently,
a(z) = sup{a(A)+1 : A E A and x E A}). If a(z) is a successor ordinal, then by (a),
there is a unique A E A with a(A) + 1 = a(z) and for every B E A with a(B) &#x3E; a(z)
we have wBB E z. If B E A is such that a(B) &#x3E; a(z), then there is some C E A with
a(C) = a(z) and C )* B, by (a) and (c). So {A} U U{w B B : B E A, a(B) = a(z)}
is a subbasis of z. Pick xo E A n Z, xo i4 z and find Bo E A with xo E Bo,
a(Bo) = a(z). There must be such a Bo, since xo 0 z. Then find xl E A B Bo n Z
and Bi E A with B1 C* A B Bo and xl E B1, a(B1) = a(z). Proceeding further,
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we obtain Bn and xn E Z (n E W), such that Bn’s are pairwise almost disjoint,
Bn C A, xn E Bn and a(Bn) = a(z). The sequence xn : n E w) converges to z,
since {A B Unk BnBL : k E w, L E [w]w} is an open basis in z.

If a(z) is a limit ordinal and if there is an infinite set of those B E A such that
a(B) = a(z), B n Z # O and for all A E A fl z, B C* A, then the same reasoning
as for the successor case will produce an analogous countable convergent sequence.
In the case which remains, we may w.l.o.g. assume that for every B E A, if B C* A
for each A E z fl A, then B n Z = 0. As z E Z’, for every A E A n z there is some
xA E Z with xA E if, xA # z and such that there is a member B E A fl z with
xa $ B. Since the set A fl z is well-ordered by )*, it follows that the points xA
(A E A fl z) form a sequence of length not exceeding a(z) and converging to z.

Having proved the claim, let us conclude the proof. Since M B w is not open in
X B cv, there is a point x E M and a sequence xS : S  T&#x3E; ranging in (X B ca) B M
such that (zg : g  T) converges to x and T is the minimal possible. Since every
neighborhood of x contains a cofinal part of {xS : S  T} and since T is minimal,
(zg : g  a}nM = o for every a  T. So (xS : S  T}nM = {x}. So it is enough to

Remark. Notice that the space X from the above proof is a disjoint union of an
open subspace w and a closed subspace X Bw. The first subspace has clearly AP and
our proof shows, in fact, that XBw satisfies wAP. The Proposition 5.5 from [6] says
that if both subspaces satisfy AC, then the whole space does. Hence our example
shows also that this proposition cannot hold in a stronger version replacing AC by
wAP.

Next, we aim to show that there is a space not satisfying AC. The forthcoming
Proposition shows a sufficient condition for it.

Proposition. Let X be a regular Tl space containing a set M such that for each
T C X , if T’ # O, then T’ fl m i4 0 56 T’B M . Then X does not satisfy AC.

Proof. Pick open sets U, V and a closed set F in X arbitrarily; we have to show
that either U U ( V fl M) # U U ( V fl F) or the set U U ( V n F) is open. We shall
frequently use the following consequence of the fact that the space X is regular and
Tl : If T C X has an accumulation point, then |T’ n M | &#x3E; 2 and |T’B M|&#x3E; 2. Of

course, by our assumption there is a point x E T’ fl M as well as a point y E T’ B M.
Choose disjoint closed neighborhoods G, H of x and y. Then (T n G)’ 0 0, since
x E (T fl G)’; similarly for T n H. So one point in T’ n M can be found in G, the
second one in H, as well as the points from T’ B M.

If V n F C U, then U U ( V fl F) is open. So for the rest of the proof we may
assume that the set K = (V n F) B U is non-empty.
Case 1. There is a point x E V, which is an accumulation point of Ii.

Pick an open set G such that x E G ç G C V. Then x is also an accumulation
point of If n G. Therefore the set K n G contains also some accumulation point



327

y $ M. We have obtained U U (V n m) o U U (V n F), because the point y belongs
to the right-hand side set only.
Case 2. No point in V is an accumulation point of K.

Choose for every x E Ii open sets Gx, Ox such that x E Gx C C C Ox C Ox C V
and Ox nK = {x}.

Subcase 2a. There is a point x E K which is an accumulation point of X B U.
Clearly, this x is also an accumulation point of the set G x B U. Thus there are at

least two points in (Gx B U) n M. Therefore Ox n F B U # Ox n M B U, since the
first set contains precisely one point, the second one at least two. The inequality
U U(V n M) # U U (V nF) follows.

Subcase 2b. No point in K is an accumulation point of the set X B U.
In this subcase, each x E K has an open neighborhood Hx such that Hx C Ox

and HxBU = {x}. Since - (V nF)BU, we have: U U (VnF) = U U K =
UUU{{x} : x E K} = UUU{HzBU:xE K} = UUU {Hx : x E K}. Being the
union of open sets, U U (V n F) is open in this subcase.

All cases and subcases have been considered; the proof is complete. 0

Proposition. The space BN, the Cech-Stone compactification of integers, satisfies
the assumptions of the previous Proposition.

Proof. We may restrict our attention to countable discrete subsets of,3m. There are
22w countable discrete subsets of BN and every countable discrete subset of BN has
22w accumulation points. By the disjoint refinement lemma [4], there is a pairwise
disjoint family R such that each member of R is of the full size 22w and every set of
accumulation points of a countable discrete set contains a member of R. If M C,3m
is such that both M and BNBM meet each member of R, then M is as required. 0

Thus we have proved
Theorem 4. AC C# Top. 0
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