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THERE IS NO COGENERATOR FOR TOTALLY
CONVEX SPACES

by Reinhard BÖRGER &#x26; Ralf KEMPER
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Volume, XXXV-4 (1994)

Dedicated to the memory of Jan Reiterman

RhsumA. Nous d6montrons que la categoric des espaces totalement con-
vexes ne possède pas un cog6n6rateur.

Totally convex spaces were introduced by Pumplün and RZhrl [5] (cf. also [6]) as
the Eilenberg-Moore-algebras induced by the unit ball functor
O : Ban1 -&#x3E; Set and its left adjoint 11 : Set -&#x3E; Bani, where Ban1 is the

category of Banach spaces and linear operators of norm  1. Pumplfn and Rohrl
characterized a totally convex space as a non-empty set X together with a map

) subject to the following two axioms:

Note that in (TC2) the right-hand side makes sense because (En£IN anBnm)m£IN E
Q. TC denotes the category of totally convex spaces, where morphisms are maps
preserving the above operations.
Later Pumplfn ([3], [4]) introduced the category PC of positively convex spaces and
the category SC of superconvex spaces. A positively convex space is a non-empty
set X together with operations 

, where X satisfies (TC1) and the
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restriction of (TC2) to 0+. A superconvex space is defined similarly by restricting
the operations and axioms to Osc := {(an)n£IN E 0+ I LnelN an = 1} and allo-
wing. X ;: .0. For totally convex or positively convex spaces the empty space can be
excluded because of the nullary operation corresponding to (0)nEIN EQ+BQSC C O.
It has been an open problem whether the category TC (PC, SC resp.) has a coge-
nerator, i.e. a (small !) set C of objects such that for all pairs of distinct morphisms
f , g : D’ -&#x3E; D there is a morphism h : D -&#x3E; C with C E C and hf # hg. Obviously
this in equiY8leat to saying that for all DE I (IPCI, |SC| resp.), d0, d1 E D with
do 0 dl thate In a morphiam h : D ---r C with 0 E 0 and h(do) gi b(di), In [2] we
showed that the "flnitary versions" of TC and SC (i.e. the categories obtained by
reqtriction to Anitary operations) have copoerators. Here we give negative answers
for the infinitary cues. 0

IR+ := IR+ U loo) (where IR+ := {x E IR| x &#x3E; 0} is a poaitively convex space in the
usual way (with 0’ oo = 0). For any set J, a congruence relation - can be defined
on the cartesian power IRJ+ by:

(We consider the elements of IR+ as maps from J to IR+). Then 8J := IR+JB~ can
be identified with IRJ+ U {oo} in the canonical way, and we denote the constant map
J -&#x3E; IR+ with value 1 by u E SJ .

Lemma: Let J be an infinite set, C a positively convex space of cardinality #C  #J
and f : Sj -&#x3E; C a morphism of positively convex spaces. Then f (u) = f(oo).

PROOF: For k E J, define ek E IRJ+ C SJ by ek(k) := k and ek(j) = 0 for
j # k. Since #C  #J, there are a c E C and a sequence of distinct elements
kn E J with f(ekn) = c for all n E IN . For n E IN, define xn E IRJ+ C 8J by
xn(kn) := 2n+l and xn(j) := 0 for i 96 kn . Then in Sj we have Eoon=1 1 2n+1 xn =
v with v(kn) = 1 for all n E IN and v(j) = 0 for j ft. {kn|n E IN}. Moreo-
ver, for n E IN define y" E IRJ C Sj by yn(k1) := 2n+l and yn(j) := 0 for

j # kl . Then for every n E IN we have 1 2n+1xn = ekn and Yn = ek1, hence

Theorem: None of the categories TC, PC, SC has a cogenerator.
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PROOF: If C were a cogenerator of PC, then there would be an infinite set I with
#I &#x3E; fC for all C E C. Hence by the Lemma there could not be a PC-morphism
f : Si -&#x3E; C with C E C and f(u) # f(oo), disproving the cogenerator property.
Now assume that ê is a cogenerator of SC. For every C E e, c E C there is a unique
positively convex structure on C inducing the original superconvex structure and
having c as zero element (cf. [2], 1.2). Moreover, a map between positively convex
spaces is a PC-morphism if and only if it is an SC-morphism preserving the zero
element. Let C be the set of all positively convex spaces whose underlying super-
convex space belongs to e. Then for every D E |PC|, x, y E D, x 96 y there exist
C E e and an SC-morphism f : D -&#x3E; C with f(x) # f(y), and f even becomes a
PC-morphism if C is equipped with the positively convex structure extending the
given superconvex structure and having f(0) as zero element (where 0 is the zero
element of D). Thus C is a cogenerator of PC, contradicting our previously proven
result.

Finally, assume that TC has a cogenerator C. We claim that the underlying su-
perconvex spaces of the elements of C form a cogenerator d of SC, contradicting
our previous result. For D E ISCI fixed, define D E ITCI in the following way:
the underlying set of D is

Note that this definition makes sense, because in the first case we have 1 =

Now it is readily checked that
D E |TC|, and s : D -&#x3E; D, a f-· (1, a) for all a E D is an S C-morphism. For all
a, b E D with a # b we have s(a) # s(b), and by hypothesis there is a TC-morphism
f : D -&#x3E; C with C E C, f s(a) # f s(b). But then f s is a TC-morphism, proving
that e is a cogenerator of SC. C3
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