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GEOMETRIE DIFFERENTIELLE CATEGORIQUES

THERE IS NO COGENERATOR FOR TOTALLY

CONVEX SPACES
by Reinhard BORGER & Ralf KEMPER

Dedicated to the memory of Jan Reiterman

Résumé. Nous démontrons que la catégorie des espaces totalement con-
vexes ne posseéde pas un cogénérateur.

Totally convex spaces were introduced by Pumpliin and R&hrl [5] (cf. also [6]) as
the Eilenberg-Moore-algebras induced by the unit ball functor

QO : Ban; — Set and its left adjoint /; : Set — Ban;, where Ban; is the
category of Banach spaces and linear operators of norm < 1. Pumpliin and Rohrl
characterized a totally convex space as a non-empty set X together with a map
XN — X, @n)nelN = ToeiN @nzn for all (@n)yein € @ : = {(a)pein €
kN | X neiN lan| < 1}, (where K € {IR}) subject to the following two axioms:

(TC1) X, cIN SnmZn = zm for all m € IN, (zn), N € X IN and 6 the Kronecker

symiol.

(TC2) znelN a"(zmdN Bamzm) = z:melN (EnelN anfpm)Tm whenever
(2n)neIN € X'N,(an)nelN € @, and (Bnm),,¢IN € @ for all n € IN.

Note that in (TC2) the right-hand side makes sense because (3_,,c|N @nBnam)neIN €
Q. TC denotes the category of totally convex spaces, where morphisms are maps
preserving the above operations.

Later Pumpliin ([3], [4]) introduced the category PC of positively convex spaces and
the category SC of superconvex spaces. A positively convex space is a non-empty
set X together with operations (Zn),cIN — 2,¢IN @nZn for all (an), N € QF =

{(an)neIN € IRlNl Vn an > 0and 3 |\ an < 1}, where X satisfies (TC1) and the
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restriction of (TC2) to 2. A superconvex space is defined similarly by restricting
the operations and axioms to Qsc := {(an),¢IN € 2 | X, ¢IN @n = 1} and allo-
wing X = 0. For totally convex or positively convex spaces the empty space can be
excluded because of the nullary operation corresponding to (0),,c |y € 2% \Qsc C Q.

It has been an open problem whether the category TC (PC, SC resp.) has a coge-
nerator, i.e. a (small !) set C of objects such that for all pairs of distinct morphisms
f,9 : D' — D there is amorphism h : D — C with C € C and hf # hg. Obviously
this is equivalent to saying that for all D € |TC| (PPC|, ISC]| resp.), do,d; € D with
dg # dy there is & morphism h : D — C with C € € and h(do) % h(d1). In [3] we
showed that the “finitary versions” of TC and SC (i.e. the categories obtained by
restriction to finitary operations) have cogenerators. Here we give negative answers
for the infinitary cases. (n]

R, := R, U{oo} (where IRy := {z € IR| 2 > 0} is a positively convex space in the
usual way (with 0 - oo := 0). For any set J, a congruence relation ~ can be defined

on the cartesian power 'ﬁi by:
z~vyic=z=yorIk,jeJ z(k)=y(j) = oo

We consider the elements of IR), as maps from J to IR,). Then S := R\~ can
+ + +

be identified with IRi U{co} in the canonical way, and we denote the constant map
J — IR, with value 1 by u € S;.

Lemma: Let J be an infinite set, C a positively conver space of cardinality §C < §J
and f : S; — C a morphism of positively convezr spaces. Then f(u) = f(o0). '

PROOF: For k € J, define e; € IR,J,_ C S; by ex(k) := k and ex(j) = 0 for
J # k. Since §C < fJ, there are a ¢ € C and a sequence of distinct elements
k, € J with f(er,) = c for all n € IN. For n € IN, define z, € IRi C S5 by
zn(kn) := 2"*! and z,(j) := 0 for j # k,. Then in S; we have } " sy =
v with v(k,) = 1 for all n € IN and v(j) = O for j ¢ {ks|n € IN}. Moreo-
ver, for n € IN define y, € |Rfr C S; by yn(k1) := 2°*! and y,(j) := 0 for
j # k1. Then for every n € IN we have Fl.n-z,. = e, and F.l.n-y,. = eg,, hence
ot f(zn) = f(53r2n) = f(er,) = ¢ = f(ex,) = 5551 f(¥n), and from ([1], Theo-
rem 1.1) we get f(-%z,.) = %f(:c,.) = %f(y,.) = f(-%y,,). Since E:"zl 7.;1;1-y,, = 00
we obtain f(v) = f(}::;l 57'171':") = f(ZT:x -il:(%z”)) = Er:l %f(%zﬂ) =

1 35 f(3un) = F(Tne1 351 Un) = F(00). Now define w € IRi C Sy by w(j) :=
1 for j € {kn | n € IN} and w(j) := 2 otherwise. Then we get v+ 3w = u and
Yoo+ $w = oo, hence £(u) = 1/(1) + $f(w) = $£(o0) + 1f(w) = f(c0). O

Theorem: None of the categories TC, PC, SC has a cogenerator.
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PRrooF: If C were a cogenerator of PC, then there would be an infinite set I with
$I > §C for all C € C. Hence by the Lemma there could not be a PC-morphism
f : St — C with 9 € C and f(u) # f(co), disproving the cogenerator property.
Now assume that € is a cogenerator of SC. For every C € €, ¢ € C there is a unique
positively convex structure on C inducing the original superconvex structure and
having ¢ as zero element (cf. [2], 1.2). Moreover, a map between positively convex
spaces is a PC-morphism if and only if it is an SC-morphism preserving the zero
element. Let C be the set of all positively convex spaces whose underlying super-
convex space belongs to C. Then for every D € |PC|, z,y € D, z # y there exist
C € € and an SC-morphism f : D — C with f(z) # f(y), and f even becomes a
P C-morphism if C is equipped with the positively convex structure extending the
given superconvex structure and having f(0) as zero element (where 0 is the zero
element of D). Thus C is a cogenerator of PC, contradicting our previously proven
result.

Finally, assume that TC has a cogenerator C. We claim that the underlying su-

perconvex spaces of the elements of C form a cogenerator € of SC, contradicting
our previous result. For D € |SC| fixed, define D € |TC| in the followmg way:

the underlying set of D is (U x D) U {0}, where U := {y € K| |y| = 1} and
K € {IR{@} is the base field. For (as),ciy € @, (zn),cIN € ﬁ' , I'=={n €
IN | z, # 0}, (Yn,@n) := 2, for n € I (where v, €U, a, € D for n € I) define

(Cnerontn, Laerlanlan), if Yoeronmm €U
AnZp 1=
ZnelN nen { 0 otherwise.

Note that this definition makes sense, because in the first case we have 1 =
|2 ner @nTnl £ Lperlanl < 1, hence 3 ;lan| = 1. For I = @ we obviously
have )~ ;an1n =0 ¢ U, hence Yone1 ¥nZn = 0. Now it is readily checked that

De|TCl,and s: D — D, a (1, a) for all @ € D is an SC-morphism. For all
a,b € D with a # b we have s(a) # s(b), and by hypothesis there is a T'C-morphism

f :ﬁ._’ C with C € (:", f s(a) # f s(b). But then f s is a TC-morphism, proving
that C is a cogenerator of SC. (]
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