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SOME REMARKS ON CONJUGACY CLASSES OF
BUNDLE GAUGE GROUPS

by Matilde MARCOLLI

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume)()(XVII-1 (1996)

RESUME. Les G-fibr6s principaux sur un CW-complexe B peuvent
être divises en classes d’6quivalence, ou en classes de conjugaison
de groupes de jauge (groupes d’auto-équivalence). Dans cet article,
on étudie les connexions entre isomorphisme de groupes de jauge,
relation de conjugaison et equivalence de fibres.

On donne d’abord un exemple de deux fibr6s qui ont des
groupes de jauge isomorphes qui ne sont pas conjugues. On prouve
alors que, sous certaines hypotheses sur le groupe G et sur la
trivialisation locale des fibr6s, deux fibr6s sur un poly6dre fini B qui
ont des groupes de jauge conjugu6s sont 6quivalents si et seulement
si les fibr6s produit fibr6 via l’inclusion du 3- squelette dans B sont
equivalents.

1 Introduction

Let ( = (E, p, B) be a principal G-bundle, where G is a topological
group. We assume that the base space B is a CW-complex. Let

{Ua, oa}aET be the local trivialization with oa : Ua x G=--+ p -1 (Ua)
and let 9a/3 : Ua n UB--+ G the transition functions, 

The gauge group g(p) of the bundle is defined as the topological
group of self equivalences A : E --+ E that commute with the map p,
p o A = p and have local expression



22-

with the transformation law

where the product is pointwise in G. We give g(p) the topology induced
from the compact-open topology of M(E, E).

A result of [MP] shows that the gauge groups g(p) of the princi-
pal G-bundles over B can be viewed as topological subgroups of the
common local gauge group

with the product topology and the compact-open topology on the fac-
tors, where g(p) ---&#x3E; I10 M (Ua, G) is obtained by identifying a A E g(p)
with the collection {La|La E M(Uo,G), LB = gBa La gaB}.

As subgroups of the same group we can divide the gauge groups into
conjugacy classes: 9 (p) - 9 (p’) iff 3{ fa} E no M(Uo, G) such that

for all {La} that locally determine A e g(p) and for all (A£) corre-
sponding to a A’ of g(p’).

The conjugacy relation is independent of the choice of trivialization.
Suppose that a different set of transition functions for the two bundles,
gaB g’a,B is given. Then the relations

imply that the gauge groups Q(p), G(p’) are mapped into themselves by
the inner automorphisms

and the conjugacy relation



23

is maintained by setting

where

In the sequel we shall use a construction which associates to a prin-
cipal G-bundle ( a bundle with structural group the group of inner au-
tomorphisms of G; this new bundle is known as the fundamental bundle
associated to z (see [Hu] for example).

Consider first the morphism which maps G into its group of auto-
morphisms

The exact sequence

where Z(G) is the centre of G defines A(G), the group of inner auto-
morphism of G.

Let z = (E, p, B) be given with transition functions gaB; call

the image in A(G) of the transition functions.
The maps gAaB : Ua n UB--+ A(G) behave like transition functions

themselves, and thus uniquely determine a bundle over B which has
fibre G and group A(G); this is the fundamental bundle A(Z) associated
to Z.

An equivalence of two principal G-bundles over the same space B,
Z = (E, p, B) and ç’ = (E’, p’, B), is a map A : E ---+ E’, where p’oA = p,
with the property that
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Given (, Z’, two principal G-bundles over the same B, with transition
functions gap and g’aB respectively, a construction analogous to that of
the fundamental bundle leads to a criterion of equivalence, which we
will refer to as Hu’s criterion ([Hu]).

In fact considering the morphism of G x G into the group of home-
omorphisms of G given by

we define the subgroup G* of the homeomorphisms by means of the
exact sequence

where A(g)= (g, g) is the diagonal map.
Thus a set of new transition functions is obtained as

and the corresponding bundle with fibre G and group G* is called the
Ehresmann bundle, Z*(Z,Z’). We shall indicate the set of its sections by
T(B",Z*).

Hu’s equivalence criterion states that there is a bijective correspon-
dence between the equivalences of the two bundles and the sections of
the Ehresmann bundle ([Hu] pg. 263 ). The Ehresmann bundle is in
fact the bundle of morphisms of Z into and the fundamental bundle
A(Z) is the bundle of automorphisms of Z.

That is, Z*(Z, Z) = A(Z); and therefore the gauge group 9 (p) is

isomorphic to the group of sections F(B, A(Z)).

As seen before, the equivalence condition for G-bundles is the rela-
tion between their transition functions

The conjucacy relation of gauge groups G(p) N g(p’) can also be
described as a property of the transition functions of the two bundles,
as shown in [MP] (pg. 237), with the following:



25

Theorem 1 Let ç = (E, p, B) be a principal G-bundle such that
(i) the mapg(p) --+ G that sends A - A Ip-l (bo) (eG) is an epimor-

phism for all choices of bo E B;
(ii) the covering {Ua} is such that every map A, : Ua - A(G) has a

lifting Àa : U, -* G, p o A == L
Then the following statements are *equivalent:
(a) g(p) ~ 9 (p’),
(b) A(z) is equivalent to A(Z), 
(c) Va, B E T

such that

2 Isomorphism of gauge groups and con-
jugacy relation

The purpose of this paragraph is to answer a question of [MP] (pg. 243):
they ask for an example of two principal G-bundles whose gauge groups
are isomorphic but not conjugate.

Lemma 1 Let ( = (E, p, B) be a principal G-bundle. Then an auto-

morphisms H : G --&#x3E; G of the topological group G determines a bundle
ZH that has gauge group g(pH) isomorphic to g(p).

Proof

Let gap be the transition functions of the bundle Z It is sufficient
to note that
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ifUa U B p n U y#0. Thus

are the transition functions of a G-bundle ZH.
Moreover H induces an isomorphism between the groups of sections

Thus, as a consequence of Hu’s criterion, the gauge groups g(p) and
g(pH) are isomorphic.

***

The example we are looking for now is given as follows.

Let G be the dihedral group of order 4, given by the permutations
of . { 1, 2, 3, 4 }

Consider the outer automorphism H given as a permutation by
(h, m) (v, n).

Now take B = S1 with a covering {U1, U2} given by

on the intersections U, V define the transition functions

These uniquely determine a principal G-bundle Z.
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The bundle ZH has transition functions

because of lemma 1 the gauge groups of Z and ZH are isomorphic.
Suppose that they were conjugate. This means that, if !g(pH) =

with {LH} any element of G(pH) and (La ) any element of g(p), then

i.e.

Therefore ( fB-1 gHBa fagaB) commutes with all elements of G that are
assumed as values of some local determination La of a self equivalence
of Z

Thus in our case we can write

with qBa : Ua fl UB --&#x3E; S C G, where S’ is the subgroup {e, r2, h, v} of
G : in fact the condition L1 = gUL2 gU-1 forces Li (b0) to take values in
,S’, for any choice of bo E Ui, and any element which commutes with all
elements of ,S’ has to be itself in S.

We have the following relations:

but a straightforward calculation shows that there can’t exist any set of
elements fl, f2 E G and qu, qv E ,S’ such that
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Figure 1: Two bundles with isomorphic gauge groups that are not con-
jugate

Under a more geometrical point of view, we can look, instead of
principal bundles, at the associated bundles which have fibre the square
and group G, where the action is permutation as in the definition.

The two bundles then look like figure 1.
Note: in this example we cannot use theorem 1, as the map g(p) - G

is not an epimorphism.
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3 Conjugate gauge groups and equivalent
bundles

It is trivially verified that equivalent bundles have conjugate gauge
groups; however there are non equivalent bundles with conjugate gauge
groups: the question that, arises is how far from equivalence they can
be.

Under some additional hypothesis it is possible to give an answer to
such a question. We shall assume that the group G is a path connected
topological group with a discrete centre, and that HI (Uon Z(G)) = 0,
an assumption that guarantees the existence of liftings Ào : Ua --+ G for
functions Xo : Uo --+ A(G): these assumptions imply conditions (i) and
(ii ) of theorem 1 Section 1, and therefore the result of [MP] holds true.

Hu’s n-equivalence theorem

Before stating our result it is necessary to recall some tools used in

[Hu].
Suppose Z and Z’ have transition functions gap and g’ Let A(ç)

and A(Z’) be the associated fundamental bundles, and Z*(Z,Z’) their
Ehresmann bundle.

Suppose from now on that B is a polyhedron such that every simplex
is contained in some Uo.

Definition 1 Two such bundles are n-equivalent i ff the pullback bun-
dles via the inclusion map in : Bn --&#x3E; B of the nth skeleton in the base
B are equivalent.

By Hu’s criterion n-equivalence of bundles corresponds to the exis-
tence of a section of the Ehresmann bundle over the nth skeleton.

Thus equivalence of two bundles can be proved by showing that a
section over the (n - 1st skeleton can be extended to one over the nth
Vn &#x3E; 2. 1-equivalence is obtained from path connectedness of G.

A condition for this to happen is found by [Hu] by means of ob-
struction cocycles.
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Let’s just recall the definition of such objects: an element s = {sa} of
T(B(n-1), A(Z)), the group of sections of A(Z) over the (n - I)st skeleton
B (n-1) , defines a map

where o- is any n-simplex of B.
A homotopy class [ fsa] is well defined, independent from the choice

of Ua, because sB = gABaSa with gaa defined on all cr; and it is an element
Of lTn-1 (G).

Thus a cocycle is defined with coefficients in lT n-1 (G), as

and it determines a cohomology class {cns} in Hn(B, lTn-1(G)).
The n-th obstruction set of A(Z) is the set Qn(A(Z)) of all classes

determined by sections s E f(B(n-l), A(Z)).
An analogous construction leads to the definition of Qn (A(Z’)) and

Qn (Z* (Z, Z’)). 
The classes of obstruction cocycles of A(Z) and of A(Z’) form two sub-

groups of Hn (B,lTn-1 (G)), while Qn(Z*(Z,Z’)) is a coset ([Hu] pg.268).

Theorem 2 ([Hu]) Suppose that Z* has a section over the (n - 1)-
dimensional skeleton B(n-1) with n &#x3E; 2, therc it has a section on Bn

iff

in Hn(B,lTn-1(G)) .

Conjugacy relation and extension of sections
Theorem 3 Let Z = (E, p, B), ç’ = (E’, p’, B) be two principal G-
bundles with conjugate gauge groups; we also assume that B and G
satisfy the conditions stated at the beginning of the section; furthermore
suppose that the open covering of the polyhedron B is such that H’ (U,,,, n
Up, Z(G)) = 0.



31-

Suppose that the Ehresmann bundle Z* (Z, Z’) has a section over the
3-dimensional skeleton B3, s E f( B3, Z*), and that the following holds:

Base Point Condition:

b’Ua 3ya E G such that Vo- E B3 n Ua there’s a base point X, E o-

such that Sa (xu) = Ya.
Then Z and Z’ are equivalent bundles.

Proof

By theorem 1 conjugacy of gauge groups has the same meaning
as equivalence of the fundamental bundles. These are not principal
bundles, but Hu’s equivalence criterion extends to this case without
any change.

This means that the Ehresmann bundle Z*(A(Z), A(Z’)) has a section.
This has fibre A(G), group A*(G) determined by

and transition functions

that act as gaBA*(h) = gA. h . g’ABa, Ah E A(G).
By iteration we can construct the fundamental bundles A2(Z )and

A2(ç’) associated to A(Z) and A(Z’). These have fibre A(G), group
A2(G) given by

and transition functions

and

respectively, acting on h E A(G) as g Aa B. h . gaa.
To simplify notations we shall indicate in the following Z*(Z,Z’) as

Z* and Z*(A(Z), A(Z’) as Z*A.
Because of the hypothesis that Z(G) is discrete, Aq &#x3E; 2
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Such isomorphisni /i., : 7r n-l (G) --+ 7rn-1 (A(G)) induces an isomor-
phism of the cohomology groups

Now we prove the following lemma:

Lemma 2 For every n &#x3E; 3 we have

Proof
It is enough to show this in the case of A(Z).
The map p o fsa : aO- --+ A(G) determines a cohomology class

which is an element of Qn(A2(Z)) because the transformation law

becomes

We want to show that every map Iso: : 8u - A(G), with § E
F(B (n-1) , A2(Z)), can be lifted to an Iso: ao- -&#x3E; G, such that p o Iso =

fsa, and s E T(B(n-1), A(Z)).
The hypothesis H1(Ua n UB, Z(G)) = 0 implies that

can be lifted to a function which takes values in G,

with Ca(3 : Ua n UB ---+ Z(G).
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Moreover ao-- Sn-1 is a simply connected space (n &#x3E; 3) and there-
fore every map fsa : ao- -- -+ A(G) can be lifted to the covering G. Let

f a : ao- - G be the unique lifting of f sa that preserves base points.
If aO- c Ua n UB the transformation law

obtained as a base point preserving lifting of

implies that the map fa can be written as fsa with s E T(Bn-1 ), A(G)).
As we have dealt with base point preserving maps, the homomor-

phism pn is injective.
From this we have

Lemma 3 If there is a section of Z* over the third skeleton, then

An&#x3E;3.

Proof

As in the case of Qn(A(Z)) and Qn (A(Z’)), the correspondence

associates to so = gBasagaB the section u(SB) = gABau(sa)gAaB
The hypothesis that Z* (Z, Z’) has a section over the 3-skeleton implies
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But then

because of lemma 2.
Let’s proceed by induction: suppose that

This means that every section on the (n - 1)st skeleton

has a unique lifting

We want to show that every S(n) E T ( Bn, Z*A ) has a lifting s(n) E
T(Bn,Z* ), i.e. that 

On every 8u C Ua n U/3, a (n + 1)- simplex, a section

has a lifting

Because of unicity of liftings that preserve base points this has to
coincide on 8u n B (n-1) with

Therefore CBaC’B 18onB(n-1) = eG, but being Z(G) discrete, on all 8u

But then every s E T(B(n)) ,ZA*) determines an element of Q(n+1) (Z*)
by the lifting 
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Thus we have

Now the theorem follows from the preceding lemmas, as by theorem
2 the existence of a section of Z*(A(Z), A(Z’)) implies that

Vn &#x3E; 1. We have

4 Further remarks and examples
The condition on the base points, BPC of theorem 3, which is essential
in the proof, in order to have uniqueness of the lifting sa(n), is rather

general. It is trivially satisfied for instance, with all ya = eG, whenever
no ao- E B3 is entirely contained in some Ua fl Ua; and this is the case
in many simple geometric examples.

Example 1 Figure 2 gives an example of triangulation with a suitable
choice of the base points in the case of a projective plane with respect
to the trivializing open sets IIXO : Xl : X2] I Xi =I- 0}; an analogous
polyhedral decomposition can be obtained for Rpn, with respect to the
same kind of open cover, inductivel y from a triangulation of Sn which
is invariant under the action of the antipodal map.

Under some stronger assumption on the topology of the group G we
have the following:

Corollary 1 Let G be a Lie group; Z= (F, p, B) and Z’ = (E’, p’, B)
be two principal G-bundles on the polyhedron B, with conjugate gauge
groups. Suppose they are 2-equivalent and the condition BPC is satis-
fied. Then they are equivalent.
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Figure 2: Base points in the triangulation of RP’

Proof
The Lie group G has lT2(G) = 0; therefore

and thus, if the Ehresmann bundle Z*(Z,Z’ has a section over the 2-
dimensional skeleton, this can be extended to the three dimensional; by
theorem 3 the bundles are equivalent.

***

Corollary 2 Let G be a Lie group with 1rl(G) = 0 (e.g. G = SU(N),
if two principal G-bundles over a polyhedron B have conjugate gauge
groups and the section over the 1-skeleton satisfies BPC, they are equiv-
alent bundles.

Proof
The existence of a section over the first skeleton Bl is obtained from

path connectedness of G. We have that H2(B,R1(G)) = 0: therefore
there always exists a section over the 2-dimensional skeleton B2. Apply
corollary 1 to have n-equivalence for all n &#x3E; 3.

***

Note moreover that theorem 3 cannot be restated with cellular in-
stead of polyhedral structures: consider the following example.
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Example 2 Let Z be the principal ,SO(4)-bundle over Rp4 associated
to the vector bundle H X H e H X H, with H the canonical line bundle.
This is non-trivial since the Stie,fel-Whitney class w4(Z)# 0. It can

be shown that the associated fundamental bundle A(Z), which has group
P,S’0(4), is trivial, and that the pullback bundle via the inclusion of the
cellular 2-skeleton Rp2 --4 Rp4 is also trivial.

That’s not the case when restricted to the two dimensional polyhedral
skeleton, according to theorem 3 and example 1.

We can provide many other bundles with isomorphic gauge groups
that are not conjugate, using a method similar to the one used to con-
struct the example of figure 1; also without assuming the group to be
discrete. In this case however we have to consider a group G, which has
more than one connected component, like in the following.

Consider the case G = O(3,1), the Lorentz group in four dimensions,
and B = S’1, with the same open covering given in the example described
before. The group ha four path connected components and a discrete
center, and the open sets of B are contractible.

Define the transition functions

and gv = g’v = I.
There’s an isomorphism L : H - H’, with H,H’ subgroups of G

containing the connected components of gu and I, and of gv and I
respectively, such that LgU - g’U, Lgv = g%; lemma 1 extends to this
case: the gauge groups are isomorphic.

If they were conjugate, by an argument similar to the example of
section 2, we would have
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with cU, cv E Z(G) = {+I.-I}.
But the image of Ai is contained in one of the four components of

O(3,1 ), and it is easy to check that this is not compatible with the
relations above.

In such example the connected components play the same role as
the discrete elements in the example of section 2 (picture 1).

But examples of bundles with isomorphic gauge groups that are non
conjugate can be given also in the hypothesis of theorem 1. In order to
see this we’ll make use of the following lemma.

Lemma 4 Given a path connected topological group, in general an outer
automorphism need not be homotopically equivalent to the identity map.

Assume that two bundles Z,Z’ are given with an open cover of B
made of contractible open sets Uon and Z’ obtained from the transition
functions g’aB = Ho gaB, where H : G --+ G is an outer automorphism of
G which is not homotopic to the identity map; thus for a suitable choice
of the intersections Ua n UB, we have that the g’aB are not homotopic to
the gaB.

The gauge groups are isomophic because of lemma 1.
If the group is path connected with a discrete centre, the conditions

(i) and (ii) of theorem 1 are satisfied; therefore the gauge groups are
conjugate iff the following relation exists among the transition functions:

But since the centre Z(C) is discrete, and G is path connected, the
above relation implies that g’aB are homotopic to gaB as maps u,,, n UB--+
G, which is impossible according to the initial assumption.
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39

References

[Hu] S.T.Hu The Equivalence of Fibre Bundles, Annals of Math., 53
n.2 (1951), 256-276.

[MP] C.Morgan, R.A.Piccinini Conjugacy Classes of Groups of Bundle
Automorphisms, Manuscripta Math., 63 (1989), 233-244.

Matilde Marcolli

Dipartimento di Matematica "F.Enriques"
Universita degli Studi
via Saldini 50, 20100 Milano, Italy

Department of Mathematics
The University of Chicago, Chicago IL60637, U.S.A.


