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CONSTRUCTING QUANTALES AND THEIR
MODULES FROM MONOIDAL CATEGORIES

by Susan B. NIEFIELD

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XXXVII-2 (1996)

RESUME. Etant donn6 une cat6gorie monoidale S, 1’Auteur établit une
adjonction entre la categorie des categories monoidales sur S et la (duale de
la) categorie des monoides dans S. L’adjoint a droite associe a un monoide
M la categorie des M-bimodules dans S. L’adjoint a gauche est donn6 par
evaluation en l’objet unite 1. Ce cadre permet une approche um*fi6e de
nombreux exemples de quantales et de leurs modules, en montrant que toute
cat6gorie monoidale compl6te ’well-powered’ avec factorisation est mono-
idale sur la cat6gon*e des sup-lattices, relativement au foncteur sous-objet
Sub. En conclusion on donne des conditions pour que le quantale Sub(1) soit
un locale.

1 Introduction

A quantale is a complete lattice Q together with an associa.tive unital operation
- such that a - (Va ba) = Va(a . ba) and (V 0: ba) . u = V«(b« ’ a). Equiva.lently,
Q is a monoid in the category Slat of supla.ttices (i.e., complete lattices and
sup preserving maps). The main examples of interest in this paper include the
lattice Id(R) of ideals of a ring R, the power set P(M) of a. monoids Af , and any
locale L.

A left Q-module is a complete lattice X together with an associative unital
action - of Q on X such that a.(Va xa) = Va(a.xa) and (V 0: aa).x = Va(aa.x).
Each of the main examples mentioned above has a related class of modules. The
lattice ,SubR (ltl ) of submodules of a left R-module A,I, the power set P(X) of
a left M-set X, and any locale over L are modules over Id(R), P(M), and L,
respectively. Right Q-modules and Q-bimodules are defined similarly.

The name "quantale" was proposed by Mulvey [12] to fill a noncommutative
analogue in quantum logic of the role played by locales (i.e., complete Heyting
algebras) in intuitionistic logic. Commutative quantales were considered earlier
by Dilworth [3] under the name "nlult,iplicative lattices" to provide an a.bstra.ct
setting in which to study the ideals of a. commutative ring with unit. Continuing
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this approach in his duality theory for R-modules, Anderson [2] used modules
over commutative quantales, calling them "fake modules" and "fake rings".
Niefield and Rosenthal used the quantale Id(R) in their work ([13]and [14]) on
algebraic de Morgan’s laws. Modules over a commutative quantale were also
used by Joyal and Tierney [8] in their work on descent theory. The quantales
P(M) arose in Lambek’s [10] formal language theory and Girard’s [6] linear
logic. The left P(M)-modules P(X) can be found in the labeled transition
systems of Ambra.msky and Vickers [1], but there the a.ction was induced by a
relation rather than a function.

One might ask how closely the three main examples of quantales and their
modules are related to each other. For example, is it necessa.ry to directly verify
that the objects in question are in fact quantales or modules, or do they arise
from a single construction? This question was partly answered (at least in the
commutative case) by Niefield and Rosenthal [15] where a general construction
of a commutative quantale from a (symmetric monoidal) closed category was
presented. First, a lax adjunction was established between the lax comma ca.t-
egory C//Slat of closed categories over Slat and (the dual of) the category of
commutative quantales. The left adjoint was given by evaluating a closed func-
tor p: V -&#x3E; Slat at the unit object I. Then it was shown that the subobject
functor Subv : V - Slat is closed, for certain suitable closed categories V. Ir1
this case, the quantale produced by the a.djunction was called the "ideals of
V" . The quanta.les locales L and Id(R) arose as the ideals of the categories
Sh(L) and Mod(R) of sheaves on L and R-modules, respectively. Though it
was not considered in [15], the commutative case of the third example (under
consideration here) is also of this form, namely P(A4) is the quantale of ideals
of the category of M-sets. 

The main goa.l of this pa.per is to generalize the results of [15] to include the
quantales Id(R) and P(1B1) in the noncommutative case. In doing so, it will
be shown that the symmetric and closed assumptions are unnecessary, that the
base category Slat can be replaced by any monoidal category with coequa.lizers
which are preserved by 0, and tha.t the adjunction need not be lax.

We begin (in §2) with a presentation of the a.djunction, including a brief
outline of the necessary ba.ckground on monoidal categories, monoids, and bi-
modules. In Section 3, we show that the subobject functor Subv: V -&#x3E; Slat
is monoidal for suita.ble monoidal categories V, thus obta.ining the desired ex-
amples of quantales. As a special case, we see that if A4 is a monoid in such a
category V, then the set Id(M) of ideals of M is a quantale. We conclude (in
§4) by showing that Id(M) is a locale, whenever A4 is an ideinpotent monoid
inV.
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2 The Adjunction
We begin this section with a review of monoids and modules in monoidal cate-
gories. Some of this background material is "folklore", but the basic definitions
and a thorough treatment of coherence can be found in MacLane [11], Eilenberg
and Kelly [4], and Kelly [9].

Recall that a monoidal category consists of a category V, an object I
(called the unit), a bifunctor @: V x V -&#x3E; V and three natural isomorphisms
a : V @ (V’ @ V") -&#x3E;(V ® V’) ® V", k : I ® V -&#x3E; V, and p: V ® I -&#x3E; V such that
AI = pI and the pentagonal diagrams (in sense of lB1acLane [11]) as well as the
triangular diagrams

commute. 

Examples include cartesian categories with ® = x and I = 1, the terninal
object 1, as well as Ab (i.e., abelia.n groups) and Slat with their usual ten-
sor products and units Z and 2, respectively (see [8] for Slat). Similarly, the
categories Ab(E) and Slat(E) of abelian groups and suplattices in a topos E
are monoidal. Note that if L is a locale, then Ab(Sh(L)) is the category of
sheaves of abelian groups on L and Slat(Sh(L)) is equivalent to the category of
L-modules (see [8] for deta.ils) . Finally, the category Rel of sets and relations is
also monoidal via. 0 = x, the cartesian product, but Rel is not cartesian closed
since the cartesia.n product is not the categorical product in Rel.

A monoid in a monoidal category V is an object M together with mor-
phisms. : M @ M -&#x3E; M and e : I -&#x3E; M such that the usual associativity diagram
(see MacLane [11]) and the unit diagram

commute. Let Mon(V) denotes the category of monoids and homomorphism
in V, i.e., morphisms of V which preserve. and e.

Now, the unit I is clearly a monoid in V via AI = pl: 10 I -&#x3E; I and the

identity 1:I -&#x3E; I, by the coherence conditions in the definition of monoidal
ca.tegory. If fact, I is the initia.l object of Mon(V), since the unit e:I -&#x3E; M is

the unique homomorphism from I to M, for a.ny monoid M in V.
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Note that Mon(Sets) is the usual category of monoids, Mon(Ab) is the
category Ring of rings with unit, and Mon(Slat) is the category Quant of
quantales. Also, MQn(Ab(Sh(L))) is the category of sheaves of rings on L.

Now, let M be a monoid in a monoidal category V. A left A4-module in V
is an object X together with a morphism : M ® X -&#x3E; X such that the following
diagrams

commute. Right A4-module a.nd M-bimodules a.re defined similarly, with the
additional commutative diagram

in the latter case. Let ModM(V) denote the category of 1Bl-biInodules and
homomorphisms in V, i.e., morphisms of V which are compa.tible with the
action of lll. Then it is not difficult to show that the functor M ® - 0 M : V
-&#x3E; ModAf (V) is left adjoint to the forgetful functor it: Modli (V) -&#x3E; V.

For every object X of V, the morphism

a.nd

define left and right I-module structures on X, by the triangula.r diagram in the
definition of monoidal category. Compatibility of the operations follows from
the coherence theorem for monoidal categories, and so Mod] (V) = V.

Note that ModM (Sets) is the category of 2-sided hT-sets, ModR(Ab) is
the category of R-bimodules, ModQ (Slat) is the category of left Q-bimodules,
and Modn (Sh(L)) is the category of sheaves of R-bimodules, with analogous
results for right and left modules.
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Proposition 2.1 If V is a nionoidal categoi-y with coequalize1"s which are pre-
served by (9, then Modif (V) is a monoidal cutegory with unit object M.

Proof. Given X, X’ E Mod.A.1, (V), consider the coequalizer

Since A1 Q9- preserves coequa.lizers, X @ M X’ is a left M-module via the following
dia.grain

The right action is defined similarly and compatibility of the a.ctions follows
from that of X and X’. The associativity and unit isomorphisms are induced
by those of V using the fa.ct that 0 preserves coequa.lizers.

To obtain functorial monoid and module constructions, it is necessary to

consider the appropriate functors between monoidal categories V and V’. Recall
that a monoidal functor is a functor f : V - V’ together with a morphism
cp° : I’ -&#x3E; f I and a natural transformation 0: f V (D f V’ -&#x3E; f(V © V’) which are
compatible with a, A and p.

Given such a functor and a. monoids JB.1 in V, it is not difficult to show tha.t
f M is a monoid in V’ via

and

In particular, for the associativity (respectively, unit) dia.gram one applies f
to the associativity (respectively, unit) diagram for A4 and uses the na.turality
of 0, and compatibility of 0 with a (respectively, A and p) . If h: Ad’ -&#x3E; M’ is
a homomorphism, then so is f h : f M -&#x3E; f M’ (by naturaiity of cp), and so we
obtain a functor Mon( f) : Mon(V) - Mom(V’).

Similarly, if X is an M-bimodule in V, then it is not difficult to show that
f X is an f M-bilnodule in V’ via

If h: X - X’ is a homomorphism, then so is f h: /JY -&#x3E; f X’ (by na.turality
of cp), and so we obtain a functor Mod(f): Modm (V) -&#x3E; modfM(V’). If, in
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addition, V and V’ have coequalizers which are preserved by 0, then Mod(f)
is monoidal via 1: f M -&#x3E; f M and the morphism f X @fM f X’ I ---t f (X @ M X’)
induced by the coequalizer defining f X @ f M fX’ using the monoidality of f .

Let Moncat denote the 2-category of monoidal categories, monoidal func-
tors, and monoidal natural transformations (i.e., 2-cells 8 : f =&#x3E; f’ which are
compatible with 0* and 0). Tf S is a fixed monoidale category, then M011cat /S
denotes the usual 2-category of monoidal categories over S, i.e., objects are
monoidal functors p: V -&#x3E; S, morphisms are commutative triangles

of monoidal functors, and 2-cells 0: f =&#x3E; f’ are monoidal natural transformations
such that p’ 0 = 1p. 

Proposition 2.2 If S is a 1nonoidal category, then evaluation at the unit de-
fines a 2-functor

ev: Moncat/S -&#x3E; Mon(S)°F
where Mon(S) is a discrete 2-category.

Proof. First, ev(p: V -&#x3E; S) = pI is a monoid in S, since I is a. monoid in V.
Given a monoida.l functor f : V -&#x3E; V’ over S, we know f I is a monoid in V’.
Since I’ is the initial object of V’, applying p’ to the unique homomorphism
I’ -&#x3E; f I yields the desired homomorphism p’I’ -&#x3E; p’ f I = pI. Finally, a
monoidal natural transforma.tion 0: f =&#x3E; f’ over S induces the identity 2-cell
since p’8 = lp, and 2-functoriality easily follows.

Proposition 2.3 If S is a rrzorzoidul category with coequalizer’s which are pre-
served by 0, then there is a functor

7nod: MOll(S)OP -&#x3E; Moncat/S
which takes a monoid A1/ to the forgetful functor u: ModM(S) -&#x3E; S.

Proof. Note that u is monoida.l via e: 1 -&#x3E; A4 and c: X @ X’ -&#x3E; X @M X’. If

f: M -&#x3E; Al" is a homomorphism, then the functor f* : ModM’ (S) -&#x3E; ModM (S)
given by f * X = .Y, with action by restriction of scalars, is a monoidal functor
over S via f: M -&#x3E; A4’ and 0: X ®M X’ -&#x3E; Y @M’ X’ induced by the following
coequalizer defining X @M X’
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and compatibility easily follows.

Theorem 2.4 If S is a monoidal categoi-y with coequalize7-s which are preserved
by ®, then ev is left adjoint to mod.

Proof. The identity 1: AI -&#x3E; M is the counit fA!: M --t ev(mod (M)). The
unit qp: p -&#x3E; n10d(ev(p)) is the composite of the isomorphism V = ModI(v)
and Mod(p): ModI(V) -&#x3E; Modp/(S). The adjunction identities are easily
established.

Applying the adjunction in the case where S = Ab, rve see that if p: V -&#x3E; Ab
is monoidal, then there is a natural bijection between ring homomorphisms R
-&#x3E; pI and monoidal functors V 4 ModR(Ab) over Ab. In this (as well as
the general) case, since ev o mod = 1, it follows that the functor mod is full and
faithful.

3 The Subob ject Functor
We will see that Sets, Ab, Slat and their related module categories can be
viewed as monoidal categories over Slat by showing that the suboject func-
tor Subv: V 4 Slat is monoidal for suitable categories V. Note that this is
essentially the same construction used in [15] in the symmetric case, but the
generalization is necessary so that we can consider categories of bimodules over
(not necessarily commutative) monoids, rings, and quanta.les.

Suppose that V is any category, and let E and M be two classes of mor-
phisms which each contain the isomorphisms and are closed under composition.
Recall that (E, M) is called a factorization systeni, if every morphism ,f has
a factorization f = me, where e E E and m E M such that every rectangu-
lar diagram of the following form admits a unique morphism h such that the
resulting squares commute.

If every object V of V has only a set of M-subobjects, then V is called M-well-
powered or simply well-powered. Note that a factorization system is called
proper if every e E C is an epimorphism and every 7n E M is a monomorphism.
For properties of proper factorization systems, we refer the reader to Freyd and
Kelly [5]. Note that proper factorization systems were considered by Isbell [7]
under the name bicategorical structure.
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A monoidal category V which is well-powered with respect to a specified
proper factorization system (E, M) such that E is closed under 0 will be called
a well-powered monoidal category witl proper factorization. If, in

addition, V has colimits which are preserved by ® in each variable, then V will
be called a suitable monoidal category.

Ii V is an object of a suitable monoida.I category V, then the set SubV(V)
of M-subobjects of V is a complete lattices with V Aa given by

If f: V -&#x3E; V’, then the direct image f : Subv (V) -&#x3E; Subv (V’) given by

is sup-preserving, since f (V Aa) = v f(Aa ) by uniqueness of the factorization
of the morphism 1: Aa -&#x3E; V’ in the diagram

where 1: e,,, e S since 10. is closed under coproducts. Thus, we get:
Proposition 3.1 If V is a suitable monoidal category, then S’ubv : V -4 Slat
is a monoidal fut7ctoi,.

Proof. Functoria.lity ’ollows from the universal property of the image factoriza.-
tion. The ma.p cp°:2 --7 Subv(I) is the obvious one. To define

given A E Subv (’1) and A’ E Subv(V’), consider
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Bilinearity of 0 follows from the universal property and the fact that 0 preserves
coproducts and members of E.

Since Mon(Slat) = Quant, we get the following corollary.

Corollary 3.2 If V is a suitable monoidale category, then S’ubv : V -&#x3E; Slat
restricts to functor Subv : Mon(V) -&#x3E; Quant.

Thus, Sets, Ab, and Slat can be viewed as monoidal categories over Slat via
the suboject functor, since each is easily seen to be a suitable monoidal category.
When V = Sets, the subobject functor is the power set functor P : Sets -&#x3E; Slat,
and so by Corollary 3.2, we see that P(M) is a quanta.le for every monoids Af
and the direct image f: P(Al) -&#x3E; P(M’) is a qua.ntale homomorphism for every
monoid homomorphism f : M -&#x3E; A4’. When V = Ab, SubAb: Ab -&#x3E; Slat
associates to the group G the lattice SubAb(G) of subgroups of G, a.nd so by
Corollary 3.2, we see that SubAb(R) is a qua.ntale for every ring R and the
direct image f : SubAb(R) -&#x3E; SubAb (R’) is a quantale homomorphism for every
ring homomorphism f : R - R’. However, in the case of rings, the qua.ntale of
interest (which we will consider la.ter) is Id(R) not SubAb(R). When V = Slat,
SubSlat: Slat -&#x3E; Slat associates to the suplattice X the lattice SubSlat(X)
of subsuplattices of X, (i.e., A C X which a.re closed under sups) and so by
Corollary 3.2, we see that SubSlat(Q) is a qua.nta.le for every qua.ntale Q and
the direct image f : Subslat(Q) -&#x3E; SubSlat(Q’) is a quanta.le homomorphism for
every quantale homomorphism f : Q -4 Q’ . As in the case of rings, the quantale
of interest is Id(Q) not Subsmt(Q).

Corollary 3.3 If V is a suitable 111onoidal category, then

is a monoidal functor.

Proof. This is the unit ’7Subv of the a.djunction in Theorem 2.3, in the case
S = Slat.

Proposition 3.4 If V is a suitable monoidal category, then so is ModA! (V).

Proof. First, we show tha.t the restriction of (9, M) to Modkl (V) is a factor-
ization system which is clea.rly proper. Given a morphism f: X -+ X’ of ltl-

bimodules, factor f as X I X" -&#x3E; X’ in V. Then Y" becomes an M-bimodule
(such that e and 111 are M-homomorphisms) via. the universal property of fac-
torizations, since E is closed under A4 @ - a.nd - 0 hl. The universal property
of factorizations in Mod Aj (V) follows from that of V, again since C is closed
under Al ® - and - 0 Al. Next, it is not difficult to show that the restric-
tion of .6 is closed under @M, since E is closed under 0. Also, ModM(V) is
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well-powered, since the forgetful functor u : Mod(V) -&#x3E; V is faithful. Finally,
cocompleteness of ModAl (V) follows from the fact that V is cocomplete and u
has a left adjoint. Since 0 preserves colimits, it follows tha.t colimits are formed
in V and given the actions induced by those on the terms and 0A/ preserves
colimits, to complete the proof.

If M is a monoid in a suitable monoidal category V and X is an M-bimodule,
let SubM(X) denote the set of M-subbimodules of X , i.e., SubModM(v) (X ). In
the case X = M, the M-submodules a.re called ideals of fif and SubM (M) is
denoted by Id(M ) . Note that this agrees with the usual notion of (2-sided) ideal
when V is Sets, Ab, or Slat. Combining Corolla.ry 3.3 a.nd Propositions 3.4,
we get:

Corollary 3.5 If M is a monoid in a suitable 1nol1oidal catego7--y V, then

is a monoidal functor.

It is not difficult to show that the product of I and I’ in Id(M) is given by

and the left action of Id (M) on Sub A1 (X) is given by

with the right action is defined similarly.
Applying Corollary 3.5 to V = Ab, we see that if R is a ring and Al is an

R-bimodule, then the la.ttice SubR(M) of A1- submodules is a.n Id(R)-bimodule,
and if h: M -&#x3E; M’ is a homomorphism of R-bimodules, then h: SubR(M) -
SubR(Al’) is a homomorphism of Id(R)-bimodules. Similar results hold for

Sets, Slat, Mon(Sh(L)), Ab(Sh(L)), and Slat(Sh(L)). Note that the ideal
construction is not functoria.l unless V is symmetric.

We conclude this section with a. few reiiiarks about, a.pplications to transition
systems. Although this approach ca.n also be used to obtain the right module
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structure of interest in the Abramsky and Vickers article [1], we must go beyond
Sets to Rel to do so. As usual, morphisms of Rel will be denoted by X -&#x3E; Y
to distinguish them from functions. Since relations X-&#x3E; Y correspond to
functions X - P(Y), it follows that the (monoidal) functor Sets -&#x3E; Rel is
left adjoint to the power set (monoidal) functor P: Rel -&#x3E; Sets. Moreover, one
can show that Rel is a suitable monoidal category and that composing with
the subobject functor P: Sets -&#x3E; Slat yields the subobject functor SubR,el: Rel
-&#x3E; Slat. However, this is not the monoidal functor of interest here. Instead, it is
the (direct image) power set functor P: Rel - Slat. Note that P is monoidal,
since P(X) ® P (Y ) = P(X x Y ) (see [8]).

Reca.ll that a transition system labeled over a set Act is a. set Proc together
with a relation -&#x3E;C Proc x Act x Proc, whose elements are denoted p-’q.
This relation clea.rly extends to -4C Proc x Act* x Proc, where Act* is the free
monoid on Act. Thus, P(Proc) becomes a right P(Act*)-module via

such that

Now, Act* is a monoid in Rel, since the inclusion Sets -&#x3E; Rel is monoidal,
and the rela.tion Proc x Act*-&#x3E; Proc given by 1)-+$ q clearly gives Proc the
structure of a right M-module in Rel. Applying the right-sided version of the
module construction to P : Sets -&#x3E; Rel, we get a, functor

and hence, a right module P(P7-oc) ® P(Act*)-&#x3E; P(Proc), which is easily seen
to a.gree with the one described above.

4 Locales

It is well known tha.t a quantales Q is a loca.le if a.nd only if it is idempotent (i.e.,
x2 = x for all E Q) and the unit e is the top element T. The commutative
’case is in [8], and the general case is similar. Since e = T implies that x2  x,
it follows that Q is a locale if a.nd only if e = T and x  i’, for all x E Q. A
quantale such that x  x2, for a.ll x E Q, will be ca.lled subidenipotent.

In this section, we will consider conditions on a. monoids 1B1 in a suitable
monoidal ca.tegory V under which the quantale Subv(M) is a loca.le. Spe-
cial cases will include the locales Sub(1) of subobjects of 1 in a Grothendieck
topos, as well as Id(M), Id( R), and Id(Q), for an idempotent 11lonoid, ring,
or quantale. In view of the above remark, we would like to consider idempo-
tent monoids in V. This can be done with the a.id of a diagonal nlorphism M
-&#x3E; M 0 Al. However, in most of the examples of interest, the diagonal is not
actually a morphism in V, but rather in Sets. Therefore, we must begin with
a general setting in which iden1pot.ency makes sense.
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Let c: V - C be a monoidal functor, where V is a monoidal category and C
is a cartesian closed category. If Af is a. monoid in V, we sa.y Af is ldelllpotellt
relative to c, if the composite

is the identity. Note that if V is Sets, Ab, Slat, or any of their related bimodule
categories, the usual notion of an idempotent monoid agrees with the definition
of idempotent relative to the forgetful functor c: V - Sets.

Note that for every object V of V, c induces an order-preserving map
c# : Subv(V) -&#x3E; Subc(cV) given by

In the case where V is Sets, Ab, Slat, or himodules over a. monoid in any of
these categories, and c is the forgetful functor u: V - Sets, it is not difficult
to show that c# is a.lso order-reflecting since it has a left inverse left adjoint.

Theorem 4.1 If M is idempotent relative to a 1nonoidal functor c: V -&#x3E; C
(where V and C are as above) and the induced 77iaps c# are order-reflecting,
then Subv (M) is a subidempotent quantale and Id(M) is a locale.

Proof. Given a subobject A of A1, consider the diagram

which is commutative by naturality of 7 and definition of A2. Since!B1 is

idempotent, we see that the morphism CA -&#x3E; clil factors through c(A2) -&#x3E; cM,
and so by the universal property of factorization C#A  c# (A2). Thus, A  A2,
since u# reflects order, and so Subv (M) is subidempotent. Since the unit
A4 of Id(M) is the top element a.nd Id(M) = SubModM(v)(M), to see that
Id(M) is a locale, it suffices to show that the hypotheses of the theorem hold
for the composite ModM(V) -7 V -7 C, i.e., each (cu)# is order-reflecting. To
do so, it suffices to show that u# : SubM (X) --+ Subv (uX) has a left inverse.
Given a subobject B of uX , let u# B denote the image of the M-bimodules
homomorphism M ® B @ M -7 X. Then u# is clea.rly order-preserving. To see
that u#u#A = A, consider
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the commutative diagram,

where e E E since M ® - ® M preserves members of 6 and e’ E E since 9
contains all retractions. Thus, u#u#A = A, since both are the image of the
morphism M ® A ® M -7 x, to complete the proof.

Applying this theorem, we get the following results. If C is any suitable
ca.rtesian closed ca.tegory (e.g., a. Grothendieck topos), then lc is suitable, and
so Sub(1) is a locale. If V is Sets, Ab, or Slat, then Id(1B1), Id(R), and Id(Q)
are locales whenever A4 , R, or Q is ideinpotent. Similar results hold for sheaves
of rings.
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