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FINITE COMMUTATIVE MONOIDS OF OPEN MAPS
by A. PUL TR and J. SICHLER

CAHIER DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

l’olume XXXIX-1 (1998)

RESUME. Pour qu’un semigroupe commutatif fini soit isomorphe au semigroupe de toutes
les applications continues ouvertes d’un espace de Hausdorff dans lui-meme, ou a celui des
endomorphismes de Heyting complets d’une algebre de Heyting qui est Hausdorff, il faut et
il sutlit qu’il soit le produit d’un groupe et de divers groupes augment6s par (). TJne telle
caract6risation n’est pas valable pour les semigroupes intinis.

In 1966, Paalman de Miranda proved that a certain finite monoid cannot be
represented as the monoid Dp(X) of all open continuous mappings of any Hausdorff
space X into itself [9]. Her discovery interestingly contrasts with these two facts:

- 

every monoid is isomorphic to the monoid of all quasi- open continuous map-
pings of a metric space into itself (this, together with similar results, can be
found in [15], see also [14,16]),

- 

every monoid is isomorphic to the monoid Dp(X) for a Ti-space X, see
[14,16] and, as observed in [13], even for a space X that is both Tl and
sober.

In [13], we have extended Paalman de Miranda’s result to the considerably wider
context of Hausdorff Heyting algebras and their complete Heyting homomorphisms
(the word ’wider’ is somewhat imprecise, for there exist marginal cases of Hausdorff
spaces whose corresponding Heyting algebra is not Hausdorff, see Isbell [5]). In

addition, we found that, apart from cyclic groups, only a single one-generated finite
monoid is representable in either category.

In the present paper we describe all finite commutative monoids isomorphic to
the monoid Dp(X) for some Hausdorff space X, or to the monoid of all complete
Heyting endomorphisms of some Hausdorff Heyting algebra in the sense of Isbell [5].
It turns out that these monoids are products

1991 Mathematics Subject Classification. Primary: 20M30. Secondary: 06D20, 54D10, 54C10.
Key words and phrases. endomorphism, open continuous map, complete Heyting homomor-

phism, strong graph homomorphism, Hausdorff property.
The authors gratefully acknowledge the support of the National Science and Engineering Re-

search Council of Canada and of the Grant Agency of the Czech Republic under Grant 201/96/0119.



64

in which Go is a group and each monoid G9 (if any) is a group Gi augmented
by a zero. This also characterizes finite commutative monoids formed by strong
endomorphisms of symmetric graphs. These three categories strongly contrast their
respective non-Hausdorf or non-symmentric counterparts: the categories of

- Ti-spaces and open maps,
- complete Heyting algebras and complete Heyting homomorphisms,
- directed graphs and strong homomorphisms

are algebraically universal (see [14,16], [13], [14]), and hence every monoid- is repre-
sentable as an endomorphism monoid in each of these wider categories.
We also show that the situation changes for infinite endomorphism monoids: for

instance, the additive monoid of natural numbers is representable, and so are all its
finite or countably infinite powers.

Only basic notions of category theory, those found in the initial chapters of [1]
or [8], are needed here. The few facts on frames not explained below can be found
in [7] or in [13]. A topological construction presented in Section 4 is based on a
construction from Chapter VI of [141; to aid the reader and to avoid unnecessary
repetition, we refer to [14] in considerable detail and adopt the notation used there.

1. PRELIMINARIES

1.1. A concrete category is, as usual, a category C equipped with a faithful functor
I I : C Set into the category Set of all sets and mappings. We say that a finite
coproduct

in C is a concrete sum in a concrete category (C, ||) provided |X| is a disjoint union
|X1| U ... U IXnl and |ji|: |Xi| - |X| are the corresponding inclusion maps. If this
is the case, we write

A C-object Y is called a summand of a C-object X if X = Y U Z is a concrete
sum for some Z. Then, of course, the C-object Z is a summand of X as well and
|Z| = |X/Y|. 
A concrete category has tame summands, and is called a TS-category, if it has

these three properties:
(TS1) for any two summands X and X2 of X there exists a summand Y of X with

IYI = IXII n |X2|, 
(TS2) all preimages of summands under C-morphisms are summands,
(TS3) for any two concrete sums X = U Xi and X = U Yj there exists a common

refinement, that is, a concrete sum X = U Zij with |Zij I = IXE Q |yj|.
There is no danger of confusion in writing Y = X1 nX2 rather than IY (= |X1| |n| X2| 
in (TS 1 ) . By (TS 1 ), for any two summands X 1 and X2 of X , there is a summand
Z of X with IZI = |X1|B |X2|, and we will simply write Z = X1B X2 here again.



65

’1‘here are numerous cxainples of 7’S-categories. The category

Top2,o

of Hausdorff spaces and their open continuous maps is a TS-category and, together
with categories related to it, will be of particular interest here.

1.2. Proposition. Let X1, ..., Xn be summands (not necessarily disjoint of an
object X in a TS-category C, and let |X| = |UXi|. If f : |X| --&#x3E; IYI is a mapping
such that each f [ IXi carries a C-morphism Xi - Y, then f carries a C-morphism
X --+ Y.

Proof. Use the common refinement of the n concrete sums X=XtU(XBX,). 0

1.3. Let (X, ) be a poset. We say that a subset Y C X is decreasing if x  y E Y
implies x E Y, and increasing if x &#x3E; y E Y implies x E Y. Recall that an ordered

topological space X = (X, T, ) is a Priestley space if (X, ) is a poset and (X, T)
is a compact topological space, and if for any closed decreasing set Y‘ C X and any
x E X B Y there exists a clopen decreasing set B such that Y C B and x E B. Any
continuous, order preserving mapping f : X --+ X’ between Priestley spaces X, X’
is called a Priestley map. In what follows,

PSp

will denote the category of all Priestley spaces and all Priestley maps.

Observation. A subset Y of a Priestley space X is a summand of X if and only if
it is increasing, decreasing and clopen in X . Hence PSp is a TS-category. 0

1.4. Recall that a frame is any complete lattice L in which (v S) A a = V {s A a I
s E S} for any S C L and a E L, and that a frame homomorphism h : L - L’ is any
mapping preserving finite meets and arbitrary joins. A typical instance of a frame
is the lattice 0(X) of al1 opon sets of o, topological space X; and if f : X - X’
is a continuous map into a space X’, then the inverse-image map f -1= iD(f)
D(X’) - D(X) is a frame homomorphism.

For the so-called sober spaces, that is, spaces satisfying a certain condition weaker
than the Hausdorff separation axiom, the mapping f H D(f) is an invertible con-
travariant correspondence of continuous maps f : X --&#x3E; X’ to frame homomorphisms
D(f): D(X’) - D(X). Moreover, any sober space X can be reconstructed from its
frame D(X), and this is why a frame can be viewed as a natural generalization of a
(sober) space.
A frame L is called Hausdorff (in the sense of Isbell, see [5,7]) if the codiagonal

map L ® L --+ L of the free product L D L into L satisfies a certain condition,
applied in [13]. The actual form of this condition is secondary, for we shall use
only its consequence proved in [13], and use it only once. It should be noted that
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the frame D(X) of a Hausdorff space X is not necessarily Hausdorff in the sense of
Isbell, but that D(X) is Hausdorff whenever X is regular.

1.5. The distributive law of 1.4 implies that any frame L is also a complete Heyting
algebra, and that the Heyting operation - is uniquely determined by L. Moreover,

for Hausdorff spaces X and X’, complete Heyting homomorphisrns D(X’) ---+
D(X) correspond to those continuous maps f : X ---+ X’ which are open, see
[2,6] .

In what follows,

H H eyt

will denote the category of a.ll Heyting algebras that are Hausdorff in the sense of
Isbell, and of all their complete Heyting homornorphisms.

1.6. We now recall the celebrated Priestley duality, a contravariant natural iso-
functor

D : PSp - D

of the category PSp of Priestley spaces onto the category D of distributive (0,1)-
lattices and their (0,1 )-homomorphisms. For any Priestley space X, the elements
of D(X) are represented by clopen decreasing subsets of X and, for any Priestley
map f : Y --i X, the homomorphism D(f): D(X) --&#x3E; D(Y) is the restriction of the
inverse image map f-1 to the collection of these representing sets.

In what follows, the image of the category H Heyt under the inverse V-1 of D
will be denoted as

HPSp

and referred to as the category of all HP-spaces and HP-maps. It is clear that

H P S p is not a full subcategory of PSp.

2. HAUSDORFF CATEGORIES

2.1. Definition. We say that a TS-category C is Hausdorff if, for any C-object X,
the image

of any endomorphism h : X --&#x3E; X with h2 = h is a summand of X .

2.2. Proposition. The category Top2,o is Hausdorff

Proof. If h : X - X is continuous and open, then its image h[X] is open. Since

h[X] = {x| h(x) = z) and X is Hausdorff, the set h[X] is also closed, and it is clear
that any clopen subset of X is a summand of X in Top2,o. 0
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2.3. Proposition. The category H PSp is Hausdorff

Proof. We already know that H PSp is a TS-category. Let X be a Hausdorff Priestley
space, and let h = h2 E End X . Since h is the Priestley dual of a complete Heyting
endomorphism, the image Y = h[X] is a closed subspace of X that is also decreasing,
see [12]. Furthermore, the H PSp-map h has a decomposition X h1 --&#x3E; Y h2 --&#x3E; X in
which the Priestley map h.l is surjective, and the inclusion map h2 is such that D(h2)
is a complete surjective Heyting homomorphism. In particular, D(h2) is a surjective
frame homomorphism, and hence D(Y) is Hausdorff, see [7]. Therefore Y E HPSp.

Next we note that h2 is an equalizer of h and idX. Indeed, h o h2 = idx o h2
follows from h o h2 o h, = h o h = h = h2 o h, because hl is surjective. On the
other hand, if h o k = k, then h2 0 (hl o k) = k, and the factorizing map hl o k is
unique because h2 is one-to-one. This implies that the surjective complete Heyting
homomorphism D(h2) : D(X) --+ D(Y) is a coequalizer of D(h) and idD(X). But

then, by Lemma 4.4 of [13], there exists a complemented a E D(X ) such that, for
any b, c E D(X), 

-D(h2)(b) = D(h2)(C) --&#x3E; b A a = c A a.D(h2)(b)=D(h2)(c) =&#x3E; 6Aa=cAa.

Therefore D(h2)(b) = 1D(Y) if and only if b &#x3E; a in D(X). Simultaneously, since
h2 is the inclusion map of Y’ into X, it follows t,hat h2 -1 (b) = bn Y for any clopen
decreasing b C X. In p,-ii-t,iciilar , and hence
y C a. If there exists an .1: E a w Y then, hy I .($, there exists a clopen decreasing set
b C X with x E b and Y C G. But then D(h2)(b)= h2-1 (b) = Y = 1D(y) while b l a
- a contradiction. Therefore Y = a. Since the element a is complemented in D(X),
the set Y = h[X] is increasing, decreasing and clopen in X, and this is obviously
true also for the set X w Y . Therefore X is a summand of X , see 1.3. 0

2.4. Recall that a pair (X, R) is a directed graph if X is a set and R C X x X is
a binary relation on X , and that a mapping f : X --&#x3E; Y is a graph homomorphism
from (X, R) to a directed graph (Y, S) if (f(x), f(x’)) E ,S’ for every (x, X’) E R.
If o denotes also the composition of relations, then the condition defining a graph
homomorphism is equivalent to the inclusion

A map f : X - Y is called a strong homomorphism from (X, R) to (Y, S) if

The category of all directed graphs and their strong homomorphisms is algebraically
universal, and hence every monoid is isomorphic to the monoid of all strong endo-
morphisms of some directed graph, see [14].

As we will see, this is no longer true for strong homomorphisms of symmetric
directed graphs, that is, graphs (X, R) satisfying (x, x’) E R if and only if (x’, x) E R
(see 3.5 and 4.6 below). Thus, in a sense, the graph symmetry plays a role similar
to the Hausdorff topological axiom.
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Observation. The category
SymGraphs

of all symmetric directed graphs and their strong homomorphisms is Hausdorff.

Proof. It is easy to verify that Y C X is a sumrnand of a symmetric directed graph
(X, R) exactly when

(s) xRy and y E Y imply x E Y,

and that SymGraphs is a T,S’-category. Let f be any (not necessarily idempotent)
strong endomorphism of (X, R). To show that f [X] is a factor, suppose that xRy
and y E f [X]. Then y = f(t) for some t E X, and hence x(R o f )t. But then

x( f o R)t because f is strong, and hence x = f (u) for some u with uRt. Therefore
f [X] satisfies (s), and hence it is a summand in (X, R). 0

2.5. Our main interest is the behaviour of endomorphism monoids in HHeyt or
HPSp, and now we return to these categories. Since the latter category does not
contain all of Top2,o and because proofs for hoth categories are essentially identical,
we work in the more general setting of Hausdorff categories that covers both of them.
Moreover, this notion al)l)lles to other categories, such as SymGraphs.

3. ENDOMORPHISMS IN HAUSDORFF CATEGORIES

3.1. With the exception of Theorem 3.6 and its corollary, the symbol X will always
denote an object in a Hausdorff TS-category. In what follows,

End X is the endomorphism monoid of X,
Aut X is the automorphism group of X, and
IdpX={f~EndX f2= f}.

3.2. Proposition. Lem, End X be finite and cmnmutative. Then every f E End X
has a decomposition

f = g o !i with g E Aut X and h E Idp X,

in which the idempotent b is uniquely determined.

Proof. Since End X is finite, there is a least integer n &#x3E; 0 such that fn+k = f’ for
some k &#x3E; 0.

If n = 0, then f E Aut X and we are done.
Suppose that n &#x3E; 0. Then

For any integer kr &#x3E; n we thus have fkr [X] = fn [X]. From f 2kr = fkr it then
follows that F = fn [X] is a summand. But then the preimage f-1(F) D F of F is
also a summand, and hence the map cp : X --&#x3E; X defined by
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is an endomorphism of X . For any x E f -2(F) B f -1 (F) we then have

which is impossible. From f-2 (F) D f -1 (F) it then follows that

and hence, by induction,

But then f [X] = F and, consequently,

Therefore the restriction of f k to F is the identity on F, and hence the mapping
g : X--&#x3E;X given by

belongs to Aut X. Furthermore,

(3.2.1)

Next we define h E End X by

Since h2(x) = h f (x) = J(x) = h(x) for x V F, we have h E Idp X . If x E F, then
gh(x) = gf(x) = f (x) by (3.2.1) and, if x E F, then gh(x) = g(x)= f(x) again.
Therefore f = g o h as claimed.

Finally, suppose that f = g1h1 = 92h2 with gi E Aut X and hi E Idp X . Then
g1h1 = 92h2h2 = g1h1h2 and hence hi = hl h2. By symmetry h2 = h2hi , and then
hl = h2 follows from hi h2 = h2h¡. 0

3.3. For any f E End X define

Since X belongs to a Hansdorff category, for any h E Idp X,

(3.3.1) Fix(h) = h[X] and Mov(h) are summands of X.
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3.4. Lemma. Let End X be commutative. Then for any h, k E Jdp X and f E
End X

Proof. By (3.3.1), there is an endomorphism

For x E Mov(h) we thus have fh(x) = cph( x) = hcp(x) = h(x), and this proves
(3.4.1). Suppose that x E Mov(h) r1 Mov(k). Then h(x) E Fix(k) and k(x) E Fix(h),
by (3.4.1), and hence 11.(.1’) = k,h(x) = hk(x) = k(x). 0

3.5. Theorem. IJef, A IHB an object of a Hausdorff category, alld /(’t, End X be
finite and commutative. Then there is an n &#x3E; 0 such that

where Go is a group and CT°, ... , G’ are groups augmented by an external zero.

Proof. The monoid Idp X is a semilattice. For every h E Idp X we write p(h) =
Mov(h). By (3.4.1), for any k E Idp X we have Mov(h) U Mov(k) g Mov(hk) and,
since the reverse inclusion is obvious, we conclude that

Secondly, if h, k E Idp X and li(h) = p(k) then, by (3.4.2), for every E Mov(h) =
Mov(k) we have h(x) = k( J;), and then h = k follows. Therefore 03BC is an injective
homomorphism onto a join scmHatticc (.I, U) of Stl bsets of X, and 0 = I-,,(idx) E J.

If .S is a summand of X and h E Idp X, then Mov(h) fl S is a summand of X as
well, see (3.3.1), and hence the mapping 11,(5) : X ---4 X given by

is an idempotent endomorphism with Mov(h(S)) = Mov(h) n S. Since ,S’ = Mov(k)
and S = X w Mov(k) are summands of X , see (3.3.1), we conclude that p maps
Idp X isomorphically onto the join reduct (J, U) of a finite Boolean algebra J of
subsets of X . If J = {0}, then Idp X = {idx} and hence End X = AutX. From
now on, we assume that J is non-trivial, and let h 1, ... , hn E Idp X denote those
endomorphisms for which {03BC(hi)| i = 1, ... ,n} is the set of atoms of J. Since
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any finite Boolean algebra J with more than t,wo elements is atomistic, for every
h E Idp X there is a (possibly empty) unique subset A C {1,..., n} such that h
is the composite of the ’atomic’ idempotents hi with i E A, and we -vrite h = hA .
Thus the sets

are nonvoid, pairwise disjoint minimal summands of X, and

From (3.4.2) it now follows that

Finally, write M0 = X 1, (All U ... U Mn ). Then Mo is a nonvoid summand of X
becaiise of (TS3), and hence

It is clear that

Let f E EndX and la E IdpX. If x E Mov(h), then fh(x)= h(x) by (3.4.1),
while, for any x E Fix( h. ) , we obviously have fh (x) = f(x). In particular,

If g E Aut X and h = 11; for some i = 1,...,n, then hi,g(x) - ghi(x) = hi(x) for
every x, E Mi = Mov(h,), t.hat. is,

Since g is invertible, we have hig(x) = ghi(x) =1= g(x) for every x E Mi. Thus

g[Mi] C Ms for every i = 1, ... , n, and it follows that

Now let ,f E End X be arbitrary. Then f = g o h for some g E Aut X and a
uniquely determined h E Idp X , by Proposition 3.2. Since h = hA for a unique
A C {1,..., n}, from (3.5.4) and (3.5.1) it then follows that
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For j = 0, 1, ... , n, denote fj = f |Mj. Then Ii = hj for j E A and fi E Aut Mj =
Gi for all i E {0,1,..., n}B A. Since hi is an external zero of Gi for all i = 1, ... , n,
see (3.5.5), this shows that

is a well-defined mapping of End X into the Cartesian product

of the group Go and monoids G9 = Gi U {0i} obtained from the groups Gi by the
addition of an external zero Oi for each i = 1, ... n. Using (3.5.7), it is easy to verify
that p : End X --+ P is a monoid homomorphism.

Conversely, let (fo, 11, ... , fn) E P. Then fo E Aut Mo and fi E Aut Mi U {0i}
for i &#x3E; 0, and the mapping f = V)(f0, f1,..., fn ) given by

belongs to End X because of (3.5.2). It is clear that the mapping 1/J is the inverse of
the homomorphism p. 0

Corollary 3.6. Let X he an object of a Hau.sdorff category. Let End X be finite
and commutative, and let Aut X be trivial. Then End X is isomorphic to a free join
semillatice with zero, or, equivalently, to a semilattice (2n, U). 0

4. MONOID REPRESENTATIONS

In this section, we shall use certain spaces and graphs constructed in [14] as
building blocks for representations of the finite commutative monoids described by
Theorem 3.5 as endomorphism monoids in the categories Top2,o (and hence also in
HHeyt and PSp) and SymGraphs. First we turn to the topological construction.

4.1. For j = 0, 1, ... , let HJ be non-trivial metric continua with distinguished points
aj0, aj1, aj2 E Hj constructed in Section 6 of Chapter VI in [14]. We divide up these
continua into two families

and denote

Further, we recall the metric spaces M(X, R, cp) amalgamated from these metric con-
tinua Hj elsewhere in Chapter VI of [14], and consider only those spaces M(X, R, cp)
such that
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Thus we begin with
- non-trivial metric continua Hi with distinguished points aj0, aj1, aj2 E H’ for
j=0,1,...,

- a countably infinite collection P1 of metric spaces P = M(X, R, cp) subject
to (*) above.

The proof of Lemma 6.9 in Section 6 of Chapter VI in [14] shows that P1 has these
properties:

(4.1.1) if Hi is embedded into a space P E Pi in such a way that Hj0 is open, then
every continuous map f : H0k ---+ P with f [H0k] fl Hj0#0 is either a constant
or else j = k and f is the embedding,

(4.1.2) if Hi E 11° and P E Pi then any continuous f : Hj --+ P is constant.

Furthermore, we recall that for any monoid S there exists a space P(Sf) E P1 such
that all non-constant continuous maps f : P(,f) - P(S) form a monoid isomorphic
to S. Thus, in particular,
(4.1.3) for any group G there exists some P(G) E P1 such that the monoid of all

open continuous mappings f : P(G) - P(G) is isomorphic to G.

4.2. Construction. For a metric space P and a non-trivial metric continuum Hi,
we define a space

P * IIj

on the Cartesian product P x Hi by requiring that
- the neighbourhoods of (x, ai) are the sets containing (U x (a( )) x ({x} x V),

where U is a neighbourhood of x in P and V is a neighbourhood of ao in
Hj, while

- the neighbourhoods of any (x, y) with y# ao are the sets containing {x} x V,
where V is a neighbourhood of y in Hj.

Having renamed each (x, aj) as x, we observe that P is a subspace of P * Hi. The
space P * Hi may thus be visualized as the space obtained by attaching separate
copies of Hi to members of P by their distinguished element ao.

The claim below is immcdiate.

Lemma. The mapping g x id : P * Hj --+ Q* Hj is continuous and open for any
open continuous 9 : P - Q . 0

4.3. Lemma. Let Q be such that every continuous mapping of Hk to Q is constant,
and let a mapping 

be open continuous. Then k = j and f = g x id for some open continuous g : P - Q.

Proof. Let x E P. Since f is open, the set f [IXI x Hk] is not a singleton, and hence
f [{x} x Hk] Cl Q by the hypothesis. But then (’1.1.1) implies that k = j and there is
a unique y ~ Q such that f (x, z) = (y, z) for all z E Hk . This gives rise to a unique
mapping g : P - Q for which f = g x id. It is routine to verify that g is open. 0
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4.4. Recall that, for any space P, the symbol Dp(P) denotes the monoid of all open
continuous selfmaps of P .

Lemma. Let {Pa| a E A} be a countable collection of metric spaces from P1. Then
there exists a metric space P such that

Proof. Select distinct metrizable continua Hj(a) E 1-l°, and then apply (4.1.2),
Lemma 4.3 and Lemma 4.2. D

4.5. Now we turn to the category SymGraph,s of strong homomorphisms od sym-
metric directed graphs.

Let A be an arbitrary set, and let Z = ({0}) {(0, 0)}) denote the singleton graph
in the alg-universal category Grac of all connected directed graphs and their ho-
momorphisms. From Theorem 3 of [4] and from the results of Chapter II of [14]
it follows that for every a E A there is a full embedding of Grac into its full
subcategory formed by connected symmetric graphs such that

(4.5.1) the homomorphism Oa: (X, R) --+ Oa (Z) belongs to SymGraphs for any
(X, R),

(4.5.2) there is no homomorphism Oa(X, R) --+ R) for distinct a, a’ E A.
Since Grac is an alg-universal category, for every group G there exists a graph
(X, R) with End(X,R)= G. But then End Oa(X, R)= G as well and, since every
9 E End Oa (X, R) is invertible, the monoid of all strong endomorphisms of Oa(X, R)
is isomorphic to the group G. Therefore

(4.5.3) for any a E A, every group is isomorphic to the monoid of all strong endo-
morphisms of some Oa(X, R).

4.6. The category Metro of all metric spaces and all their open continuous maps is
a subcategory of Top2,o. Since metric spaces are regular, the contravariant functor
T from 1.4 maps Metro onto a full subcategory of H Heyt. Accordingly, the positive,
constructive claim of the theorem below for categories other than SymGraphs will
be established through a construction of appropriate metric spaces.
Theorem. Let C be any one of the categories Top2,o , H Heyt, PSp, or SyrrtGraphs,
and let S be a finite commutative monoid. Then S= End X for some object X E C
if and only if, for some 11 &#x3E; 0,

where Go is a group and each Ci° its a group augmented by zero.

Proof. To complete the proof for the three ’topological’ categories, in view of The-
orem 3.5, we need only represent a group G and any zero extension G9 of a group



75

Gi by a metric space satisfying the hypothesis of Lemma 4.4. To represent a given
group G, we simply use the metric space P(G) E Pi of (4.1.3). A proper extension
P(Gi)U{p} of the space P (Gi) E Pl from (4.1.3) by an open singleton {p} obviously
represents G? and satisfies the hypothesis of Lemma 4.4.

To complete the proof, we need to represent the monoid Go x Go x ... x Go
in the category SymGraphs . But this is also easy. For j = 0,1, ..., n, we select
(Xj , Rj) E Grac so that the strong endomorphisms of Oj (Xj, Rj) form a monoid
isomorphic to Gj, see (4.5.3), and then we form a disjoint union

Then X belongs to SytnGraphs and, since all graphs Oj(...) are connected, from
(4.5.2) it follows that every strong endomorphism g of X preserves O0(X0, Ro) and
also every Oi (Xi, Ri) U (Oi (Z) with i = 1, ... , n. Therefore

Furthermore, any endomorphism g either preserves Oi(Xi, Ri) or else maps this
graph to Oi (Z). From (4.5.1) it now follows that End (Oi(Xi,Ri)UOi=(Z))= G9 for
all i = 1, ... , n. Therefore End X = ,S, as claimed. 0

4.7. By Theorem 4.6, any join reduct (2ri, U) of a finite Boolean algebra is isomorphic
to Dp(P) for some metric space P. This result can be extended to the infinite case.

Theorem. For any set C, there exists a metric space P such that Dp(P) is isomor-
phic to (2C, U).
Proof. Since the category of metric spaces is almost universal, see Chapter VI of
[14], there exists a colelction {Pc c E C} of metric connected spaces such that a
non-constant continuous f : Pc ---&#x3E; PC’ exists only when c = c’, and then it is the

identity mapping of Pc. For the disjoint union

with the union topology we then obviously have Dp(P) = (2c, U). 0

Remark. From 4.5 it follows that a similar claim holds true for the Hausdorff

category SymGraphs of symmetric graphs and their strong homomorphisms.

4.8. Infinite commutative monoid with no nont,rivial invertible elements need not
contain idempotents, and this is also true for endomorphism monoids in Hausdorff
categories.
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Theorem. Let N denote the additive monoids of all natural numbers. Then, for any
n = 1, 2, ... , w, there is a metric space P with Dp(P)= Nn.

Proof. For H’ E H1 from 4.1, denote H = H1 B (a§) and set

where the neighbourhoods of any (z, k) with x =1= al are all sets containing the set
U x {k} for some neighbourhood U of x in H, while the neighbourhoods of (al, k)
are all sets containing the set (U x {k}) U ((VB {a01}) x {k + 1}) in which U is a
neighbourhood of a11 in 11 and V is a neighbourhood of a’ 0 in H1. In other words,
P is obtained from

by means of identifying each (a’, k) with (ao, k + 1).
An open map f : P --+ P is not constant, and hence, by (4.1.1), it sends each

H x {j} identically onto some H x {k}, and it, is not difficult to see that, in fact,
there is some n &#x3E; 0 such that f (x, j)= (x, j + n) for all j &#x3E; 0. Since any such map
f is open, this proves that

Higher powers of N can be represented because Lemma 4.4 applies, see (4.1.1). 0
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