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MORITA EQUIVALENCE FOR REGULAR ALGEBRAS
by F. GRANDJEAN and E.M. VITALE

C4HIERS DE TOPOLOlilE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

I Volume XXXLX-2 (1998)

Resume: Nous 6tudions les categories des modules r6guliers
sur les algebres r6guli6res, afin de g6n6raliser certains r6sul-
tats classiques de la th6orie de Morita, faits dans le cas des
algebres unitaires, au cas des algebres régulières.

Introduction: Classical Morita theory studies equivalences between
categories of unital modules over unital R-algebras, for R a commuta-
tive unital ring. The key result is the Eilenberg-Watts theorem, which
states that colimit preserving R-functors between module categories cor-
respond to bimodules. Morita theory is also the base to define the

Brauer group of the ring R, which is the group of Morita equivalence
classes of Azumaya R-algebras.

The aim of this note is to study categories of regular modules over
not necessarily unital R-algebras, where a module M over an R-algebra
A is regular if the canonical morphism

induced by the action of A over M, is an isomorphism (cf. [16]).
The first, simple but crucial fact is that, if A itself is regular as

A-module, the category of regular A-modules is a colocalization of the
category of all A-modules. This allows us to prove the analogous of
the Eilenberg-Watts theorem and then to have a satisfactory Morita
theory for regular R-algebras. Our second result is that the (classifying
category of the bi-)category of regular R-algebras and regular bimodules
is compact closed. This gives us a quick construction of a group in which
the Brauer group of R embeds.
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1 The Eilenberg-Watts theorem

We fix once for all a commutative unital ring R. Everything should
be intended as enriched over the category of unital R-modules. In par-
ticular, the unlabelled tensor product 0 is the tensor product over R,
and algebra means R-algebra. Modules and algebras are always asso-
ciative, but not necessarily unital.

Definition 1.1 Let A be an algebra and M a left A-module. We say
that M is regular if the arrow

induced by the action A 0 M-&#x3E;M, is an isomorphism.

We write A-mod for the category of left .4-modules and A-modreg
for its full subcategory of regular modules. In the same way one defines
the category modre9-A of regular right A-modules and the category A-
mod"9-B of bimodules which are regular both as left A-modules and
as right B-modules. An algebra A is regular if it is regular as left

(equivalently, right) A-module.

Examples:

1) Clearly, if A is unital, then A is regular (a one-side unit is enough);
moreover, in this case a module is regular iff it is unital (cf. propo-
sition 3.2 in [17]).

2) Other examples of regular algebras are:

- rings with local units (cf. [1], [2], [3]) and, between them, rings of
infinite matrices with a finite number of non-zero entries;

- left or right splitting algebras (cf. [17]);
- separable algebras and, in particular, Azumaya algebra without

unit (cf. [9], [10], [11], [14], [16]).
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3) In [16] and [10], regular bimodules over regular algebras are used
to define (strict) Morita contexts and then to give an algebraic
description of the second 6tale cohomology group of R.

4) A general argument on coequalizers shows that the dual of a reg-
ular algebra is regular; the fact that the tensor product of two
regular algebras is regular will be proved in section 2.

Recall that each A-B-bimodule M induces a pair of adjoint functors

with M 0B - left adjoint to LinA(M, -). If M is regular as A-module,
then the functor M 0B - factors through A-mod"9 and, since A-modreg
is full in A-mod, we obtain an adjunction

In particular, if A is a regular algebra, we have an adjunction

Proposition 1.2 Let A be a regular algebra; the functor

is right adjoint to the full inclusion

Proof. let X be in A-modreg and Y in A-mod. Given an arrow

X -&#x3E;AXAY, we obtain an arrow X -&#x3E;AXAY -&#x3E;Y, where the second
component is the arrow induced by the action of A on Y. Conversely,
given an arrow g: X -&#x3E; Y, we obtain an arrow

where the first component is the inverse of the arrow induced by the
action of A on X. Precomposing with the isomorphism A 0A X-&#x3E;X,
one checks that these constructions are a bijection of hom-sets. The

naturality is obvious.
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From the previous proposition, it follows that A-modreg is a colo-

calization of A-mod (that is, the full inclusion has a right exact right
adjoint). Since A-mod is a complete and cocomplete abelian category,
standard arguments on localizations (cf. [7] vol.1, ch.3; vol.2, ch.1) give
us the following:

Corollary 1.3 Let A be a regular algebra; the category A-modreg is
complete, cocomplete and abelian.

This corollary allows us to have the "free " presentation of a regular
module, which is used to prove the Eilenberg-Watts theorem.

Lemma 1.4 Let A be a regular algebra and let X be in A-modre9; then
X is the coequalizer in A-modreg of a pair of arrows between copowers
of A.

Proof. consider the copower of A indexed by the elements of X and
the canonical A-linear arrow

Since X is regular, the action A X X -&#x3E; X is surjective, and then also w
is surjective; since A-modreg is abelian, p is the coequalizer of its kernel
pair

Now, repeat the argument starting from N

We obtain the following diagram, which is a coequalizer in A-modreg
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Consider now a functor F: B-mod-A-mod, with A and B two
arbitrary algebras. The A-module FB can be provided with a struc-
ture of right B-module (compatible with its structure of left A-module)
taking as action 

the arrow corresponding, by adjunction, to the composite

where the first component is induced by the multiplication of B, the
second is the action of F and the third is the inclusion.

Definition 1.5 A functor F: B-mod-&#x3E;A-mod is regular if the right
B-module (FB, MF) is regular.

Now we are ready to state the Eilenberg-Watts theorem for regular .
algebras.

Proposition 1.6 Let A and B be two regular algebras and

a functor. The assignments

and

give rise to an adjoint equivalence between the category of regular and
colimit preserving functors

and the category of regular bimodules

Proof: given M in A-modreg-B, the functor
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preserves colimits because it factors as

and then it is left adjoint to the functor

Via lemma 1.4, the rest of the proof runs as in the classical case of unital
algebras (cf. [5] or [15]). m

The previous proposition is a proper generalization of the Eilenberg-
Watts theorem for unital algebras. In fact, the condition of regularity
on F always holds if B is unital. (More in general, it holds if F preserves
coproducts and if there exists a left B-linear arrow p: B---. llB B such
that 

is a section for the multiplication, where 0 is the left B-linear arrow
induced by tensoring with a fixed element of B.)

2 The bicategory of regular algebras
In this section we generalize to regular algebras some classical conse-

quences of the Eilenberg-Watts theorem. First of all, let us restate it in
the more meaningful language of bicategories (cf. [6]). We write Algreg
for the bicategory whose objects are regular algebras, whose 1-arrows
are regular bimodules and whose 2-arrows are morphisms of bimodules.
The composition of two bimodules M: A l-&#x3E; B and N: B l-&#x3E; C is their
tensor product M 0B N: A l-&#x3E; C. The identity on an object A is A itself
seen as A-A-bimodule. Proposition 1.6 can be now expressed in the
following way:
Proposition 2.1 The assignments of proposition 1.6 give rise to a
biequivalence between the 2-category of regular algebras and regular and
colimit-preserving functors, and the bicategory Algreg. This biequiva-
lence is the identity on the objects.

Since any biequivalence preserves and reflects invertible I-arrows, we
have the following:
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Corollary 2.2 The biequivalence of proposition 2.1 restricts to a biequiv-
alence between regular equivalences and invertible regular bimodules.

In other words, two regular algebras are Morita equivalent (= there
exists a regular equivalence B-modreg -&#x3E; A-modreg) iff they are equiv-
alent in the bicategory Algreg (= there exist two regular bimodules
M: A H B , N: B H A and two isomorphisms of bimodules M XB N =
A, NXAM = B).

As in the classical case, several Morita invariants can be now easily
deduced (cf. [5] and [15]).
Proposition 2.3 Consider two Morita equivalent regular algebras A
and B. Let F: B-modre9 -&#x3E; A-modreg be the given regular equivalence,
M = FB the corresponding invertible regular A-B-bimodule, and N the
inverse of M.

1) there is a regular equivalence

2) there is a strict monoidal equivalence

3) the regular Picard groups of A and B are isomorphic;

4) the centers of A and B are isomorphic;

5) the lattice of left regular ideals of B is isomorphic to the lattice
of regular A-submodules of M;

6) the lattices of two-sided regular ideals of A and B are isomorphic.

Proof: 1) and 2): the invertible 1-arrows M: A - B and N: B l-&#x3E; A
induce equivalences between hom-categories:
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3): the regular Picard group Picreg (A) of A is the group of isomorphism
classes of regular autoequivalences of A-modreg. The equivalence

restricts to an equivalence between invertible regular B-B-bimodules
and invertible regular A-A-bimodules. We obtain then the isomorphism
Picreg (B) = Pic reg(A) localizing to B and A the biequivalence of Corol-
lary 2.2.
4): consider once again the strict monoidal equivalence

in particular, we have an isomorphism

that is an isomorphism between the centers of B and A, because TB is
isomorphic to A.
5) and 6): any equivalence induces an isomorphism between the lattice
of subobjects of an object and of its image. Considering the regular
equivalence

and the object B in B-mod"9, we have point 5) of the statement. Con-
sidering the monoidal equivalence

and the ob ject B in B-modre9-B, we have point 6) of the statement. m

The next two propositions, proved in [11], contain the main facts to
endow Algreg of a compact closed structure. They are quite obvious if
the algebras have units, but they need some more attention for regular
algebras.
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Proposition 2.4 Let A and B be two algebras and consider M in
modre9-A, M’ in A-modre9, lV in modreg-B and N’ in B-modreg. The
obvious isomorphism

induces an isomorphism

Proof: recall that M 0A M’ is given by the following quotient

where kA (m X a X m’) = nia 0 m’ - m X am’; analogously, we have

We need a pair of arrows a,B making commutative the following dia-
gram, where T: M’ 0 N- N 0 M’ is the twist

For this, consider the inclusions
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and take the images AA and AB of

Recall that

(square brackets are equivalence classes) is an isomorphism (cf. [8],
chap.2, §3, n.6). Now, instead of a and B, we can look for two arrows
a’, (3’ making commutative the following diagram

To define a’, we have to show that, for each element p in AA + AB,
the element (1 (D T 0 1 ) (p) is in ImkAXB. Suppose first p of the form
p = (ma X m’ - m (9 am’ ) X n 0 n’ (that is, p is in AA). Since M and
N are regular, m and n can be written as

so that
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Finally, one checks that this is an element of ImÀAQ9B adding and sub-
stracting the term

If p is in AB, one works in the same way using the regularity of M’ and
N’.

Conversely, given an element y = ma 0 nb X m’ X n’ - m X n 0 am’ 0 bn’
in ImkAXB, we have

which is in AA+XB. This allows us to define B’ and the proof is complete.
D

Corollary 2.5 Let A and B be two regular algebras and consider M
in modre9-A and N in modre9-B. Then A 0 B is a regular algebra and
M 0 N is in modre9-A (9 B.

Proposition 2.6 Let A and B be two regular algebras. The categories
A-modre9-B and A 0 Bop-modreg are isomorphic.

Proof: we sketch the proof, more details can be found in [11]. Let

M be in A-mod"9-B; we define an action

and we have to show that M is regular with respect to this action. This
essentially amount to show that

is an isomorphism. The crucial point is to prove that its inverse
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is well defined. This means

B(a X a’m X b) = B(aa’ X m X b) , 0(a 0 mb’ 0 b) = B(a 0 m (g) b’b) .

We check the first condition, the second is similar: since A and B are

regular, we can write

so that

Clearly, a morphism f : M-&#x3E; M’ in A-modre9-B is also A 0 BOP-linear
with respect to the action of A Q9 BOP on M and M’ just defined.

Conversely, consider N in A 0 Bop-modreg and let n be in N. Since
N is regular, we can write

and we define
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In other words, the action A X N-&#x3E; N is given by the following com-
position, where mA is the multiplication of A :

Tensorizing over A and using that A is regular, one has that N is regular
as left A-module. The argument for the action N 0 B - N is similar.
As far as the compatibility between the two actions is concerned, we
have

Now consider a morphism f: N-N’ in A X B’P-mod. Since N is

regular as A-B-bimodule, we can write

so that

In the same way one proves that f (nb) = f (n)b.
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It is simple to verify that the two constructions just described are
mutually inverse, using once again that, if M is in A-modreg-B and N
is in A 0 Bop-modreg, we can write

The classifying category cl(B) of a bicategory B has been introduced
in [6]: it has the same objects as B and, as arrows, 2-isomorphism classes
of 1-arrows of B. For an introduction to compact closed categories, the
reader can see [12]: they are symmetric monoidal categories in which
each object has a left adjoint.

Corollary 2.7 The category cl(AlgTe9) is compact closed.

Proof: by proposition 2.4, the tensor product of R-modules induces
a tensor product in cl(Algreg). Moreover, given three regular algebras
A, B and C, by proposition 2.6 we have a bijection

which in fact is natural in A and C. This implies that B°P is left adjoint
to B (cf. [12]).

Recall that the Brauer group B(R) of the unital commutative ring R
is the group of Morita equivalence classes of unital Azumaya algebras.
Moreover, it is a known fact that a unital algebra is Azumaya if and
only if A X A°P is Morita equivalent to R (cf. [13], [20]). The previous
corollary allows us to embed the Brauer group into a bigger group built
up using regular algebras.

Proposition 2.8

1) Morita equivalence classes of invertible regular algebras constitute
an abelian group in which B(R) embeds.

2) A regular algebra A is invertible iff A 0 AOP is Morita equivalent
to R.
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Proof.- 1): by corollary 2.2, Morita equivalence classes of invertible
regular algebras are exactly the invertible elements of the commuta-
tive monoid of isomorphism classes of objects of cl(Algreg) (that is, the
monoid cl.(cl(Algreg))). The fact that B(R) embeds in this group follows
from the fact, already quoted, that a module on a unital algebra is reg-
ular iff it is unital.

2): if there exists a regular algebra B such that A X B is isomorphic, in
cl(Algre9), to R, -then B is left adjoint to A. But AOP is left adjoint to
A, so that B is isomorphic, in cl(Algreg), to A°p.

Remarks:

1) In classical Morita theory, one can prove that if a bimodule M

induces an equivalence

(everything is unital), then M is a faithfully projective A-module.
Because of the lack of projectivity of a not necessarily unital al-
gebra, what remains true in our more general context is that M
is a generator, in the sense that the evaluation

is surjective.

2) In the first section we have proved that, if A is a regular algebra,
then A-modreg is a colocalization of A-mod. This implies that
A-modreg is abelian and then exact (in the sense of Barr, cf. [4]).
Moreover, by lemma 1.4, A is a (regular) generator in A-modreg .
By proposition 2.1 in [18], we deduce that A-modreg is a localiza-
tion of the category of algebras of the monad 1r induced by the
adjunction

(where, for each set S’, Us A is the S-indexed copower of A) . The
infinitary algebraic theory T, corresponding to the monad T, fails
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to be an annular theory only for cardinality reasons (A is not

abstractly finite in A-mod"9). In fact, the category of algebras
of 1r is the exact completion of the full subcategory of A-modreg
spanned by copowers of A, and then it is abelian. This implies
that T X Z= T, where 0 is here the tensor product of theories
and Z is the theory of abelian groups (cf. [19)).
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