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SKEW 03A9-SETS COINCIDE WITH Q-POSETS
by Francis BORCEUX* and Rosanna CRUCIANI

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CA TEGORIQUES
l’olume XXXIX-3 (1998)

R6sum6

Lorsque Q est un quantale non commutatif, les Q-ensembles cor-
respondants sont munis d’une 6galit6 non sym6trique a valeurs
dans Q. Dans le cas classique d’un locale Q, nous prouvons que
la cat6gorie des O-ensembles non sym6triques est 6quivalente à
la cat6gorie des S2-faisceaux ordonn6s.
Mots cl6s francais: S2-ensemble, faisceau, topos.
Mots cl6s anglais: Q-sets, sheaf, topos.
Classification AMS: 18B25, 03G25.

Introduction

Every set A is provided with an equality and a membership relation:
given elements a, b of A, the formula a = b takes the truth value true
or false according to the case; analogously, the formula a E A takes the
truth value true exactly for all elements a of A.

Logicians have first replaced the truth values true, false by a (com-
plete) boolean algebra of truth values (see [4]), and more generally by a
locale of truth values (see [5]). The corresponding logics are intuition-
istic.

Given a locale Q, an Q-set is then defined as a set A provided with
an "equality"
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where [a = a’] E Q is interpreted as the "truth value" of the formula
a = a’, and [a = a] is interpreted as the truth value of the formula
a E A. Such an "equality" is requested to satisfy the "symmetry" and
"transitivity" axioms

where a, a’, a" are elements of A. In the same spirit, a morphism
f : A --&#x3E; B is a mapping

where f (a) = b E Q is interpreted as the "truth value" of the formula
f (a) = b and the axioms express the functional requirements on f (see
[3], section 2.8).

The locale Q itself, provided with the multiplication lu = v] = u A v,
is the terminal Q-set. More generally, every sheaf F on Q determines
.an Q-set: the corresponding Q-set A is the disjoint union IIuEnF(u) of
all "elements" of F at all levels and [a = a’] is the biggest level u E Q
where the restrictions of a and a’ concide. In particular if l.L E F(u),
one gets u = [a = a] as truth value of the formula a E A. In fact, it is

well known that the category of Q-sets is equivalent to the category of
sheaves on Q (see [5]).

Those last years, multiplicative lattices have been intensively studied
from a logical point of view, under the name quantales (see [6] and [7]).
This is a complete lattice provided with an associative multiplication
which distributes over joins in each variable. Locales are just the case
where multiplication is the meet operation. Canonical examples are
given by lattices of ideals of rings or algebras, with the multiplication
of the quantale induced by that of ideals.

The theory of Q-sets can be carried over to the case of a quantale
Q, replacing everywhere the meet operation A by the multiplication
&#x26; of the quantale (see [1] and [2]). Since the applications of quantale
theory are essentially found in the study of non commutative rings or
algebras, the multiplication &#x26; is generally not commutative. If we want

the quantale Q, provided with the equality [u = v] = u &#x26; v, to be
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a canonical Q-set, we are forced to omit the symmetry axiom [a =
a’] = [a’ = a] in the definition of Q-sets. All authors studying non
commutative quantales agree on this point.

It is amazing that up to now, nobody had tried to investigate what
those non-symmetric Q-sets are, in the classical case of a locale Q. The
purpose of this paper is to prove that the category of non symmetric Q-
sets is equivalent to the category of partially ordered Q-sheaves, that is,
of posets in the category of Q-sheaves. For that reason, we suggest that
the notation (a  a’] should rather be used to denote the non-symmetric
"equality" [a = a’] of a non-symmetric Q-set over a quantale Q.

1 Q-sets

Let Q be a fixed locale. We introduce first some definitions and notation;
the reader is invited to consult [3], section 2.8, for more details on
the intuition underlying those definitions. To avoid any ambiguity, we
use the terminology "symmetric Q-set" and "skew Q-set" to distinguish
the symmetric case from the non-symmetric one; we use the notation

Q,y-Set and Qsk-Set to indicate the corresponding categories.
First of all the symmetric Q-sets, which are just called Q-sets in [3].

Definition 1.1. Let Q be a locale. A symmetric Q-set is defined as a
pair A, [. = .]) where A is a set and [. = .] : A x A - Q is a mapping
satisfying the following axioms:

where a, a’, a" are elements of A.

Definition 1.2. Let Q be a locale and A, B two symmetric Q-sets. A
morphism of Q-sets f : A --&#x3E; B is a mapping [f. = .J: A x B -&#x3E; Q
satisfying
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for all elements a, a’ in A and b, b’ in B.

The symmetric Q-sets and their morphisms constitute a category,
which we denote Q,y-Set. This category is extensively studied in [3],
section 2.8; in particular the following result holds.

Lemma 1.3. Let Q be a locale and f : A --&#x3E; B a morphism of sym-
metric Q-sets. The following relations hold:

for all elements a, a’ of A and b, b’ of B.

Now the case of skew S2-sets.

Definition 1.4. Let Q be a locale. A skew Q-set is a pair (A, [. = J)
where A is a set and [. = .]: A x A --&#x3E; Q is a mapping satisfying the
following axioms:

for all elements a, a’, a" of A.

Following the intuition recalled in the introduction, [a = a] should
be thought as [a E A]. The following proposition follows at once from
definition 1.4.
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Lemma 1.5. Let Q be a locale and A a skew Q-set. The following
relations hold:

for all elements a, a’, a" of A.
The unsymmetry of the equality, together with lemma 1.3, makes

sensible the following definition of morphisms.
Definition 1.6. Let Q be a locale and A, B skew Q-sets. A morphism
of skew n-sets f : A --&#x3E; B is a pair of mappings

satisfying

for all elements a, a’ in A and b, b’ in B.

Straightforward computations, using axioms (Ml)-(M6), yield the
the following result:

Lemma 1.7. Let Q be a locale and f : A --&#x3E; B a morphism of skew
Q-sets. The following relations hold:
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for all elements a in A and b in B. m

We are now ready to define the composite of two morphisms of skew
Q-sets; straightforward computations yield the proof of the following
proposition.

Proposition 1.8. Let Q be a locale. Given two morphims of skew
Q-sets f: A --&#x3E; B and g: B --&#x3E; C, the formulae

for all a E A, c E C, define a composite morphism of skew Q-sets
g o f : A --&#x3E; C. With this composition law, the skew Q-sets and their
morphisms become a category where the identity on a skew Q-set A is
given by [1Aa = a’] = [a = a’] = [a = lAa’], for all a, a’ E A.

We write Qsk-Set for the category of skew fl-sets and their mor-
phisms. Proposition 1.3 indicates at once that, putting [b = fa] =
[fa = b] in definition 1.2, the category Osy-Set of symmetric Q-sets is
a subcategory of that Qsk-Set of skew Q-sets. Our purpose in this sec-
tion is to prove that Osy-Set is in fact a full coreflective subcategoy of
Qsk-Set.

Lemma 1.9. Let Q be a locale. Givezn two morphims of skew Q-sets
f, g: A --&#x3E; B, the following equivalence holds

for all elements a in A and b in B.

Proof: For all a in A and b in B,
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which proves one implication; the other one is analogous.

Corollary 1.10. Let Q be a locale. Given two morphims of skew S2-sets
f, g: A -&#x3E; B, the relations f a = b]  [ga = b] and [b = fa]  [b = ga],
for all a in A and b in B, imply f = g. 

Proposition 1.11. Let S2 be a locale. The category Qsy-Set ofsymmet-
ric Q-sets is a full subcategory of the category S2Sk-Set of skew Q-sets.

Proof: By lemma 1.3, every symmetric Q-set is a skew Q-set and putting
[b = fa] = f a = b] in definition 1.2 yields the inclusion of Q,y-Set in
S2Sk-Set.

To prove the fullness of the inclusion, consider symmetric Q-sets A
and B, together with a morphism f : A -&#x3E; B of skew S2-sets. We must
prove that [fa = b] = [b = fa] for all elements a in A and b in B. By
proposition 1.7

for all a in A and b in B. The corresponding relation for [b = fa] is

proved in the same way.
This yields the inequalities
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for all a in A and b in B. Analogously [b = fa]  f a = b], from which
the result.

Theorem 1.12. Let Q be a locale. The category Osy-Set of symmetric
Q-sets is a full coreflective subcategory of the category Osk-Set of skew
Q-sets.

Proof: Given an n-set A = (A, [. = .J), the formula

for all a, a’ in A defines clearly a symmetric Q-set Asy = (A, [[. = .]]).
Moreover putting

for all a in A and a’ in A.,,, yields immediately a morphism h: Asy --&#x3E; A.

Let us prove that the pair (Asy, h) is the coreflection of A i n Qsy-Set.
For this consider a symmetric Q-set B and a morphism of skew S2-

sets f : B -&#x3E; A. The relation

for all a in A and b in B, defines a morphism f sy : B - Asy of symmetric
Q-sets. One gets at once

Corollary 1.10 implies then h o f sy = f .
To prove the uniqueness of fsy, consider a morphism g: B - Asy of

symmetric Q-sets such that h o g = f , that is
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for all a in A and b in B. In those conditions

for all a in A and b in B . By symmetry and corollary 1.10, we conclude
that fsy = g.

2 Complete Q-sets

The purpose of this section is to generalize, to the case of skew Q-sets,
the theory of complete Q-sets. It is proved in [3], section 2.9, that
the category Qc sy -Set of complete symmetric Q-sets is equivalent to the
category Q,y-Set of symmetric Q-sets. Analogously, we prove that the
category Q’sk-Set of complete skew Q-sets is equivalent to the category
Qsk-Set of skew Q-sets.

Definition 2.1. Let Q be a locale and A a skew Q-set. A singleton s
of A is a pair of mappings

satisfying the axioms

for all elements a, a’ of A. The quantity in (u4) is called the "support"
of the singleton.

Obviously, for each a in A, the pair (a = .], [. = a]) is a singleton
of A.
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Definition 2.2: Let Q be a locale. A skew Q-set A is complete when
every singleton of A has the form ([a =.], [.= a]) for a unique element
a E A.

Given a locale Q and an element u E Q, let us write lu for the
symmetric Q-set obtained by providing the singleton 1*1 with the Q-
equality [* = *] = u. Comparing definitions 1.6 and 2.1, we get at once
the following result.

Proposition 2.3. Let Q be a locale and A a skew Q-set. There is a

bijection between

1. the singletons of A with support u,

2. the morphisms of skew Q-sets 1 u --&#x3E; A,

for every element u E Q..

Together with proposition 1.11, this result indicates in particular
that, in the case of symmetric Q-sets, definition 2.1 agrees with the
classical definition of a singleton (see [3]). In particular, a symmetric
Q-8et is complete in the sense of our definition 2.2 if and only if it is

complete in the classical sense.

Lemma 2.4. Consider a skew S2-set A and a singleton s of A. The

following relations hold, where A indicates the set of singletons of A:

for all elements a, a’ in A.

Proof: The two inequalities follow from (o1) and (u2) and the first two
equalities in 1.5. The equality in the statement follows from (Q3) and
the fact that every element a in A determines canonically a singleton of
A.

Proposition 2.5. Let Q be a locale and A, B two skew Q-sets, with
B complete. There exists a bijection between:
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1. the morphisms of skew Q-sets f : A ) B;

2. the actual mappings p: A --&#x3E; B satisfying the two conditions

for all elements a, a’ in A.

The category Q’sk-Set of complete skew Q-sets and their morphisms as
in 1.6 is equivalent to the category of complete skew Q-sets and those
mappings as in condition 2 of the statement, the composition of these
mappings being the usual one.

Proof: Given f and an element a in A, ([fa = .], [. = fa]) is a singleton
on B, thus is represented by a unique element of B which we choose as
cp(a). Conversely given cp, one defines f via the assignments

for all elements a in A and b in B.

Theorem 2.6. Let Q be a locale. Every skew Q-set is isomorphic to
a complete skew Q-set. Thus the category Qsk-Set of skew Q-sets is
equivalent to its full subcategory Qc sk-Set of complete skew Q-sets.

Proof: For a given Q-set A, the set A of singletons of A is itself a skew
Q-set when provided with the equality

for all singletons s, s’ of A. Indeed, by (u4), A satisfies (81) and (S2);
moreover, for all s, s’, s" E A, one has
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from which axiom (S3) holds in A.
To prove that the skew Q-set A is complete, choose a singleton a of

A. For an element a in A, put

It is routine to check that s verifies (o1), (Q2), (u3); let us prove it
satisfies (u4) as well, thus is a singleton of A.

and analogously for [a = s]. It follows at once that s is the unique
singleton of A which represents the singleton a of A. 

It is now routine to observe that, for elements a in A and s in A,
the relations

define two inverse isomorphisms f : A - A, g: A -&#x3E; A in the category
of skew Q-sets. m

When A is a symmetric Q-set, the Q-set A of singletons of A is
itself a symmetric Q-set and, via proposition 2.3, is exactly the Q-set of
singletons of A in the classical sense (see [3]).

3 The Q-posets
By an Q-poset we mean a poset object in the category of sheaves on
Q. To show the relation with skew Q-sets, we need first the following
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lemma.

Lemma 3.1. Let Q be a locale and A a skew Q-set. Composing with
the coreflection morphism h: Asy -&#x3E; A of theorem 1.12 yields a bijection
between the singletons of Asy and those of A, when a singleton of support
u E Q is viewed via 2.3 as a morphism with domain 1u.

Proof: By the coreflection property, since lu is a symmetric Q-set..
In particular, when A is a complete skew Q-set, the symmetric Q-set

Asy of theorem 1.12 is still complete, thus the data

define a sheaf on Q, by a well-known result in the classical theory of
Q-sets (see [3], section 2.9). We shall keep .writing this sheaf A.

Let us also recall that the subobject classifier in the category of
sheaves on the locale S2, still written Q, is given by

for all elements u E S2 (see [3]).
Proposition 3.2. Let Q be a locale and A a complete S2-set. The data

for all u E S2, define a morphism of sheaves A --&#x3E; Q, which is the char-
acteristic morphism of a reflexive, transitive and antisymmetric relation
on the sheaf A.

Proof : Consider vu in Q and write al,,, a’|v for the restrictions of a,
a’ in A(v) . Viewing a, a’ as singletons of A, this means

for all elements x of A. This implies immediately

which is the required naturality condition.
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Let us write R C A x A for the relation on A classified by the
previous morphism of sheaves. That is, given a, a’ E A(u),

iff

This relation R is reflexive because

top element of S2(u).

It is transitive because given a, a’, a" E A(u)

thus

and

To prove that the relation R is also antisymmetric, choose a, a’ E A(u)
such that [a = a’] = u = [a’ = a]. For each element x of A,

thus

Analogously, [a’ = x]  [a = x] and thus [a = x] = [a’ = x]. Since A is
complete, this implies a = a’.

Theorem 3.3. Let S2 be a locale. The category of skew Q-sets is equiv-
alent to the category of posets in the topos of sheaves on Q.

Proof: By theorem 2.6, it sufices to work with complete skew Q-sets.
For morphisms of complete skew Q-sets, we use the description given in
2.5. Let us first construct a functor

from the category of Q-poset to the category of complete skew Q-sets.
Given a poset (F, ) in the topos of sheaves on S2, we provide the

set A = IIuEnF(u) with the skew Q-equality
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for all a E F (u), a’ E F(v) and w  u A v . It is straightforward to
observe that we have so defined a skew Q-set A. The symmetric Q-
set associated with A is the classical Q-set associated with the sheaf F

(see [3], section 2.9), thus it is complete. Since A and the associated

symmetric Q-set have the same singletons (see 3.1), it follows that A is
a complets skew Q-set.

A morphism of Q-posets a: F - G is mapped on IIuEQau ; applying
2.5, this definition makes sense since each au is a poset morphism. This
defines the functor P which, by construction, is faithful.

The functor P is also full. Indeed, write A and B for the com-
plete skew Q-sets associated with the Q-posets F and G. A morphism
cp : A-&#x3E; B as in 2.5 is trivially also a morphism between the symmetric
Q-sets associated with A and B, thus is induced by a natural transfor-
mation a : F =&#x3E; G (see [3], section 2.9). One has thus p = II u E au.
It remains to show that each au is a poset morphism. For this choose
aa’ in F(u); this means [a = a’] = u and therefore

from which [au(a) = au(a’), = u since both elements are in G(u). This
means precisely au (a)  au (a’).

Finally it remains to observe that, by proposition 3.2, the full and
faithful functor P is also essentially surjective on the objects.

Theorem 3.3 suggests that a skew S2-set should rather be presented
as a set A provided with an Q-inequality

while a morphism f : A -&#x3E; B of skew Q-sets should be presented as a
pair of mappings

The definitions remain thus exactly 1.4 and 1.6: just the notation has
changed. This new notation improves largely the intuition; for example
in theorem 1.12, the symmetric Q-set Asy has now the Q-equality
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while the morphism f,,, of symmetric Q-sets is given by

In particular, we suggest to use this "inequality notation" instead of
"equality" when working with Q-sets on a quantale Q.
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