@article{CTGDC_1998__39_3_221_0, author = {Cristofori, Paola}, title = {Heegard and regular genus agree for compact $3$-manifolds}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, pages = {221--235}, publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS}, volume = {39}, number = {3}, year = {1998}, mrnumber = {1641854}, zbl = {0914.57010}, language = {en}, url = {http://archive.numdam.org/item/CTGDC_1998__39_3_221_0/} }
TY - JOUR AU - Cristofori, Paola TI - Heegard and regular genus agree for compact $3$-manifolds JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 1998 SP - 221 EP - 235 VL - 39 IS - 3 PB - Dunod éditeur, publié avec le concours du CNRS UR - http://archive.numdam.org/item/CTGDC_1998__39_3_221_0/ LA - en ID - CTGDC_1998__39_3_221_0 ER -
%0 Journal Article %A Cristofori, Paola %T Heegard and regular genus agree for compact $3$-manifolds %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 1998 %P 221-235 %V 39 %N 3 %I Dunod éditeur, publié avec le concours du CNRS %U http://archive.numdam.org/item/CTGDC_1998__39_3_221_0/ %G en %F CTGDC_1998__39_3_221_0
Cristofori, Paola. Heegard and regular genus agree for compact $3$-manifolds. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 39 (1998) no. 3, pp. 221-235. http://archive.numdam.org/item/CTGDC_1998__39_3_221_0/
[1] A note on the genus of 3-manifolds with boundary, Ann. Univ. Ferrara - Sez. VII - Sc. Mat. XXXV (1989), 163-175 | MR | Zbl
,[2] Constructing n-manifolds from spines, to appear | MR | Zbl
,[3] An infinite class of bounded 4-manifolds having regular genus three, Boll. Un. Mat. Ital. (7) 10-A (1996), 279-303. | MR | Zbl
,[4] Classifying PL 5-manifolds by regular genus: the boundary case, Can. J. Math. 49 (2) (1997), 193-211. | MR | Zbl
,[5] Heegaard and regular genus of 3-manifolds with boundary, Revista Mat. Universidad Complutense Madrid 8 (2) (1995), 379-398. | MR | Zbl
- - ,[6] A graph-theoretical representation of PL-manifolds - A survey on crystallizations, Aequationes Math. 31 (1986), 121-141. | MR | Zbl
- - ,[7] A combinatorial characterization of 3-manifolds crystallisations, Boll. Un. Mat. Ital. 16-A (1979), 441-449. | MR | Zbl
,[8] Regular imbeddings of edge-coloured graphs, Geom. Dedicata 11 (1981), 397-414. | MR | Zbl
,[9] Extending the concept of genus to dimension n, Proc. Amer. Math. Soc. 81 (1981), 473-481. | MR | Zbl
[10] Regular genus: the boundary case, Geom. Dedicata 22 (1987), 261-281. | MR | Zbl
[11] The only genus zero n-manifold is Sn, Proc. Amer. Math. Soc. 85 (1982), 638-642. | MR | Zbl
[12] Forstudier til topologisk teori för de algebraiske Sammenhäeng, Nordiske Forlag Ernst Bojesen, Copenhagen (1898); french translation: Bull. Soc. Math. France 44 (1916), 161-212.
,[13] An introduction to algebraic topology - Homology theory, Cambridge Univ. Press (1960). | MR | Zbl
- ,[14] Representing 3-manifolds by a universal branching set, Math. Proc. Camb. Phil. Soc. 94 (1983), 109-123. | MR | Zbl
,