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ON THE GEOMETRIC BAR CONSTRUCTION AND
THE BROWN REPRESENTABILITY THEOREM

by Peter L BOOTH

CAHIERS’ DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
J ’olume XXXLX-4 (1998)

Resume
Cet article poursuit le d6veloppement d’une théorie des fibra-

tions enrichies et de leurs espaces classificateurs. Plus pr6cis6-
ment, les quasi-fibrations enrichies produites a -partir de la con-
struction "barre" de May sont reli6es aux fibrations enrichies
d6riv6es du théorème de représentabilité de Brown. Ceci permet
d’élaborer une nouvelle approche pour construire les espaces
classificateurs des fibrations enrichies, tout en conservant les
principaux avantages de l’une ou 1’autre des deux approches
mentionnées plus haut quant a leur simplicite, generalite et
calculabilite.

1 Introduction

This is one of a series of papers following on from [Bo2]; we normally use
the terminology introduced there. Our overall objective is to develop a
very smooth theory of enriched fibrations and their classifying spaces.
Such a theory should combine and incorporate many individual theo-
ries, including the "classical" ones of principal, Hurewicz and sectioned
fibrations.

In this paper we relate universal enriched qu asi-fib rations - produced
using the two-sided geometric bar construction of [Ma2] - to universal
enriched fibrations obtained via the Brown Representability Theorem in
[Bo3] and [Bo4] . These complementary methods of producing classifying
spaces are blended together, thereby producing a classification theory
with the advantages of both approaches and the disadvantages of neither.
We will always assume that E is a category of enriched topo-

logical spaces (see [Bo2, p-129], [Bo3, ch.2]). Thus there is a faithful

underlying space functor, from E to the underlying topological cate-
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gory, that forgets any additional structure on the objects of £. Further,
if P is a space, Q is an £-space and there is a homeomorphism from P
onto the underlying space of Q, then there is a unique £-space struc-
ture on P such that this homeomorphism is the underlying map of an
£-homeomorphism (= E-isomorphism).

We recall the concept of an £-overspace, i.e. a map q : Y -&#x3E; C to-

gether with an associated E-space structure on the fibre Ylc = q-1(C),
for each c E C. For example, if Q is an E-space and C is a space, then
the projection Q x C -&#x3E; C is an 9-overspace in an obvious way.

If q : Y--&#x3E; C is a map and S is a subspace of C, then Y IS will denote
the subspace q-l(S) of Y and qlS: YlS -&#x3E; S the restriction of q to YlS.
If q is an £-overspace, then qlS is clearly also an £’-overspace.

The 9-overspace q will be said to be an £-fibration if it satisfies the
£-weak covering homotopy property (= £WCHP) [Bo2, p-136]. In the

case where £ consists of topological spaces without extra structure this
is the WCHP of [Do, section 5]; fibrations satisfying the WCHP will
be called Dold fibrations.

Let q be an E-overspace such that, for each U in a numerable cover
Lf of C, there is an E-space Q = Q(U) such that the restriction qlU is
£-fibre homotopy equivalent (= EFHE) [Bo2, p.130] to the projection
E-overspace Q x U --&#x3E; U. Then q will be said to be £-locally homotopy
trivial or ELHT [Bo2, p.142].

Let W denote the class of all spaces having the homotopy type of a
CW-complex. If C E W, then an £-overspace q is an £-fibration if and
only if it is ELHT [Bo2, thm.6.3].
We will always assume - unless we specify otherwise - that

F is a given £-space and use to denote the category of fi-
.bres containing F, i.e. the category of all £-spaces that are
9-homotopy equivalent to F and all £-homotopy equivalences
between them.
Let F(F) denote the monoid under composition of self-F-homotopy

equivalences of F, topologized as described ’below. Then 7(Fl’ will
denote F(F) with a whisker grown at its identity 1F. We notice that
.F(F)’ also carries the structure of a topological monoid. It can be used
with the bar construction to construct an associated F-overspace, i.e.
a universal F-quasi-fibration qF : Y F -&#x3E; C17 (see §3 for more details).
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May used either a r-completeness [Ma2, def.5.1] or a F’- complete ness
[Ma2, def.5.4] assumption to convert his qF into a universal F -fibration
rqf or r’qT [Ma2, thm.9.2 (a) and (b)]. This theory can be very useful
in the area of applications (see, for example, [Ma3]). The r- and r’-
completeness assumptions also, however, have the drawback that their
use detracts from the simplicity and generality of the classification result
obtained.

The Brown Representability Theorem approach, given in [Bo3] and
[Bo4], allows the construction of an alternative universal F-fibration
pT: X F -&#x3E; Byr (see §3 for more details). Further, this procedure avoids
the above problems (compare [Bo4, thm.5.3] with [Ma2, thm.9.2, (a)
and (b)]). On the other hand, pF cannot be applied in the same direct
and flexible fashion that is possible with the former approach. These
and other issues, concerning the merits of differing approaches to the
classification problem, will be reviewed in [Bo5].

We use a fibred mapping space argument to equate PF and qF.
In particular, we equate the classifying spaces B F and C F. Neither
a r-completeness nor a r’-completeness condition is assumed. Then

properties of the bar construction can be used for applications, in the

simplified and more general Brown’s theorem context.
If p:X-&#x3E;B and q : Y - C are maps, and h : X - Y and g: B -&#x3E; C

are maps such that qh = gp, then we write that h, g&#x3E; is a pairwise
map from p to q. If p and q are £-overspaces and hl(Xlb): Xlb-&#x3E; Ylg(b)
is an £-map for each b E B, then we will write that h, g&#x3E; is an

£-pairwise map from p to q. In section 2 we consider some relevant

properties of fibred mapping spaces, leading to theorem 2.7 which gives
sufficient conditions for the existence of an F-pairwise map from a given
F-fibration to a given F-overspace. This result, together with the prop-
erties of the geometric bar construction and of the Brown’s theorem
universal fibration that are reviewed in section 3, enables us to show in
section 4 (theorem 4.2) that there is an F-pairwise map h, g&#x3E; from

p F to qF. Further h : X F -&#x3E; Yjr and g : B F --&#x3E; C F are weak homotopy
equivalences. Thus we have achieved our objective.

It follows (corollary 4.3) that the bar construction space C.F acts as
a classifying space for F-fibrations It does so without the requirement
of a topological condition, such as compactness or belonging to W, on
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the underlying spaces of the fibres involved.

Our discussion should be taken to be in the context of the

category T of compactly generated or cg-spaces ([Bo2, p.128-129] and
[V, sec.5, ex.(ii)]). Thus if X and Y are cg-spaces, then T(X,Y) will
denote the space of all maps from X to Y equipped with the cg-ified
modification [Bo2, p. 129] of the compact-open topology. F(F) will be
topologized in the same fashion.

We recall that a space B is weak Hausdorff [Bo2, p.129] if the diago-
nad subset AB = {(b, b) lb E B} is closed in the (cg-ified) product space
BxB.

Lemma 1.1 If B is a weak Hausdorff space and S is a subspace of B,
then S is weak Hausdorff.

Proof. The diagonal subset As = (S x S) n AB is closed in S x S.

2 Fibred Mapping Spaces and Structure
Preserving Maps

We will assume, throughout this section, that B is a weak
Hausdorff space and that p : X - B and q : Y -3 C are £-overspaces.

We recall the concept of the E-overspace qg: Y n D --&#x3E; D, induced by
pulling q back over the map g : D --7 C [Bo2, p.130]. Also that there is a
fibred mapping space XDY with underlying set UbEB,cECE E(XlblYlc) 
and a map pDq: XDY --&#x3E; B x C, with (pDq)(f) = (b, c), where f E
E(Xlb, Ylc), b E B and c E C [Bo2, p.131-132]. We use pDlq: XD Y -&#x3E; B
and pD2q: XDY --&#x3E; C to denote the maps that are the composites of
pDq with the projections 7rB: B x C - B and 7rc: B x C - C, respec-
tively. So if f E E(Xlb, Ylc) where b E B and c E C, then (pD 1q) (f) = b
and (pD2q)(f) = c.

In this section we develop some basic properties of polq. Versions
of some of these (theorem 2.1, corollaries 2.2 and 2.4 and a weaker
form of proposition 2.6) have been given elsewhere (see [BHP1], [BHP2],
[BHMP] and [Bol]). However this material is not all in one place, the
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details of the proofs are sometimes rather skimpy and the results are
often based on data somewhat different from ours.

Theorem 2.1 : Fibred exponential law. Let f : D -&#x3E; B be a map.
Then there is a bijective correspondence between:

(i) the set of £-pairwise maps h, g&#x3E; from p f to q and
(ii) the set of maps ho: D XCIY over B, i. e. relative to f and

polq,
determined by h(x, d) = ho(d)(x) and g = (pD2q)hO, where p(x) = f (d).

Proof. This is just a slight modification of the proof of another fibred
exponential law, i.e. theorem 2.2 of [Bo2]; we notice that B is required
to be weak Hausdorff in that result.

If s : D - B and t : D - C are maps then the map D -&#x3E; B x C, with
d-&#x3E;(s(d), t(d)) where d E D, will be denoted by (s, t). Let h, g&#x3E; be
an £-pairwise map from p f to q. Then there is a map ho: D -&#x3E; XOY,
defined by the equality specified above, and such that (pDq)hO = ( f, g)
(see [Bo2, thm.2.2]). So (pDlq)h° = 7rB(pDq)hO = 7rB(f,g) = f, and h°
is a map over B as required.

Conversely, let ho: D -&#x3E; XDY be a map satisfying (pO,q)h’ = f .
Then (pDq)ho = (pD1q,pD2q)ho = ((pDlq)hO, (pD2q)hO) = (f, g), where
9 = (pD2q)ho: D -&#x3E; C. So ho satifies the condition specified in [Bo2,
thm.2.2], the associated h is well defined and h, g&#x3E; is as required.

Corollary 2.2 There is a bijective correspondence between :
(i) the set of £-pairwise maps h, g&#x3E; from p to q, and
(ii) the set of sections ho to pDlq,

determined by hl(Xlb) = ho(b) and g = (pD2Q)hO, where b E B.

Proof. This follows from theorem 2.1 if we take D = B, f = 1B and
identify p f with p.

Corollary 2.3 If S is a subspace of B, then (XOY)IS = (pD1q)-1(S)
and (XlS)DY are identical, and (pDlq)IS = (pIS)Dlq.
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Proof. Clearly the underlying sets of the two spaces coincide and the
functions (pO1q)l,S and (plS)D1q are identical. Let us consider any (of
course cg-) space D, map f : D -&#x3E; S and function k : D --&#x3E; (X DY) lS that
is over S. We will prove that k is continuous into (X DY) lS if and only
if it is continuous into (XlS)DY. The result will then follow.

Let i : S -&#x3E; B and j : (X DY)l S -&#x3E; X DY denote the inclusions. If k is
continuous into (XDY)IS, it follows that jk : D -&#x3E; X OY is a map over
B, relative to the maps i f : D -&#x3E; B and pD14q: XDY -&#x3E;B. Applying
our fibred exponential law, there is a corresponding E-pairwise map
 h , g &#x3E; from Pi f to q, determined by h(x, d) = k(d) (x), where p(x)= 
if (d) = f(d) and g = (Po2q)jk. The £-overspaces pi f : X n D - D
and (plS) f : (XlS) n D -&#x3E; D are identical, so  h , g &#x3E; is an £-pairwise
.map from (p/s)f to q. Now S is weak Hausdorff (lemma 1.1), and so it
follows from theorem 2.1 that there is a map L : D -&#x3E; (X /S)[]Y over S,
i.e. with ((p/S)[]1q)l = f. Further, l(d)(x) = h(x, d) = k(d)(x) where
f(d) = p(x), so l = k and k : D -&#x3E; (X /S)[] Y is continuous.

Now each step in the above paragraph is clearly reversible, so the
continuity of k in the two senses is equivalent and the proof is complete.

The subset Uc E C £(F, Ylc) of the set T(F, Y) determines a sub-
space PrinFY of the space T(F, Y). Then the composite of the inclu-
sion map PrinFY -&#x3E; T(F, Y), the map T(F, Y )-&#x3E; Y that evaluates at
an arbitrarily chosen point of F and q : Y - C is the obvious projection
prinFq: PrinFY -&#x3E; C. Hence this projection is continuous.

Corollary 2.4 If bE B, then the fibre of pOlq over b is Prin XlbY’
Proof. It follows from corollary 2.3 that the fibre of pF-l 1 q over b E B,
i.e. (X[]Y)/b, is (Xlb)DY. Hence we have to prove that (X/b)[]Y =
Prin XlbY’ Clearly the underlying sets are identical, so we just have to
prove that the topologies agree. Let D be a space and h° : D -&#x3E; (X/b)[]Y
be a function. We will show that ho is continuous into (Xlb)[]Y if and
only if it is continuous into PrinXlbY’ The result then follows. Let us
apply the fibred exponential law to h° : D -&#x3E; (Xlb)[]Y, considered as a
map over a point, and the "ordinary" exponential law [Bo2, (0.1)] to
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h° : D - Prin XlbY C 7(Xlb, Y). We see that in each case the conti-
nuity of h° is equivalent to the continuity of h:(Xlb)xD-&#x3E;Y, where
h(x, d) = hO(d)(x), with x E X and d E D. Hence the proof is complete.

If b E B, then qlb : F - F x {b} will denote the homeomorphism de-
termined by qlb(z) = (z, b), where z E F. It follows - from the definition
of category of enriched spaces - that there is a unique £-space structure
on Fx{b}, making Ob into an E-homeomorphism for each b E B. We
recall that this allows us to view the projection 7rB : F x B -t B as an
E-overspace.

Corollary 2.5 Let II: (PrinFY) x B -3 B denote the projection. There
is a homeomorphism O: (FX B)DY Q£ (PrinFY)x B, that is over B in
the sense that IIO = 7rBDiq.

Proof. If b E B, c E C and g e E(F x {b}, Ylc), then 9Ob e E(F, Y/c) C
PrinFY. We define the function O: (F x B)[]Y -&#x3E; (PrinFY)xB by the
rule O(g)= (9Ob, IIB[]1q(g)). Then IIO(g) = II(9Ob, (IIB[]1q) (g)) =
(IIB[]:1q)(g), so IIO = 7rBcllq and the function (D is over B. 

Let Ob : Fx{b} -&#x3E; F denote the homeomorphism Ob (z, b) = z, where
z E F and b E B. Then ’l/Jb is the E-homeomorphism that is inverse to
Ob.

If f E PrinFY and b e B, then f wb e E(Fx {b}, Ylc) C (Fx B)DY,
where c = (prinFq) (f). Let V : (PrinFY)x B -&#x3E; (FxB)DY be the func-
tion with w(f,b) = fOb- It is easily seen that TO and Ow are identity
functions, so 0 and W are inverse bijections.

On applying theorem 2.1 to the identity on (FxB)DY, we obtain an
E-pairwise map e, IIB[]2q&#x3E; from (IIB) (IIB[]1q) to q. The evaluation,
map e: (F x B) n ((F x B)[]Y) -&#x3E; Y is determined by e(z, b, g) = g(z, b),
with z E F, b E B and g E E (F x {b}, Y/c) for some c E C. Further, there
is a homeomorphism ((FxB)[]xF = (FxB) n ((FxB)[]Y) deter-
mined by the rule (g, z) -3 (z, b, g), where b = (IIB[]1q)(g). Hence we see,
by composition, that there is a map ((F x B)[]Y) x F - Y, (g, z) - g(z, b).
Applying the exponential law of [Bo2, (0.1)] to this map, the rule

g-&#x3E;(z-&#x3E;g(z,b)) determines a map (FxB)DY --+ T(F, ¥). In this case

g E (F x B)[]Y, z E F and b = (IIB[]1q)(g). Now g(-, b) : F -&#x3E; Y/c, which
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takes z to g(z,b), is 90b E E(F, Ylc), where c = (7rBD2q)(g). So we have
a map (F x B) []Y -&#x3E; PrinFY,g-&#x3E; 9Ob and it follows that O is continu-
ous.

We now define maps e’, À and p such that e’ À, u&#x3E; is an £-pairwise
map corresponding to T. If the ordinary exponential law is applied to
the inclusion PrinFY C 7(F, Y), we obtain an evaluation map:

where f E PrinFY and z E F. Let us define

by A ((z, b), (f, b)) = ( f, z), where z E F, b E B and f E PrinFY, and

by

where f E PrinFY and b E B. So qe’À(z,b,f,b) = qf (z) = (prinFq)(f)
= 1u(f,b) = u((IIB)II(z, b, f, b)), where z E F, b E B and f E PrinFY.
Hence e’À,tt&#x3E; is an £-pairwise map from (IIB)II to q. Applying theo-
rem 2.1 there is a map (PrinFY) x B -&#x3E; (F x B) [] Y, determined by the
rule ( f, b)-&#x3E;((z, b)-&#x3E;f (z)), where f E PrinFY, b E B and z E F. Now
this is T, so T is continuous. Hence 4D is a homeomorphism over B.

Proposition 2.6 If B is a CW-complex, p: X -&#x3E; B is an £-fibration
and q : Y - C is an £ -overspace, then pO 1 q is a Dold fibration.

Proof. We know that p is £LHT. Thus there is a numerable cover U
of B and, for each U E Lf, there is an object Q of £ such that plU
is £FHE to the E-overspace and projection 7ru : Q X U -&#x3E; U. It follows,
via corollary 2.3, that (p[]1q)lU = (plU)[]1q, which in turn is FHE to
(IIU)[]1q. We see from lemma 1.1 that U is weak Hausdorff, and hence
from corollary 2.5 that (7ru)Olq is homeomorphic over U to the pro-
jection PrinQ (X ) x U -&#x3E; U. Hence pOlq is locally homotopy trivial, i.e.
TLHT, and therefore a Dold fibration.

The last result, which was announced without proof in [Bo1, (7.2)],
should not be confused with certain similar published results. Thus
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all of [Bo2, prop.4.5], [BHPI, prop.6], [BHP2, axiom A4] and [BHMP,
prop.2.3] state that if p and q are (in some sense) £-fibrations, then
pDq is (some sort of) a fibration. These results prove, by composition
with IIB: BxC -&#x3E; C, that pO l q is a fibration. However, they assume
something that we cannot assume about q, i.e. that it is at least an

£-fibration. The fact that q need not possess such a property is crucial
for our verification of theorems 2.7 and 4.2.

From this point on our argument will usually focus on a
category of fibres 7, rather than on E; the E of previous results
can, of course, be taken to be such an F. So X[]Y and PrinFY will
now consist entirely of 7-homotopy equivalences between spaces that
are always 7-homotopy equivalent to F.

A space S will be said to be weakly contractible if 7r;(S) = 0, for all
non-negative integers i.

Theorem 2.7 Let B be a CW-complex, p : X -&#x3E; B be an F-fibration
and q : Y -&#x3E; C be an F-overspace. If FrinFY is weakly contractible,
then there is an F-pairwise map from p to q.

Proof. It follows from proposition 2.6 that pDlq satifies the WCHP.
The fibre of p[]1q over b E B is PrinXIbY (corollary 2.4), which has
the homotopy type of PrinFY and is therefore a weakly contractible
space. Considering the exact homotopy sequence of p[]1q, we see that
this map is a weak homotopy equivalence. Factoring pDig as the com-
posite of a homotopy equivalence X []Y -&#x3E; R and a Hurewicz fibration
p : R -&#x3E; B, we see via [Do, thm.6.1] that p is FHE to p[] 1q. Hence p is a
weak homotopy equivalence and, by [Sp, thm.7.6.23], p has a homotopy
section, i.e. a map 0’ such that p6 = 1B. Applying the CHP we see
that p has a section, hence so also does pdlq. The result follows from
corollary 2.2.

3 Constructing Classifying Spaces
We will now quote some results from [Ma2]. The concept of compactly
generated space, as used in that memoir, incorporates the weak Haus-
dorffness condition. Hence, from this point on, our discussion should
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be taken to be in the context of the category of weak Hausdoff
cg-spaces [Mc, section 2].

Let G be a topological monoid that is grouplike, i.e. II0(G) with the
obvious induced operation is a group. Further, let us assume that the
identity element t of G is a strongly non-degenerate base point, in the
sense that (G, ftl) is a strong NDR-pair (see [Mal, definition A.1]).
Let X and Y be left and right G-spaces, respectively. Then [Ma2,
p.31] describes a two-sided geometric bar construction, that defines a
space B(Y, G, X). Further, if * is a one-point space, there is a unique
left action Gx * - * and the map X -&#x3E;* induces a quasi-fibration
py,x: B(Y, G, X) - B(Y, G, *) [Ma2, p.34]. Then pY,X has fibres home-
omorphic to X [Ma2, p.35].

If H is any (of course cg-sense) topological monoid, we will use H’
to denote the space consisting of H with a whisker (= I) grown at
its identity t. Thus we simply identify t with 0. Then H’ carries the
structure of a topological monoid, under the operation that extends
both the operation on H and multiplication on I, and has th = ht = h
for all t E I and h E H. The identity for H’ is of course 1. If H is a

grouplike topological monoid, then we notice that H’ is also a grouplike
topological monoid. The relevance of H’ lies in the fact that it has a

strongly non-degenerate base point (see [Mal, definition A.8] for further
details).

The evaluation map e:F(F) x F - F, e( f, z) = f(z) where f E f(F)
and z E F, and the composition map c:f(F) x f(F) -&#x3E;f(F), c(f, 9) =
fg where f and gEf(F), are left actions of f(F) on F and f(F),
respectively. Let us now define a morphism of topological monoids,
i.e. (3: f(F)’ -&#x3E; f(F), by B(t) =1F and (3(h)=h, where t E I and
h ~ f(F). Then there are left actions of e ( jS x 1F):f(F)’ x F -+ F
of T(F)’ on F, and c(B x 1.f(F)) F( F)’ x f(F) -&#x3E; f(F) of ,f(F)’ on
-T(F).

The above left action F(F)’x F -&#x3E; F and the left and right actions
of f(F)’ on * determine a map p*,F:B(*,f(F)’/,F)-&#x3E;B(*,f(F)’,*);
we use gf: Y, - Cir to denote this map.

Then C F = B( *, F( F)/, *) is the geometric bar construction classi-
fying space for f.

Proposition 3.1 The map qg7 is a quasi-fibration and carries the struc-
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ture of an f-overspace. The map prinF(qF): PrinF(Yf)-&#x3E; CF is a
quasi-fibration with a contractible total space PrinF(Y F).
Proof. The first two conditions are justified because, as explained pre-
viously, any pY,X is a quasi-fibration with fibres homeomorphic to X;
PrinF(qf) is a quasi-fibration by [Ma2, prop.7.10].

We just have to verify the contractibifity condition. We see, via
[Ma2, prop.7.10], that the space PrinF(YF) = PrinF(B(*,f(F)’, F))
is homeomorphic to B(*,f(F)’, f(F)). The latter bar construction

space is defined using the above left action f(F)’xf(F) -&#x3E;f(F). It

has the homotopy type of the space B(*,f(F)’, f(F)’), that is obtained
using the operation on f(F)’ (see [Ma2, prop.7.3(ii)]). This, in turn,
can be seen to be contractible (take Y = * in [Ma2, prop.7.5]). Hence
PrinF(Yf) is contractible.

We now turn to a completely different construction of classifying
spaces, i.e. the Brown Representability Theorem approach of [Bo3] and
[Bo4]. The arguments of those papers are valid in the world of weak
Hausdorff cg-spaces, if a suitable adjustment is made to the definition
of "space under a given space A", as stated in [Bo3, section 2].

We will assume that (X, i) is a space under A now means that
i : A - X is a homeomorphism of A onto a closed subspace of X. This
ensures that all adjunction spaces, that appear in this family of papers,
are defined using a map out of a closed subspace of a given space. It

follows that, in our new context, all of these adjunction spaces are weak
Hausdorff (see [Mc, props.2.4 and 2.5]). The fibred mapping spaces that
appear in this family of papers may, temporarily, take us outside the
category of weak Hausdorff spaces. However, that does not prevent us
from drawing conclusions that apply in that category.

An f-fibration p : X -&#x3E; B will be said to be universal if it is universal
in the weakly contractible sense, i.e. if PrinF(X) is weakly contractible.
It is a shown in [Bo4, prop.3.7] that, if such a p exists and a space
D E W, then the collection 7FHE(D) of all fFHE classes of f-
fibrations over D is a set. Further, such a p is also free universal amongst
f-fibrations. Thus there is a bijection
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that is natural, relative to D in W (see [Bo3, prop.7.4] and [Bo4, thm.3.4]).
We recall the concept of E carrying the structure of a category of

well enriched spaces under a given space A [Bo3, def.2.3]. Thus £,
with its underlying space functor, is a category of enriched spaces that
possesses well behaved subspaces, cylinders and mapping cylinders, all
in the under A sense. Further, the category of enriched spaces structure
on &#x26; is derived from the well enriched structure on that category (see
[Bo3, lem.2.4]).

If, for every choice of a category of fibres f in 9 and of a space Z
under A, the class of all associated ,f-space structures on Z is a set,
then E will be said to be proper [Bo4, def.5.1(ii)].

Theorem 3.2 (see [Bo4, thm.5.3]J Let E carry the structure of a proper
category of well enriched spaces under a space A, F be an £-space and
f be the category of fibres determined by F. Then there exists a uni-
versal 7-fibration pf-:Xf-&#x3E; Bf over a path connected CW-complex
Bir.
The above is a consequence of Brown’s theorem, so the space B F will
be said to be a Brown Representability Theorem classifying space for f.

4 Main Result

Lemma 4.1 If q : Y - C is an F-fibration, then prin,Fq is a Dold fi-
bration.

Proof. Let us take W to be a given space, and g : W x {0} -&#x3E; PrinFY
and G : W x I-&#x3E; C to be maps such that (prinFq)g = GI(W x {0}). It

follows from the exponential law (0.1) of [Bo2] that there is a map

g’ : F x W x 101 -3 Y, determined by the rule g’(z, w, 0) = g(w, 0) (z),
where w E W and z E F. If II : F x W -&#x3E; W denotes the projection, then
qg’(z,w,0) = q(g(w, 0)(z))= (prinFq)g(w,0) = G(w,0) =

G(II X 1I)(z,w,0). Further, g’(-, w, 0) = g(w,0) E f(F,YlG(w,0)),
and so g’, GI(W x {0})&#x3E; is an f-pairwise map from 7r x 1{0} to q.

Now q has the 7WCHP, so there is a map H’ : F x W x I - Y, such
that H’, G&#x3E; is an f-pairwise map from 7r x II to q. We see, via the or-
dinary exponential law, that there is a map H : W x I - 7"(F, Y), where
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H(w, t)(z) = H’(z, w, t) for all w E W, t E I and z E F. Then the above
f-pairwise condition ensures that H factors through PrinFY, and we
can take H to be a homotopy W x I -&#x3E; PrinFY. So (prinFq)H(w, t) =
q(H(w, t)(z)) = qH’(z, w, t) = G(7r x 1I)(z, w, t) = G(w, t), for all w E W,
t E I and z E F. Hence (prinFq)H = G. Further, H(w, 0)(z)=
H’(z, w, 0) = g’(z, w, 0) = g(w, 0)(z), for all w E W and z E F. So

H(w, 0) = g(w, 0), for all w E W.

Theorem 4.2 Let £ carry the structure of a proper category of well
enriched spaces under a space A, F be a given E-space and f be the
category of fibres determined by F. Then:

(i) there is an f-pairwise map h, g&#x3E; from PF to qF such that the
maps h : X, - Yjr and g : Bf-&#x3E; C F are weak homotopy equivalences.

(ii) If 7(F) E W, then g is a homotopy equivalence; if also F E W,
then h is a homotopy equivalence.

Proof. (i) It follows from theorem 2.7, proposition 3.1 and theorem
3.2 that there is an f-pairwise map h, g&#x3E; : pf-&#x3E; qf. The map

h:Xf-&#x3E;Yf induces a map h#: PrinF(Xf) -&#x3E;PrinF(Yf), h# (f) =
(hl(Xflb))f, where fEPrinF(XF) and b = (prinF(Pf))(f). Then

h# , g&#x3E; is a pairwise map from prinF(PF) to prinF(qf). The mor-
phisms of f are f-homotopy equivalences, so hl(Xflb): Xf lb -&#x3E; Yflb
is an f-homotopy equivalence, for all b E B. Hence the induced map
h# lF(F, Xflb) : f(F, Xf lb) -&#x3E; f(F, Yf lb), where f-+(hl(XFlb)j for
all b E Bf, is a homotopy equivalence. Now PrinF(Xf) is weakly con-
tractible (theorem 3.2) and PrinF(Y F) is contractible (proposition 3.1),
so h# is a weak homotopy equivalence. Also B F and C F are path con-
nected (theorem 3.2 and [Ma2, prop.7.1]). It follows from the "ladder" of
exact homotopy sequences associated with the Dold fibration prinF(PF)
(lemma 4.1), the quasi-fibration prinF(qF) (propopsition 3.1), and the
pairwise map h# , g&#x3E; , that g is a weak homotopy equivalence.

A similar argument, applied to the ladder associated with the pair-
wise map h , g&#x3E; from PF to qjr, now shows that h is also a weak

homotopy equivalence.
(ii) If f(F) E W then, using the retraction B:F(F)’-&#x3E;f(F), we

see that 7(Fl’ E W. So C F is in W [Ma2, prop.7.2]. We already
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know that BF is a CW-complex, so g is a weak homotopy equivalence
between spaces in W and hence is a homotopy equivalence [Sp, 7.6.24].

If the base space and fibres of a Hurewicz fibration are both in W ,
then so also is the total space [Sc, thm.2]. Any map factors as the
composite of a Hurewicz fibration and a homotopy equivalence; if the
map is a Dold fibration, then the homotopy equivalence is an FHE

[Do, thm.6.1]. Hence the result, just stated for Hurewicz fibrations
and spaces in W, also applies when the fibrations are just assumed
to be Dold fibrations. Now Pf: X f -&#x3E; Bf is an f-fibration, so it

is a Dold fibration [Bo2, prop.4.3]. Also BT is a CW-complex, so if

F E W then Xjr E W. If also f(F) E W, then f(F)’ E W and
YT = B(*,.F(F)’, F) E W [Ma2, prop.7.2]. So h is a weak homotopy
equivalence between spaces in W and hence a homotopy equivalence.

We have not shown that there is a universal f-fibration over Cf in
general, however we do have the following result.

Corollary 4.3 (i) There is a bijection [D, Cf] -&#x3E; fFHE(D) that is

natural in D, where D E W .
(ii) If f(F) E W, then there is a universal f-fibration over C F.

Proof. (i) It follows from [Sp, cor.7.6.23] that the weak homotopy equiv-
alence g : Bj7 -+ CF determines a bijection 9#: [D, BF] -+ [D, dr] by
the rule g# [f] = [9 f], where [f] E [D, B f]. The result follows by com-
posing the inverse of g# with the bijection O(p F) : [D, B f] -&#x3E; fFHE(D).

(ii) If f(F) E W, then g is a homotopy equivalence. Taking k to be
a homotopy inverse of g, then (p F) k : X fn Cf -&#x3E; CT is an f-fibration.

Let k_ denote the projection Xf n C F -+ Xf. We then have an
e-pairwise map k_, k&#x3E; from (PJr)k to p.F which induces, by compo-
sition, a pairwise map k-#, k&#x3E; : prinF((PF)k) -+prinF(PF). Now
PrinF(Xf) is weakly contractible, so it follows from the exact ho-

motopy ladder associated with  k-# , k&#x3E; that PrinF(X F fl Cf) is
weakly contractible. Hence (PF) k is universal.

[Ma2, thm.9.2 (a)(ii) and (b)(ii)] are similar to particular cases of
(ii) of the last corollary, with A = 0 in the former case and A = a one
point space in the latter-case.
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