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A PRIESTLEY VIEW OF SPATIALIZATION OF
FRAMES

by A. PUL TR and J. SICHLER
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Volume XLI-3 (2000)

Rdsumd : La repr6sentation des "frames" par la dualit6 de Priestley four-
nit un critbre simple de spatialit6 (au sens d’6tre isomorphe a une topolo-
gie). De ce critbre on peut en particulier deduire facilement la spatialit6
des "frames" G6-absolus (Isbell), ou celle des treillis continus distributifs
(Hofmann et Lawson, Banaschewski).
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In an earlier paper [10], we have characterized the Priestley duals
of frames and the maps of these spaces corresponding to frame homo-
morphisms. Extending the Stone duality, which represents complete
Boolean algebras by extremally disconnected Stone spaces, the Priest-
ley duals of frames are precisely the "extremally disconnected" Priest-
ley spaces, that is, those in which the closure of every open down-set
is an open down-set - see 2.1 below. The aim of the present article is
to show how to apply the Priestley duality to obtain a straightforward
characterization of spatial frames (Theorem 4.1 below). From this, in
turn, one can very easily derive certain well-known spatialization re-
sults (Isbell [4], Hofmann, Lawson and Banaschewski [3], [2]). Using
the Priestley approach, these results can be extended to cover com-
pletely the duality between distributive continuous lattices and locally
compact spaces (Section 5).

Support from the NSERC of Canada and the Grant Agency of the Czech Republic
under Grant 201/96/0119 is gratefully acknowledged.
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Needless to say, since Priestley duality is logically equivalent to the
Boolean Ultrafilter Theorem, the results depend on this (weaker) form
of the axiom of choice. It cannot be otherwise: although the frame
version of Tychonoff product theorem is choice-free ([6]), the classical
one is equivalent to the BUT ([7]), and hence any spatiality theorem
involving all compact regular frames has to use BUT.
We wish to emphasize the simplicity of all the proofs involved. In

order to assure the reader that this simplicty is an inherent feature of
our approach - and is not due to any ’harder’ results proved elsewhere
and quoted here - we also include proofs of some known facts we use.

1. Preliminaries

1.1. Recall that a frame is a complete lattice L satisfying the dis-
tributive law

for every a E L and every S C L, and a frame homomorphism h :
L -&#x3E; M is a mapping preserving all joins (including the least element
0) and finite meets (including the greatest element 1).
The two-element frame (Boolean algebra) {0,1} is denoted by 2.
For a topological space X we have the frame D(X) = {U I U C

X, U open}, and for a continuous f : X -&#x3E; Y we have the frame

homomorphism D (f ) : D(Y) - D(X) defined by D (f ) (U) = f -1 (U).
A frame L is called spatial if it is isomorphic to D(X) for a space

X. It is well-known (see, e.g., [5]) that
L is spatial iff for any two a, b E L such that a  b there is a
frame homomorphism h : L -&#x3E; 2 such that h(a) &#x3E; h(b).

The reader interested in details may consult [5] or [11].

1.2. A triple (X, T, ) is an ordered topological space if (X, T) is
a topological space and (X, ) is a poset. Let Y C X. The set Y
is decreasing (resp. increasing) if x  y E Y implies that x E Y
(resp. x &#x3E; y E Y implies that x E Y). For an ordered topological
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space (X, T, ), let iT (resp. tT) denote the set of all decreasing
(resp. increasing) open sets, and iCOT (resp. 1COT) the set of all
decreasing (resp. increasing) clopen sets.
A Priestley space is a compact ordered topological space such that

for any x  y there exists U E tCOT such that x E U and y E U. We
recall that in a Priestley space
1.2.1. iCOT (resp. 1COT) is a basis of iT (resp. 1T), and
1.2.2. iCOT U 1COT is a subbasis of T.
As usual, for a subset A of an ordered set write i A for {x lx 
a for some a E A} and TA for {x lx &#x3E; a for some a E A}. By a
standard compactness argument one proves that

1.2.3. in a Priestley space X, if A C X is closed then M and iA are
closed,

and from this fact one easily obtains that
1.2.4. if Y is closed in a Priestley space (X, r, ) then each U E i(TlY)

can be expressed as V n Y with V E ir.
We shall also use the following two well-known facts:
1.2.5. For each x in a Priestley space X there is a minimal y and a

maximal z such that y  x  z.
(Indeed, let C C X be linearly ordered by . Let C’ C C be

finite. Then the intersection n{ic ICE C’} is ico where Co is
smallest in C’. Using compactness we get n(ic ICE C} # 0.
Hence there is a b E X such that b  c for all c E C. Use Zorn’s

lemma.)
1.2.6. For any closed decreasing Y C X and any x E X B Y there is

V E tCOT such that x E V and Y n V = 0.
Given a poset (X, ), the set of all maximal elements of a subset

Y C X will be denoted by

1.3. Recall that the famous Priestley duality between the category
of Priestley spaces and the monotone continuous maps, and the cat-
egory of distributive (0,1)-lattices and (0,1)-lattice homomorphisms
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associates yvith (X, r, ) the lattice

and with an f : X - Y the homomorphism D( f ) = (U H f -1 (U)) :
D(Y) - D(X); the Priestley space P(D) associated with a distribu-
tive (0,1)-lattice D is carried by the set of all prime filters on D or-
dered by reversed inclusion, and P(h)(F) = h-1(F) for any (0,1)-
homomorphism h : D - D’ (see [8],[9]).
Proposition. The closed decreasing subsets of X and the filters in

D(X) are in a one-one onto correspondence provided by

PROOF: Trivially Y g n{U lU D Y}. If x E Y then by 1.2.6 we have
a clopen increasing V 3 x, V n Y = 0, and hence x V X w V D Y.
Thus 07 =id.

If 7 i g then (by a standard argument) there is a prime filter H
such that 9 ç 1-l and 7 Z ?-l. In X, this 1-l is represented by an
element x E n f B ng. Thus, 1b is one-one and hence also cp w =id. 0

1.4. We shall repeatedly use the folowing trivial topological fact:

If U is open then U fl A c U n A for any A. Consequently, if
U is clopen then U n A = U n A for any A.

2. LP-spaces

2.1. By [10], in Priestley duality frames correspond exactly to the
Priestley spaces in which

(LP-obj) for each U E iT, U E iCOT

and frame homomorphisms to the continuous maps f : X -&#x3E; Y for
which

(LP-morph) for each U E iT, f -1 (U) = f-1(U).
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We will speak of LP-spaces and LP-maps.

2.2. Proposition. In an LP-space, if U is open then tU is open.
In particular, if U is clopen then tU is clopen.
PROOF: In view of 1.2.1 it suffices to prove that if U is clopen then 1U
is open. Thus, let U be clopen. We have U n (X B 1U) = 0 and hence,
as U is is open, U n (XB1U) = ø. By 1.2.3 and (LP-obj), XB tU is
decreasing and hence 1Un (XB 1U) = 0 and we have XB 1U D xB fiU.
Thus, X w fiU is clopen. 0

2.3. For a given U E D(X)(= iCOT) let U* designate the pseudo-
complement (in D(X)).
Proposition. U* = X w fi U. Consequently, the "rather below"

relation U - V is expressed by tU C V.
PROOF: By 2.2, X, 1U E iCOT, and obviously if V E iCOT and
U n V = ø then XB 1U D V. []

2.4. A subset Y of an LP-space X is called an L-set if

(1) Y is closed, and
(2) for each U E iT, U n Y = U n Y.

Since onto frame homomorphisms ("sublocales") correspond in Prie-
stley duality to embeddings of LP-subspaces into LP-spaces, we im-
mediately see from the (LP-morph) in 2.1 that the following three
statements about subsets Y of an LP-space X are equivalent:

- Y is an L-set,
- Y with the induced topology and order is an LP-space,
- the relation U N V defined on D(X) by U n Y = V n Y is a
frame congruence.

2.4.1. Using 1.4 for the second statement below we easily obtain

Proposition. 1. Let Z be an L-set in Y and Y an L-set in X.

Then Z is an L-set in X.

2. Each clopen Y C X is an L-set.

2.4.2. Using 1.4 and (LP-obj) we conclude
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Lemma. Let Y be a subset of an LP-space such that for each U E
iT, U fl y c U n Y. Then the closure Y of Y is an L-set.

2.5. For any L-space X, the symbol

will denote the system of all its L-sets.

Proposition. LS(X) is a complete lattice with the suprema

PROOF: If U E tr, U is clopen and hence 

so that V Yi is an L-set. 0

2.6. Obviously, the open sublocales of D(X) are represented by the
members of tCOr. We will refer to them as L-open. Consequently,
the closed sublocales are represented by the members of 1COT, which
will be referred to as L-closed. From 2.5 and the second claim in 2.4.1
we easily infer the following formula for the meet of L-closed sets:

2.6.1. Let Ai be L-closed. ThenAAi = X yJ(X w Ai).

2.7. Proposition. Let Y C X be an L-set. Then TY is clopen.
PROOF: As 1 Y is closed, U = X w 1 Y is in tr and U = X,tY
is in iCOT. We have Y fl (X w tY) = Y n (X B 1Y) = ø and hence
X w Y D X w TY. But then X w 1Y D X w TY because the latter set is
decreasing. 0

2.8. Proposition. Let Y be an L-set in an LP-space X . Let
U EtCO(rIY). Then there is a W E tCOr such that U = W fl Y.
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PROOF: By 1.2.4, U = V n Y with V E .j..r. Thus, U = U = V n Y =
V n Y, and W = V E iCOT. 0

2.9. An element x of X is said to be an L-point if {x} is an L-set.
The system of all L-points of X will be denoted by

More generally, for any subset Y of X we set

Proposition. The following statements about a point x of an LP-
space X are equivalent:

(1) x is an L-point,
(2) U E iT and x E U imply x E U,
(3) Tx is clopen.

PROOF: (2) is just a reformulation of (1). Now let (2) hold. By 1.2.3,
U = XB 1x E i7 and as x V U, x E U. As U is decreasing, 1x n U = 0
and hence X w 1x D XB 1x On the other hand, if 1x is open and
x E U for a U E iT, then 1x n U# ø and hence x E U. 0

2.10. Obviously each subset of Pt(X) satisfies (2) from 2.4. Thus,
by 2.4.2 we obtain

Corollary. Let Y be any subset of an LP-space X. Then Pt(Y) is

an L-set.

2.11. In the Priestley duality, the frame 2 corresponds to the one-
point space. Consequently, an L-point x corresponds to the frame
homomorphism h : D(X) - 2 defined by h(U) = 1 iff x E U. Thus,
D(X) is spatial iff

(L-sp) whenever U, V E iCOT are such that U C V, there is an L-
point x E U w V . 
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In view of this, an LP-space (X, ,T) will be called L-spatial if (L-sp)
holds.

2.12. Proposition. Let X be an L-spatial LP-space. Then U =

Pt(U) for every U E iCOT.
PROOF: The inclusion D is obvious. Now let x E U and let x E W E T.
Then (recall 1.2.2) there are Wl E iCOT, W2 E fiCOT such that
x E Wl n W2 g W. Hence we have x E U n Wi E teOr and
x V X w W2. Thus U n WI ct X w W2 and by L-spatiality there is an
L-point y such that y E unwI and y C X w W2. Hence w n Pt (U) # 0
and we see that x E Pt(U). D

3. L-compact sets

3.1. The following statement has been proved in [10]:

Proposition. Let X be an LP-space. Then the frame D(X) is
compact iff
(Comp) ifU E tr and U = X then U = X .

PROOF: Let D(X) be compact and U = X. We have U = UIEJ Ui
with Ui E iCOT. Thus, X = V Ui and we have X = VIEK Ui =
UiEK Ui for a finite K C J. Thus, X C U. On the other hand, let

(Comp) hold. If X = VIEJ Ui with Ui E iCOT, we have X = UiEJ Ui
and hence X = UiEJ Ui. As X is a compact space, we can find a finite
subcover of {Ui i E JI. 0

An LP-space satisfying (Comp) will be called L-compact. More

generally, a closed subset Y C X of an LP-space X is called L-compact
if 

for every U E tr, Y C U implies Y C U.

3.2. Proposition. Let Y be an L-compact subset of an LP-space
X . Then
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PROOF: Let x E max(Y). If x E U and U E tr then Y C U U

(X w 1x) g U U (Xw 1x) and hence U C U U (Xw 1x). Thus, as
x C (X, fx), we have x E U. 0

3.3. Proposition. In an LP-space X, let a subset Y be L-compact
and Z be L-closed. Then Y n Z is L-compact. In particular, all L-

closed subsets of an L-compact LP-space are L-compact.
PROOF: Let YfIZ C U, U E tr. Then Y C UU(XBZ) C U U (X w Z)
as X w Z is open. Hence Y C U U (XB Z), and finally Y n Z c U. 0

3.4. Proposition. Let A1 D A2 D... D Ak 2 ... be L-closed
subsets of an L-compact LP-space X . If U E tCOr is such that

Ak C U for all k, then A Ak C U.
PROOF: Suppose fi Ak c U. By 2.6.1, X = n(XB Ai) U U. By the
L-compactness, X = U(X B Ai) U U and, by the compactness of X,
there is a k such that (X w Ak) U U = X. Hence Ak C U. D

4. Spatiality

4.1. Theorem. An LP-space X is L-spatial iff for any two U, V E
iCOT such that U Z V there is an L-compact Y C X such that Y C U
and Y Z V. _ 

PROOF: The trivial implication follows from the fact that an L-point
constitutes an L-compact set. On the other hand, let Y satisfy the
condition. As Y Z V and V is decreasing, max(Y) Z V. Take any
x E max(Y) w V. As x E U, the statement follows from 3.2. 0

4.2. By the formula in 2.3, the Priestley dual D(X) of an LP-space
is regular iff U = B/{V E -J,COr I 1V C U} for every U E iCOT. We
have (see [10])
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Proposition. Let X be an LP-space. Then D(X) is a regular frame
iff

(Reg) for each U E iCOT there are Ul E iT and U2 E fiT such that
U1CU2 and U1 = U2 = U.

PROOF: Let D(X) be regular, U E iCOT. Set Ul = U{V I fiV C U}
and U2 = U{1V I fiV C U}. On the other hand, let (Reg) hold. By
1.2.1, Ul = U Vi for some Yz E iCOT and hence U = V Vi. Now if
Vi E iCOT and ç U1 we have 1Vi g U2 g U. D

4.3. From 4.1 we immediately see that, in particular,
L-open LP-subspaces of L-compact L-regular LP-spaces, corresponding
to locally compact regular frames, and hence all L-regular L-compact
LP-spaces are L-spatial.

(Indeed, let !7 % V be in iCOT of an L-compact L-regular
LP-space X. By L-regularity there is a W E iCOT such that
fW C U and W Z V. The set TW is L-closed in X and hence
L-compact.)

Using 4.1 we obtain the much stronger Isbell’s spatialization theorem
for absolutely G6 frames ([4], see also Lemma 9 in [2]):

Theorem. Let X be an L-corrapact L-regular LP-space. Let Y be
a meet of a countable system of L-open subsets of X . Then Y is L-

spatial.

PROOF: Let Y = Anoo=1 Un with Un E iCOT. We can assume that
Ui D U2 D... Let i7 % V be in iCO(TlY). By 2.8 there are
U’, V’ E iCOT such that U = U’ n Y and V = V’ n Y.

CLAIM : If W E iCOT is such that W n Y Z V’ then for
any n there is a W’ E iCOT such that T W’ c w n Un and
W’ n Y % V’.
(Indeed, we have W n Un = V{W’ E iCOTl TWI C W n Un}.
If all the W’ in the set were such that W’ n Y c V’ we would

have W n Y = W n Un n Y= V {W’n Y} I ... I C VI.)
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Starting with W - U’, we can now inductively choose sets Wn E
¡COr so that

and

Take Z = fi- 1Wn. Then Z c 1B Un = Y. By 3.4, Z Z V’ and hence
Z Z V. By 2.7 and 3.3, Z is L-compact. Use 4.1. 0

4.4. For locally compact LP-spaces (see 5.1 below) we do not need
the regularity.
The well-known way-below relation  on D(X) can be expressed

as follows (see [10]; but it is also easy to infer it from 1.2.1 and the
formula in 3.2):

V  U iff for each W E iT, U C W implies V C W.

We immediately see that

if for then

Following lattice terminology we say that an LP-space is continuous
if

for every set U E iCOT.

4.5. Lemma. For n = 1, 2, ... , let ø # Un E tCOr be such that

Then Y = noon=1 Un is L-compact.
PROOF: Since = {V I V E iCOT, and 3n V D Un } is a filter and
obviously Y = n f, by Proposition in 1.3 we have, for any V E iCOT,

iff

Let Y C U. Then U 2 Un for some n and hence Y C Un C U. D
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4.6. Proposition. Every continuous LP-space is L-spatial.
PROOF: Let U, V E iCOT be such that C/ % V. As X is continuous,
we can pick, by induction, sets Un E iCOT, Un g U, such that
Un+1 « Un and Un C V. Set Y = noon=1 Un. By 4.5, Y is L-compact
and obviously Y C U. By 1.3, Y Z V since else, as Y = n{V l V D
Un for some n}, we would have Un C V for some n. D

5. Local compactness

5.1. Proposition 4.6 constitutes a part of the well-known duality be-
tween continuous frames and locally compact topological spaces (Hof-
mann and Lawson [3], Banaschewski [1]). In this section we will show
that the Priestley approach covers also its remaining fact, namely that
the continuous LP-spaces are exactly the locally compact L-spatial
ones.

In Priestley duality, the classical notion of local compactness di-
rectly- translates as follows. An LP-space (X, , T) is said to be locally
compact if it is L-spatial and if for each L-point x E X and each
U E iCOT such that x E U there is a V E iCOT and an L-compact
L-set Y such that x E V C Y C U.

5.2. The definition above had to be formulated with an L-compact
L-set because such a set corresponds to a compact sublocale (resp.
subspace); a set which is just L-compact is not necessarily an L-set.
We have, however,

Proposition. An L-spatial LP-space (X, , T) is locally compact iff
for each L-point x E X and each U E tCOr such that x E U there i8
a V E tCOr and an L-compact Y such that x E V C Y C U.

PROOF: Let V, U E iCOT, let Y be L-compact and let V C I’ C U.
Then Pt(Y) C U because U is closed in T. By 2.12, we have V’ =

Pt(V) C Pt(Y). Since Pt(Y) is an L-set, by 2.10, it suffices to show
that it is L-compact.
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Thus let Pt(Y) C W for some W E iT. As W is decreasing, by
3.2 we have Y cjPt(Y) C W, and hence Y C W. Since Y is closed,
Pt(Y) c Y c U. 0

5.3. Lemma. The relation  interpolates in any continuous LP-
space X.

PROOF: Let V  U. By the continuity,

for some 

and hence V C U {W l ... 1. The compactness of X (and, conse-
quently, that of V) implies the existence of Wi  W’ « U with
i = 1,..., n such that V C W1 U ... U Wn. Set W = W’1 U ... U W’n.
Then v « W CC U, by 4.4. 0

5.4. Theorem. An LP-space is continuous iff it is locally compact.
PROOF: A locally compact space is continuous since from V C Y C U
for V, U E iCOT and an L-compact Y it immediately follows that
VU.

For the converse, let X be continuous. Then X is L-spatial, by
4.6. Choose an L-point X and a U E iCOT such that x E U. Then
x E V{V l V  U} = U{V l V  U}, and hence x E U{V l V  U}.
Thus there is a v « U such that x E V. By 5.3, we can inductively
choose Un so that V  ...  Un « Un-1 ... CC Ul « U. But

then Y = noon=1 Un is L-compact, by 4.5. Use 5.2. 0
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