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A NOTE ON NUCLEI OF QUANTALE MODULES
by J. PASEKA

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
VolumeXLIII-1 (2002)

R6sum6. Le but de cet article est d’établir des th6or6mes utiles
de factorisation pour des Q-modules de la meme mani6re que
pour des locales. On montre qu’un noyau d’un module associ6 a
un pr6noyau d’un module est l’intersection de noyaux de mod-
ules d’une forme particuli6re.

Our motivating source was the paper [12] where the investigation
of I-simple involutive quantales Q(M) and representations Q - Q(M)
given by a left action is developed. Such involutive quantales could play
a similar role as do points in topological spaces or irreducible represen-
tations in C*-algebras (see [9]). Since the representations Q - Q(M)
coincide with quantale modules we will be interested in studying factor-
ization on quantale modules. This note is closely related to the papers
[10] and [11] where the interested reader can find unexplained terms
and notation concerning the subject. For facts concerning quantales
and quantale modules in general we refer to [14] and [15]. For moti-

vating examples concerning quantale modules we recommend the paper
[13].

The paper is organized as follows. Section 1 introduces the notion
of a left Q-module and the motivation for studying such a structure is
given. Section 2 contains the basic theorems for factorization on Q-
modules and the structure of the complete lattice of all module nuclei
is investigated. It is shown that any module nucleus associated to a
module prenucleus is a meet of module nuclei of a special form.

A quantale is a complete lattice Q with an associative binary multi-
plication satisfying
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for all x, xi E Q, i E I (I is a set). 1 denotes the greatest element of

Q, 0 is the smallest element of Q. A quantale Q is said to be unital if
there is an element e E Q such that e . a = a = a . e for all a E Q. A
subquantale Q’ of a quantale Q is a subset of Q closed under V and.

By a morphism of quantales will be meant a V- and . -preserving
mapping f : Q - Q’. If a morphism preserves the top element we say
that it is strong.

A non-trivial (0= 1 and 1.1=1) quantale Q is said to be simple
if any surjective homomorphism Q - Q’ is either an isomorphism or a
constant morphism.

By the quantale Q(M) of endomorphisms of the sup-lattice M will be
meant the simple unital quantale of sup-preserving mappings from M to
itself, with the supremum given by the pointwise ordering of mappings,
with the multiplication corresponding to the composition of mappings,
and with the unit given by the identity mapping.

1 Quantale modules

Definition 1.1 [1], [15] Let Q be a quantale. A left module over Q
(shortly a left Q-module) is a sup-lattice M, together with a module
action -.-:QxM-M satisfying

for all a, b E Q, m E M, S C Q, X C M. So we have two maps
--i-:MxM-Q,--r-:QxM-M such that, for all a E Q,
m, n E M, a .m  n iff a  m-in iff m  a-*,n. M is called a
unital Q-module if Q is a unital quantale with the unit e and e 0 rri = m
for all m E M. M is said to be a strong Q-module if I o m = 1 for all
m E M, m =1= 0. Let a f b. Then M separates a from b if there is an
elerraent m E M such that a. m =1= be m.
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Let M and N be modules over Q and let f : M - N be a sup-lattice
homorraorphism. f is a module homomorphism if f(a. m) = a. f(m)
for all a E Q,m E M.

Note first that if M is a sup-lattice then M is a left Q(M)-module
such that f . m = f (m) for all f E Q(M) and all m E M. Secondly, we
may dually define the notion of a (strong, separating, unital) right Q-
module. Moreover, all propositions stated for left Q-modules are valid
in a dualized form for right Q-modules.

We shall denote by Q-Mod (resp. Mod-Q) the category of left
Q-modules (resp. right Q-modules).

Let us make the following elementary observation. Evidently, for a
quantale Q, any left Q-module M is a unital left Q[e]-module with Q[e]
defined as in [11] by

e arbitrary such that e E Q, and the multiplication . e defined by

So we may always assume that any left quantale module is unital over
a unital quantale.

Note that, for any quantale Q, any left Q-module M and all n E
M, the antitone maps - -in : M - Q and -rn : Q - M form
a Galois connection between Q and M since, for all a E Q and all
M E M, a  (a-rn)- in and m  (m-l n)-r n. So we have that
m-Pi n = ((m-l n)-r n)-ln and a-r n = ((a-r n)-»t n)-»r n.

A simple calculation gives us the following two lemmas.

Lemma 1.2 Let Q be a quantale. If M is a (strong) Q-module then
we have a (strong) homomorphism fM : Q -&#x3E; Q(M), fM(a)(x) = a. x.
Conversely, let f : Q -+ Q(M) be a (strong) homorraorphism of quan-
tales. Then M is a (strong) Q-module with the module action a . f x =
f (a)(x).
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Lemma 1.3 Let Q be a quantale, a b. If M is a Q-module separating
a from b then we have a separating hoynomorphism 1M : Q --t Q(M).
Conversely, let f : Q - Q(M) be a homomorphism separating a from
b. Then M is a separating Q-module.

The following theorem (see [6]) is our main motivation for studying
quantale modules.

Theorem 1.4 Let Q be a quantale. Then the following conditions are
equivalent:

1. Q is spatial i. e. Q is a strong subquantale of a product of simple
quantales.

2. Each element of Q is an intersection of primes.

3. Q has enough strong separating left Q-modules.

Proof. (1) b(2) by [6]. (1) O(3) by lemma 1.2 and by lemma 1.3. D

2 Factorization on Q-modules

In the following, we shall assume that Q is an arbitrary, fixed quantale.

Definition 2.1 Let M be a deft Q-module, j : M - M an operator on
M satisfying:

for all a E Q, m, n E M. We say that j is a module prenucleus on M.
We put Mj = {m E M : m = j (m)}. Evidently, Mj is a closure system
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in M, that is, closed under arbitrary meets in M. Note that Vj = j o V.
We let v(j) be the associated closure operator, so that

We say that v(j) is generated by j. If j satisfies

for all m E M we shall say that j is a, module nucleus on M. We shall

denote by N(M) the lattice of all module nuclei on M.

Note that any module prenucleus (nucleus) on a Q-module M is a
module prenucleus (nucleus) on a Q[e]-module M and conversely.

Lemma 2.2 Let j be a modules nucleus on a left Q-module M. Then

Mj is a left Q-module with the join Uj and the action 8j : Q x Mj- Mj
defined as follows

a8jm=j(a8m)
for all a E Q and all m E Mj. Furtherrnore, Mj is unital (strong) if M
is.

Similarly as for frames (see [2]) we have

Proposition 2.3 Let j be a module prenucleus. on a left Q-module M.
Then v(j) is the smallest module nucleus greater than j. Moreover, the
rreodule homomorphism v(j) : M - Mj is universad among all module

horraomorphisms f : M -3 N for which f (m) = f (j(m)) for all m E M.
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Proof. Evidently, v(j) is inflationary, idempotent and order-preserving.
We have to show that, for all a E Q and m E M, a.v(j)(m) 

Moreover, for any non-void
the left distribution law of modules. Hence mo = VEa,m E Ea m. This

Let us prove the second part of the lemma. Note that v(j) (j(m)) =
v(j)(m) for all m E M. Let f : M -&#x3E; N be a module homomor-

phism such that f (m) = f (j(m)) for all m E M. We have to show

f is a module homomorphism. 0
Another way of obtaining v( j ) is to iterate the prenucleus j until it

converges by the following procedure:

for all m E M, all ordinals a and all limit ordinals A. Then each j’ is
a module prenucleus with the same fixpoints as j and, for sufficiently
large ordinal o,jo has to be idempotent.

Following Macnab (see [8]) for Heyting algebras we have
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Theorem 2.4 Let Q be a unital quantale, M a unital left Q-module,
j : M - M an operator on M. The following conditions are equivalent:

1. j is a module nucleus on M.

2. For all m, rt in

Proof. 1 2. We have, for all

condition 2 holds.

2= 1. We have, for all 7

Let us show that j is idempotent. Assume m E M. We have

Proposition 2.5 Let M be a left Q-module, n E M. Then the map
wn : M - M defined by wn(m) = (m-l n)-r n is a module nucleus.
Similarly, the map Wn : Q - Q defined by Wn (a) = (a-r n)-l n is a
right module nucleus on Q, seen as a right module over itself. Moreover,
for all a E Q and m E M, we have a · m  n iff Wn (a). wn (m) n.

Proof. Clearly, the Galois connection makes m  wn(m) = wn (wn) (m))
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a o w, (m). To prove the second part of the lemma note that Q is a right
module over itself. By similar arguments as above, we have that Wn is
a right module nucleus.

Finally, we show that a .m  n = Wn (a) · wn (m)  n: a · m 
n iff a  m- in iff, by the Galois connection, a  Wn (m) -in iff

a · wn (m)  n iff, by similar steps using 2013r, Wn(a) . wn (m) n. D

Lemma 2.6 Let Q be a quantale, ja, a E A module prenuclei (nuclei)
on a left Q-module M. Then the operator AaEA ja is a module prenucleus
(nucleus).

Proof. Evidently, for all m, n E M, a E Q, we have m AaEAja (m)=

yE A and all m E M i.e. AaEA Ja is idempotent. U

We have then that, for.any set A, a{jB E N(M) : A E A} (with
A defined pointwise), exists and it is a module nucleus i.e. N(M) is

a complete lattice. Because the meet in N(M) is pointwise so also is
the order on it. We shall denote by U the join in N(M) and by V the
pointwise join, which in general is only a prenucleus. Let jl, j2 E N(M).
Then jl o j2,j2 o j1  ji U j2. Note that jl o j2 is a module prenucleus.
So it follows that if il o j2 is idempotent then jl o j2 = il U j2- If

jl o j2  j2 o j1 then j2 o j1 is idempotent i.e. a module nucleus.

Recall the following notions from [3]. Let Q be a semigroup, a E Q.
We then put Q(a) = {ak :kE N}. We say that Q(a) is a cyclic
subsemigroup of Q generated by the element a. For any a E Q, we have
either that Q(a) is infinite or that Q(a) is finite i.e. there exist kl, k2 E N
minimal such that ak1+k2 = ak2 ; here kl = p(a) is the period of a and
k2 = i(a) the index of a. We say that an element a E Q is periodic if
Q(a) is finite. We shall denote by Qp = {a E Q : a is periodic} and
QE = la E Q : a is idempotent}. If Q = Qp (Q = QE) we say that Q
is periodic (idempotent).

Now we generalise the nuclei wn of Proposition 2.5.
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Lemma 2.7 Let Q be a unital quantale, j a module prenucleus on a
unital left Q-module M, k E N, n E M, z  j (n)-ln. Then the

operator v:,n : M - M defined by the prescription

is a module prenucleus on M greater than j . Especially, the operator
vkn (j) = vkj(n) - in,n is a module prenucleus on M greater than j . More-
over, if z E Qp and k &#x3E; i(z) we have that vkz,n is a module nucleus
greater than j . 

Proof. We first show that, for all m E M, j (m)  vkz,n (m) - we have
then m  vkz,n(m). It suffices to show that 

We have

where the last inequality follows by induction on k:

Note that the function (zk (-l n)) -rn is order-preserving. Now,
let us show that a o vk z,n(m) vk z,n (a. m) for all a E Q and m E M, that
is, we check that

Evidently, I We have



28

So we have shown that vkz,n is a module prenucleus.
Now assume that z E Qp and k &#x3E; i(z). We show that

This is equivalent to the following inequality (

Since --l n and 2013r n form a Galois connection and z is periodic the
inequality (*) follows from the inequality (**i), i E N

Let us prove (**i) implies (*). We have

(in fact, we also have (*) implies (**i) since we obtain by (*) and
the Galois connection that
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Now, for a large enough i, such that ip(z) = io + k for some io E N, the
condition (**i) becomes equivalent to

The last inequality evidently holds since zi0 · n  n and

We have then that v:,n is a module nucleus. D
Johnstone gives in ([4]) an explicit formula for v(j) for frames. The

following proposition is a slight modification of it for Q-modules.

Proposition 2.8 Let Q be a unital periodic quantale, j a modules prenu-
cleus on a unital left Q-module M. Then the operator vp(j) : M - M
defined by the prescription

is the associated module nucleus v(j).

Proof. Note that vp (j) = AnEM{vin (j (n)-in)(j)} i.e. vp(j) is a module
nucleus greater than j. Let j(m) = m. We put

We then have vp (j) (m)  m’ and

i.e. vp(j)(m) = j(m). Hence, vp(j) has the same fixed points as j i.e.

vp ( j ) is the least module nucleus greater than j. D
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Corollary 2.9 Let Q be a unital idelnpotent quantale, j a module prenu-
cleus on a unital left Q-module M. Then the operator v,(j) : M - M
defined by the prescription

is the associated rrtoduLe nucleus v(j).

Theorem 2.10 Let Q be a unital periodic quantales, M a unital left Q-
module. Then, for any set , 

Proof. The first equality follows from the proposition 2.8 and from the
fact that a directed join of module nuclei is computed pointwise. The
second one follows from an easy observation that the pointwise join of
module prenuclei is a module prenucleus. D

Corollary 2.11 Let Q be a unital idernpotent quantale, M a unital left

Proposition 2.12 Let Q be a unital quantale, j a module prenucleus
on a unital left Q-module M. Then the operators vp(j), vE(j) : M - M
defined by the prescriptions

coincide with the associated nucleus v(j).

Proof. By 2.6 and 2.7 we know that both operators are module nuclei
on M greater than j.

Now, let j (m) = m. Then e E QE C Qp and e  m-+i m. We then
have
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Since both vE (j) and vE (j) have the same fixed points as j we have

Theorem 2.13 Let Q be a unital quantale, M a unital left Q-module.

Proof. Similar to the proof of theorem 2.10, with vp replaced by vp
and vE and using proposition 2.12 instead of proposition 2.8. D

Another way how to construct new module nuclei is the method of
R-saturated elements introduced for frames by Kriz (see [7]).

Definition 2.14 Let M be a left Q-module, R C M x M a relation on
M. We shall say that an element rrt E M is R-saturated if

holds for all a E Q, nl, n2 E M such that (nl, n2) E R. We shall denote
by MR the set of all R-saturated elements.

Note that MR coincides with the sup-lattice quotient of M by the
relation R’ = R U {(a. m1, a . m2) : a E Q)(m1,m2) E R} [5]. Equiva-
lently the map jR : M - M defined by jR(M) = Aln E MR : m  n}
is a closure operator on M, MjR = MR, and the sup-lattice homomor-
phism jR : M -&#x3E; MR is universal amongst all sup-lattice homomor-
phisms f : M - N for which f (m1) = f (m2) for all (ml, m2) E R’.
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Lemma 2.15 Let a E Q, rra E M and m is R-saturated. Then the
elements a-r m=V{nE M:a.n m} is R-saturated.

Proof. Let nl, n2 E M, (nl, n2) E R, c E Q. Then co nl  a-r m iff
a 9 (c 9 nl )  m iff (a - c),* nl  m iff (a - c) o n2  m iff a o (c o n2)  m
iff c o n2  a- m. Similarly, n1  a-*r m iff n2  a-r m. D

Theorem 2.16 Let M be a left Q-module, R C M x M. Then the
closure operator jR is a modules nucleus, and the module homomorphism
jR : M - MR is universal amongst all module homomorphisme f
M - N for which f (ml) = f (m2) for all (ml, m2) E R.

Proof. Assume a E Q, m E M. Then a · m  jR(a e m) i.e. m 

a-r jR(a. m) i.e. jR(M)  a-r jR (a . m) i.e. a. jR(m)  jR(a.m).
Hence, jR is a module nucleus.

Now, let f : M - N be a module homomorphism such that f (m1) =
f (m2) for all (ml, m2) E R, m E M. Then f factors uniquely through jR
and a sup-lattice homomorphism f’ : MR - N, because (m1, m2) E R’
implies f (m1) = f (m2). Let us prove that f’ preserves the action.
Denoting by 8jR the action on MR and by ON the action on N we have
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