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ABOUT THE NATURALITY OF BEATTIE’S

DECOMPOSITION THEOREM WITH RESPECT TO

A CHANGE OF HOPF ALGEBRAS

by J.N. Alonso ALVAREZ, J. M. Fernández VILABOA,
R González RODRÍGUEZ and E. Villlianueva NOVOA

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
volume XLIII-1 (2002)

RESUME

Dans cet article, en partant d’un morphisme entre deux algebres
de Hopf finies et commutatives G et H dans une cat6gorie ferm6e
sym6trique C avec objet base projective, les auteurs construisent
un homomomorphisme de groupes ab6liens entre Galc(H) et

Galc(G) (les groupes des classes d’isomorphismes des H-objets et
des G-objets de Galois, respectivement). La restriction de cet

homomorphisme permet d’etablir un homomorphisme entre les

groupes des classes d’isomorphismes des H-objets et des G-objets
de Galois avec base normale Nc(H) et Nc(G), en obtenant deux
suites exactes qui relient ces groupes avec G(H*) et G(G*).

Finalement, ils construisent un diagramme commutatif qui rattache
les morphismes pr6c6dents a d’autres suites, comme par exemple
la d6riv6e du Théorème de d6composition de Beattie.
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1 Preliminaries

In what follows, C denotes a symmetric closed category [6] with equal-
izers, coequalizers and basic object K. The natural symmetry isomor-
phisms in C are represented by T. We denote by aM and 03B2M the unit
and the counit, respectively, of the C-adjunction

If M is an object of C we denote by M* the dual object HOM(M, K)
of M and by EM the object HOM(M, M).

Definition 1.1 An object P of C is called finite if the morphism

is an isomorphism, equivalentely HOM(P, -)= P* Q9 -. If P is finite

we denote by ap and bp the unit and the counit, respectively, of the
C-adjunction PO - -l P* O - : C - C

Definition 1.2 Let P be a finite object in C. If the factorization OKPx
of 3p(K) : P 0 P* -+ K through the coequalizer of the morphisms
03B2P (P)O P* and P 0 (HOM(P, (3p(K) o [03B2P (P) O P* ]) o ap (Ep 0 P*)) :
POEPOP*-POP* is an isomorphism, we say that P is a progenerator
in C. Equivalentely, P is a progenerator in C if the diagram

is a coequalizer diagram in C.

Definition 1.3 An algebra in C is a triple A = (A, ’f/A, ttA) where A is
an object in C andqa : K - A, p A : AOA - A are morphisms in C such
that uAo (AOnA) = idA = uAo (nAOA),uAo (AOuA)=uAo (uAOA).
If ILA o TA,A = u4, then we will say that A is a commutative algebra.

Given two algebras A = (A,nA, uA) and B = (B,1JB,J,tB), f : A -B
is an algebra morphism if ILB o ( f 0 f ) = f 0 ILA, f o nA = nB.
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Examples 1.4

a) If A = (A, nA, uA) is an algebra in C then Aop= (A,1JA,J-LA o TA,A)
is an algebra in C that we will call opposite algebra of A.

b) If A, B are algebras in C, we define the algebra product by

c) Each M of C determines an algebra in C, EM = (EM, nEM, uEM)
with nEM:= aM (K) and

Definition 1.5 Let A = (A, nA, uA) an algebra. (M,’PM) is a left A-
module if M is an object in C and p M : AO M - M is a morphism in
C satisfying cpM o (nA O M) = idM, pM o (A 0 ’PM) == pM o (uAO M).
With AC we denote the category of left A-modules with morphisms
those of C that preserve the structure. Similar definitions for right A-
modules. Note that when K = (K,qK, pK) is the trivial algebra in C,
then KC = C

Examples 1.6

a) For all M of G, (M, /3M(M)) is a right EM-modllle.

b) M* is a left EM-module in C with structure

Definition 1.7 A coalgebra in C is a triple D = (D, êD, 6D) where D
is an object in C and ED : D - K, 6D : D -D O D are morphisms in
C such that (ED O D) o dD = 2dD = (D OED) o dD, (dD OD) o dD = (D 0
6D) o 6D- If TD,D o 6D = 6D, then we will say that D is a cocommutative
coalgebra.

If D = (D, ED, 6D) and E = (E, EE, dE) are coalgebras, f : D - E
is a coalgebra morphism if ( f 0 f ) o dD = dE o f , EE o f -ED-
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Definition 1.8 Let HI = ( H, nH, J-LH) be an algebra and H2 = ( H, £H, 6H)
a coalgebra and let A : H - H be a morphism. Then (H, 77H, IIH, EH, 6H, À)
is a Hopf algebra in C if EH and 6H are algebra morphisms ( equivalently
NH and pH are coalgebra morphisms ) and A is such that

If Hl is commutative we say that H is commutative. Analogously,
H is cocommutative if H2 is cocommutative.

If H is finite then H is a progenerator [9]. As a consequence, H is
faithfully flat .

1.9 If H = ( H, nH , uH , EH , dH , B) is a finite Hopf algebra (i.e. H is
a finite object in C) we will denote the dual Hopf algebra of H by

Definition 1.10 Let H be a Hopf algebra. (A; cpA) = ((A,qA, MA); cpA)
is a left H-module algebra if A = (A, nA, pA) is an algebra in C, (A, p A)
is a left H-modue and qA and pA are morphisms of left H-modules.
Let (A;  cpA), (B; ’PB) be left H-module algebras. A morphism of left
H-module monoids f : A - B is a morphism of algebras and left H-
modules.

Examples 1.11

a) Let H be a cocommutative Hopf algebra. If (A; cpA) and (B; cpB)
are left H-module algebras then (AB; ’PA0B) and (AOP; cpA) are left
H-module algebras where ’PA0B = (’PA 0 cps) 0 (H O TH,A O B) o
(dH O A 0 B). Moreover, TA,B : A 0 B -j B 0 A is a morphism of
left H-module algebras.

b) If (M, cpM) and (N, cpN) are left H-modules then
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is a left H-module where

With this structure, if H is a cocommutative Hopf algebra,

is a left H-module algebra.

Definition 1.12 Let H be a Hopf algebra.
is a right H-comodule algebra if, . is an algebra in C,
(B; pB) is a right H-comodule in i

is an algebra morphism
from B to the algebra product BH.

Example 1.13 If H is a commutative Hopf algebra and (A; pA), (B; pB)
are right H-comodule algebras, then ((A°P; PA) and (AB; PA0B) are right
H-comodule algebras with PA0B = (A 0 B 0 J1H) o (A 0 TH,B O H) o
(PA OpB).

2 Galois H-objects with a normal basis
and functoriality

In the next sections, H denotes a finite Hopf algebra in C. We will
suppose too that the basic object K is projective.

Definition 2.1 A right H-comodWe algebra (B; pB) is said to be a
Galois H-object if and only if:

i) The morphism IB := (J1B 0 H) o (B 0 pa) B O B - B O H is
an isomorphism.

ii) B is a progenerator in C.
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Let (Bl; PB1)’ (B2; PB2 ) be Galois H-objects. A morphism of Ga-
lois H-objects f : B, - B2 is a morphism of algebras and right H-
comodules. Note that all morphisms of Galois H-objects are isomor-
phisms (see [7]).

Definition 2.2 If (A; pA), (B; pB) are right H-comodule algebras, then
A oH B, defined by the following equalizer diagram

is a right H-comodule algebra , to be denoted by (AoH B; pAoHB), where
uAoHB ( resp. 77AOHB ) is the factorization of the morphism uAOBo(iHABO
iHA B) ( resp. nAO qB ) through iH and pAoHB is the factorization of
d1HAB o i!1B through the equalizer iHABO H.

When (A; pA), (B; PB) are Galois H-objects then (AoH B; pAoHB) is
also a Galois H-object ( see (4.4.2) of [7] ).

Definition 2.3 The set of isomorphism classes of Galois H-objects,
with the operation defined in (2.2), is an abelian group to be denoted
by Galc(H). The unit element is the class of (H; 6H) and the inverse of
[(B; PB)l is [Bop; (B 0 A) 0 PB)I-

Example 2.4 In the case of a finitely generated projective and cocom-
mutative Hopf algebra H over a commutative ring R, Galc(H) general-
izes the group obtained by S. Chase and M. Sweedler in [5]. See [4] for
more details.

Proposition 2.5 Let cp : G - H be a morpjaism of Hopf algebras. If
(B; rB) is a a right G-comodule algebras then (B; pB = (B 0 cp) o rB) is
a right H-comodule algebra.

Proof: Straightforward.
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Remark 2.6 As a particular instance of 2.5 we obtain that (G; p’G=
(G Q9 cp) o 6G) is a right H-comodtde algebra.

Proposition 2.7 Let cp : G - H be a morphism of finite Hopf algebras
where G is cocommutative. Let (A; PA) be a right H -comodule algebra
and (B; rB), (C; rc) be right G-comodule algebras. If A and C are flat,
then

as right G-comodule algebras.

Proof.- Using the cocommutativity of G is not difficult to see that
(A OH B, r AOHB) is a G-comodule algebra, where rAoH B : A oH B -+
A oH B 0 G is the factorization, through the equalizer iA 0 G , of
the morphism (A O rB)o iHAB. Analogously, let rAoH(BoGC) be the G-
comodule structure for AoH (BoGC). Note that, in this case ’RAOH (Boe.C))
satisfies the equality

being rB-,,,C the G-comodule striicture for B OG C.
Now we prove that A OH (B OG C) is the equalizer of the morphisms

, Indeed, in the diagram

where , we have that
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and therefore,

As a consequence, there exists a morphism g :
satisfying . Moreover,

and then, since C and G .are finite, Hence,
there exists an unique

such that i G(AoHB)C ° g’ = g. It is an standard calculus to prove that

g’ is a morphism of G-comodule algebras. Next we show that g’ is an
isomorphism.

be a morphism such that
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there exists a unique map

A oH (B OG C) be the unique morphism such that i
this morphism it is easy to see that g o f = 1.

by the equalities

we obtain that s = f . Therefore g’ is an isomorphism.
The next result is a generalization of the one obtained by Wenninger

in [11].

Proposition 2.8 Let cp : G - H be a morphism of finite Hopf algebras
where G is cocommutative. If (A; pA) is a Galois H-object then the pair
(A oH G,r AoHG), where r-AoHG is the morphism defined in the proof of
Proposition 2.7, is a Galois G-object.

Proof: The diagrams

and

are equalizer diagrams. On the other hand, by the cocommutativity of
G,
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and then there exists a morphism J such that

Trivially, f = (uA 0 G) o (A O iHAG) . Moreover, f is an isomor-

phism with inverse the factorization through the equalizer AO iHAG of
the morphism (,AI 0 G) o (A 0 íG,H) o (A O pG).

For the morphism yAoHG we have that:

and then, since A is finite, yAoHG is an isomorphism. Finally A OH G is
a progenerator because f : A Q9 A oH G - A 0 G is an isomorphism and
A, G are progenerators.

Proposition 2.9 Let ’P : G -+ H be a morphism of finite cocom-
mutative Hopf algebras. There exists a morphism of abelian groups
Gal(cp) : Galc(H) -+ Galc(G) defined by

Proof: Let (A, pA) and (B, pB) be Galois H-objects. Then, by 2.7
we obtain that:

Therefore Gal(cp) is a group morphism.
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Definition 2.10 Let be H be a finite cocommutative Hopf algebra. We
say that a Galois H-object (A; pA) has a normal basis if is isomorphic
with H as an H-comodule.

The set of isomorphisms classes of Galois H-objects with a normal
basis Nc(H) is a subgroup of Galc(H) (see 2.5 of [1]).

Proposition 2.11 Let cp : G 2013H be a morphism of finite Hopf alge-
bras where G is cocommutative. If (A; pA) is a Galois H-object with a
normal basis then (A oH G; rAoHG) is a Galois G-object with a normal
basis.

Proof: We define h := (/ 0 G) o (cp 0 G) o dG , where f : H -A is
the H-comodule isomorphism wich exists because (A, pA) has a normal
basis. Using the cocommutativity of G, h factorizes through the equal-
izer iHAG Let 9 : H- A oH G be this factorization. An straightforward
verification yields that g is an isomorphism of G-comodule algebras with
inverse 9-1 = ((EH o f -1) 0 G) o iHAG.

Remark 2.12 Let cp : G 2013H be a morphism of cocommutative Hopf
algebras. As a consequence of 2.9 and 2.11 we obtain that there exists
a commutative diagram of abelian groups:

where N(’P) is the restriction of Gal(cp).

2.13 With G(C, H) we will denote the category whose objects are the
Galois H-objects and whose morphisms are the morphisms of Galois
H-objects. The product of Galois H-objects defines a product, in the
sense of Bass (2), in G(C, H) and it is easy to prove that Gal (H) =
KoG(C, H). Analogously we construct the category N(C, H) of Galois
H-objects with a normal basis. This category has a product too and
NC(H) = KoN(C, H).

The category C (H) - {(H; dH)} is a cofinal subcategory of G(C, H)
and N(C, H), then we have that K1C(H)= K1G(C, H) = K1N(C, H).
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Moreover, K,C(H) is isomorphic with (G(H*), *), the commutative

group of grouplike morphisms of H*; that is, the set of morphisms
h : K - H* such that 6H* o h = hO h, £ H* o h = idx with the operation
of convolution h * h’ = IIH- o (h 0 h’) (see [8]).

Let cp : G - H be a morphism of cocommutative Hopf algebras.
There exists functors

defined by G(cp)((A, pA))= (A OH G; rAoHG) and N(cp) = G(cp)lN (C,H).
These functors preserve the product and are cofinal because if (B, rB)
is a Galois G-object then

Therefore, using K-theoretical arguments we obtain a commutative di-
agram of exact sequences: ,

where Gr(cp) : G(H*) - G(G*) is defined by

where f the isomorphism between G and H OH G.

3 Naturality of Beattie’s decomposition the-
orem

Definition 3.1 An algebra A = (A, 77A, /1A) is said to be Azumaya if
A is a progenerator in C and the morphism XA : A Q9 A - EA between
the algebras A°PA and EA defined by

is an isomorphism.



14

Definition 3.2 On the set of isomorphism classes of left H-module
Azumayan algebras we define the equivalence relation: (A; cpA) - (B; cpB)
if there exist (M, cpM), (N, ’PN) left H-module progenerators in C and
an isomorphism of left H-module algebras between (AEopM; cpAOEM) and
(BE’:; opAOEN).

The set of equivalence classes of left H-modue Azumayan algebras
is a group under the operation induced by the tensor product. The unit
element is the class of the left H-module Azumayan algebra (EM; «JEM)’
for some progenerator H-module (M, cpM), and the inverse of (A; cpA) is
(A°P; cpA). This group is denoted by BM(C, H) and the class of (A; cpA)
by [(A; cpA)]-

If H = (1,1, 03C4K,1) is the trivial Hopf algebra in C, then BM(C, H)
is the Brauer group, B(C), of the symmetric closed category C (see [10],
[7]).

Definition 3.3 For each Hopf algebra H and each left H-module alge-
bra (A; cpA), the smash product AIIH is defined by

where

Definition 3.4 Let (A; cpA) a left H-module Azumayan algebra. We
define the object II(A) by the equalizer diagram
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(II(A) == (II(A), nII(A), uII(A)); Pn(A)) is a Galois H-object where uII(A)
( resp. nII(A)) is the factorization through the equalizer JAOH of the mor-
phism uAllH o (jAllHO jAllH) ( resp. NAOH ) and Pn(A) is the factorization
through the equalizer jApHO H of the morphism (A O 6H) o jAllH (see
[7]).

3.5 There is an epimorphism of abelian groups II : BM(C, H)
Galc (H) given by II([(A; cpA)])= [H(A) ; pTT(A))].

If [(B; pB))] E Galc(H), then [(BtH*; cpBllH.* (B 0 H* 0 bH) o (B 0
TH,H*OH*) o (TH,BOdH*))] is in BM(C, H) and there is an isomorphism
of Galois H-objects between B and II(BllH*).

The sequence (Beattie’s decomposition theorem [3])

is split exact, where the morphism iH is given by iH ([A]) = [(A; êH0A)]
and the morphism j : BM(C, H) - B(C) defined by j([(A; cpA)])= [A]
is a retraction (see [7]). 

Definition 3.6 For an algebra A = (A,TIA,ILA) and a coalgebra D =
(D, eD, 6D), we denote by Reg(D, A) the group of invertible elements in
the set of morphisms in C f : D --&#x3E; A. The operation in this group is
the convolution given by f A g = MA o ( f O g) o 6D. The unit element is
EDOnA.

Definition 3.7 Let H be a Hopf algebra and A = (A, nA, ILA) be an
algebra. We say that an action cpA of H in A is inner if there exists a
morphism f E Reg(H, A) such that

where f -1 is the convolution inverse of f .
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Definition 3.8 Let H be a finite cocommutative Hopf algebra. We de-
note by BMinn(C, H) the subset of BM(C, H) built up with the equiva-
lence classes that can be represented by an H-module Azumayan algebra
with inner action.

3.9 The set BMinn(C, H) is a subgroup of BM(C, H) (4.4 of [1]). We
denote by yH the inclusion morphism. Finally, the sequence (Beattie’s
decomposition theorem for inner actions)

is split exact (see 4.5 of [1]).

3.10 Finally, using the results of section two and the decomposition
theorems of 3.5 and 3.9, for a morphism p : : G - H between finite
cocommutative Hopf algebras there exists a commutative diagram of
abelian groups:
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