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LINEAR SPACES AND INVOLUTIVE DUALITY
FUNCTORS

by Alfred FRÖLICHER

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XLIII-1 (2002)

R6sumi.
Selon [2] la cat6gorie des espaces localement convexes admet des
sous-catdgories pleines A avec les propridt6s suivantes: A est com-
plet et cocomplet; A admet des bifoncteurs L et 0 avec les pro-
pri6t6s usuelles de cat6gorie ferm6e, donc en particulier tels que
L ( E, L ( F, G)) = L ( E 0 F, G) et E 0 F = F O E; en plus on a:
A := L(-,R) : E - E’ := L(E,R) est un foncteur involu-
tif. Cela veut dire on a A 0 A= IdA. Donc tout objet E est
r6flexif au sens E = E". Ceci est remarquable car dim E = oo en

general. On donne des descriptions et des preuves explicites. Enfin
on pr6sente un foncteur de dualite involutif pour une categorie de
gdom6tries projectives de dimension quelconque.

Introduction.

Many categories of linear spaces over R (or an other field K) admit an in-
ternal lifting L of the Hom-functor and then L ( -, K) : E - E’ : = L (E, K)
is a natural duality functor. An object E is called reflexive (in the given
category) if E" = E holds. Usually only finite dimensional objects are
reflexive. We are interested in duality functors which are involutive, i.e.
E" "--’ E must hold for all E, including infinite dimensional ones. An ex-
ample is given in [2] where M. Barr shows that the category D of separated
dualized vector spaces is *-automonous, i.e. one has the following proper-
ties : there exist functors L : 1)OP x D -- D and O : D X D - D with

L(E, L(F, G)) = L(E 0 F, G) so that S becomes monoidal closed; and
that, moreover, the functor L (-, K) : E H E’ = L(E, K) is involutive.
In sections 1 to 3 we present a different approach to these results, including
explicit descriptions of the spaces L(E, F) and E O F. In section 4 we show
that the category D is complete and co-complete. The proofs yield explicit
constructions for the limit or colimit of any given diagram in D.
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In [2], also two embeddings of D into the category LCS of separated
locally convex spaces are described. The respective full subcategories of
LCS are also *-autonomous. We discuss these examples in section 5 from
an other point of view.

The category D has a lot of nice properties. So one might believe that it
would be useful for analysis. This however is not the case, due to the lack
of an appropriate completeness of the objects. By adding this completeness
and an other natural condition, one gets the category Con of the so-called
convenient vector spaces. These give the best setting for a generalization of
classical Banach space calculus; cf. [4] and [5]. Since Con is a subcategory
of D, every convenient vector space is reflexive in D, but examples show
that this does not imply their reflexivity in Con; cf. [4] .

In section 6 a quite different example is considered. The objects are not
linear spaces, but dualized projective geometries; cf. [3]. With suitably de-
fined morphisms, one gets the category DPG of dualized projective geome-
tries. Though no lifting of the Hom-functor is available, one can describe
an involutive duality functor. The property of Desargues is not supposed.
Hence homogeneous coordinates are not available and one cannot use previ-
ous results on categories of linear spaces.

My sincere thanks go to Michael Barr who encouraged me to publish
results of his in my version; and to Claude-Alain Faure who worked out the
results of section 6.

1. The category D of separated dualized vector spaces.

1.1 Definition.
1° We denote by DYS the category having as objects the couples (E, E’)

where E is a vector space over a fixed field K and E’ is a vector subspace of
the algebraic dual E* :- {l : E - K / l is linear}; and as morphisms from
(E, E’) to (F, F’) the linear maps f : E - F which satisfy f * (F’) C E’.

2° By D we denote the full subcategory of DYS whose objects are sep-
arated, i. e. such that nlEE/ ker l = {0} (equivalently: the functions of E’
separates points of E).

3° Notation. Since we consider an object (E, E’) of DVS as a vector
space E with E’ as additional structure, we usually write just E for ( E, E’) .
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1.2 Remarks.

1. If E is object of D and dim(E)  oo, then necessarily E’ = E*.

2. If E’ = E*, then every linear map E - F is a morphism.

3. If S C F’ generates the vector space F’, then a linear map
p : E - F is a morphism iff cp* (S) C E’.

4. A linear map cp : E - F is an isomorphism iff it is bijective and
cp* ( F’ ) = E’.

1.3 Proposition. Let E, F be objects of D. The set D(E, F) has a
natural structure of vector space. It becomes an object of D noted L(E, F),
by defining

Since the map E x F’ - L(E, F)* defined by (a, I) - I o eva is bilinear,
the image set {l o eva / a E E, l C F’} has not to be a vector subspace of
L(E, F)*; so we consider the generated vector space .. &#x3E; which is formed

by all finite sums E li o evai. 
Proof. Let 0 # cp E L(E, F) . Then there exists a E E with cp(a)= 0 E F
and hence there exists 1 E F’ such that l (cp(a)) =0. So l o eva E L ( E, F)’
satisfies (l o eVa) (cp) fl 0. D

1.4 Remark. Obviously the structure of L(E, F) is initial with respect
to the evaluation maps eva : L(E, F) - F, a E E; i.e. a linear map p :
G - L ( E, F) is a morphism iff for all a E E the map eva o p : G - F is a
morphism.

1.5 Theorem. (E, F) - L(E, F) extends to a lifting of the Hom-
functor of Ð.

Proof. (a) Let Y : E1 - E2 be a morphism. One defines Y* : L(E2, F) -
L(El, F) by Y* (cp) = cp o 7jJ. For Y* to be a morphism, it is enough to show
that one has 1 o eva o Y* E L(E2, F)’ for all 1 E F’ and a E El. This

holds since 1 o eva o Y* 1 o evYa as verified by evaluating on elements
cp E L(E2, F).
(b) Let F, - F2 be a morphism. One defines 0* : L (E, Fi) - L ( E, F2)
by Y* (cp) := Y o p. For ’Ø* to be a morphism, it is enough to show that
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one has 1 o eva o Y* E L(E, Fi)’ for all l E F2’ and a E E. One has

l o eva oY*= (1 o 0) o ev,,, as verified by evaluating on elements E L ( E, F1),
and from 1 o Y= Y* (l) E Fl’ follows that ( l oY ) o eva belongs to L ( E, Fl )’ .

1.6 Proposition.
1. The map (-)* : L(Ei, E2) - L(L(E2, F), L(Ei, F)) with Y-Y*

is a morphism..
2. The map (-). : L(Fl, F2) - L(L(E, Fl), L(E, F2)) with

is a morphism.
Proof. 1. Applying twice 1.4 shows that the claim is equivalent with the
statement T := eva o evcp o (-)* : L(El, E2) - F is a morphism for all
p E L (E2, F) and all a E El. This in fact holds since one has T = evo., as
easily verified by evaluating on elements cp E L ( El , E2 ) .
2 is proved similarly. D

2. The Duality Functor of V

2.1 Lemma. The underlying vector space of L (E, K) is E’.

Proof. Let 1 E L ( E, K). Then l * (K’) C E’. Since IdK E K* = K’
one gets 1 = l* (IdK) E E’. Conversely, let l E E’. Since IK’ == IdK&#x3E; the
equation 1 = IdK o shows that 1 E L(E, K); cf. 3 of 1.2. D

According to this lemma the vector space E’ of any object E becomes
an object of D and we can write E’ = L ( E, K).

2.2 Definition. The partial functor A := L(-, K) is called the dual-
ity functor of D. So A is a contravariant endofunctor of D. It associates
to an object E the object A E - E’ and to a morphism ’P : E - F the

morphism (cf. 1.2) Acp :- cp* : F’ - E’.

2.3 Remarks.
1° One has E" = L(E,K)’ -  1 o eva / a E E, 1 E K’&#x3E;. The map 1 is
multiplication by some A E K; hence 1 o evd is itself an evaluation (at A - a)
and all these form a vector space. Hence E" = (eva : E’ - K / a E El.
20 By 1 of 1.6 the maps A : L(E, F) - L(F’, E’) are morphisms.

2.4 Theorem. One has natural D-isornorphisms jE : E - E".
Proof. We just remarked that E" = (eva / a E E}. So we define j = jE

by j (a) := eva. This map j : E - E" is obviously linear and surjective. It
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is injective since E is separated. We will use the following equation:

It is verified by evaluating on elements l E E’ and a E E. One obtains
((j*E °jE’)(l))(a)= (j*E(evl))(a) =(evl) °jE)(a) = eVl(eVa) == (eva)(l)=
I (a) . Simplification by a and then by l yields the equation. Using it one gets
jE(E"’) = j*E(jE’(E’)) = E’ and this shows that jE is a D-isomorphism, cf.
4 of 1.2. D

2.5 Lemma. For any morphism cp : E - F the following diagram
commutes:

This means that the morphisms jE form a natural transformation and since
they are D-isomorphisms one has a natural isomorphism Id = A2.

Together this gives On the other hand (jF o cp)(a)=

2.6 Lemma. Let AE,F : L(E, F) - L(F’, E’) be the map defined by
rp H AV - cp*. We put i := (jE)-1 and j := jF. The following diagram
commutes:

Proof. Let’P E L(E, F). One trivially has (AF’,E’O AE,F) (cp) = cp**. One
shows that also (j* o i*) (cp) = cp**. One gets (j* o i*) (cp) = J o cp o i. We



40

evaluate on the elements of E". These are of the form jE(a) = i-1(a) for

2.7 Proposition. The map A E, F : L(E, F) - L(F’, E’ ) defined by
cp- cp* is a D-isomorphism.

Proof. By the preceding lemma AF’,E’ o AE,F is bijective. Hence its
swjective and AE,F is injective. Since this injectivity holds for any E, F one
concludes thatAF’,E’ is also injective and hence bijective, and now the same
follows for A F. By evaluating on the elements cp E L(E, F) one easily
verifies that for a E E and 1 E F’ one has A* ( j E (a) o evl) = l o eva. Since
jE : E - E" is bijective, the equation implies that A* maps the generators
of L(F’, E’)’ bijectively onto those of L(E, F)’. Hence A* (L(F’, E’)’)=
L(E, F)’ and A is a D-isomorphism, cf. 3 and 4 of 1.2. D

3 The Tensor Product of D

3.1 Definition. A bilinear map 03B2 : E x F - G where E, F, G are
objects of D is called a bilinear morphism iffor every a E E the map
03B2(a, -) : y- 03B2(a, y) is a morphism F - G and for every b E F the
map 03B2( -, b) : x H 03B2 (x, b) is a morphism E - G. The bilinear morphisms
03B2 : E x F - G form a vector space B(E, F; G) which becomes an object
of D by defining

3.2 Proposition. One has isomorphisms

described by (8f)(x, y) - (f x) (y).
Proof. Let f E L(E, L(F, G)) and put 0 : - O f . Obviously /3 is

bilinear. For a E E one has 03B2(a, -) = f (a) E L(F, G). And for b E F one
has 0(-, b) = evb o f . One concludes that 0 E B(E, F; G). So the map O
is well defined.

Similarly, for 0 E B(E, F; G) one defines ((Q03B2)x)(y) = 03B2(x, y). We put
f := Q03B2. For a E E one has f (a)= 03B2(a, -) and hence f (a) E L(F, G).
And f : E 2013 L(F, G) is a morphism iff evb o f : E - G is a morphism for
all b E F, and this holds since evb o f = 03B2( -, b).
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The maps 0 and Q are obviouly linear and each others inverse. Remains
to show that they are morphisms of D. The structure of L(E, L(F, G)) is
initial with respect to the maps eva : ( E, L(F, G ))- L(F, G) and the one
of L(F, G) is initial with respect to the evaluations evb : L(F, G) - G.
So together the maps evb o eva : L ( E, L ( F, G))- G form an initial cone.
The same holds for the maps eva,b : B(E, F; G) - G. Since evb o eva =
eva,b o 6, a linear map E from any dualized vector space into L (E, L ( F, G) )
is a morphism iff 0 0 ç is a morphism; in particular, 8 and Q are morphisms.

0
3.3 Definition. For any dualized vector spaces E, F we define their

tensor product as the object

together with the bilinear morphism T : E x F - E 0 F defined by

3.4 Theorem. For every bilinear morphism 03B2 : E x F - G there
exists a unique (linear) morphism cp: E 0 F - G such that 03B2 = cp o -r.

Proof. Uniqueness. This follows since E 0 F = B(E, F; K)’ is gener-
ated by the elements of the form eva,b - T(a, b) for (a, b) E E x F.

Existence. In the special case G = K one verifies that 03B2 = ev 03B2 o T and
this shows that cp :- eva is a solution. For the general case one considers for
any l E G’ the composite -y (1) : := 1 o 0. It belongs to B(E, F; K) and hence
1 o03B2 = evlo03B2 o T. One also checks easily that the map -y G’ - B(E, F; K)
is a D-morphism. The same now follows for the map .- j 0, : G’ -
B ( E, F; K)" = (E 0 F)’, where j is the isomorphism from B(E, F; K) -
B(E, F; K)", cf. 2.4. By 2.7 there exists a unique morphism. : (EOF)’ -
G such that V) = p*. Now one gets 1 o p = ’P*(l) _ Y (l ) = eVlo03B2 and
furthermore (l o cpoT) (a, b) = evlo03B2(T(a, b)) = T(a, b) (l o03B2) = (l o03B2) (a, b).
Simplifying by (a, b) and then by l one gets p o T = fl. D

Since B ( E, F; G) = B ( F, E; G) one finally has

3.5 Theorem. There are natural isomorphisms as follows.
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The following two propositions show how E’ O F and L(E, F) are re-
lated. Analogous results for E 0 F and L(E’, F) then follow.

3.6 Proposition.. Let 03B2 : E’ x F - L(E, F) be the map defined
by 03B2(l, b)(x) := 1 (x) - b. It is a bilinear morphism and hence factors as
(3 = a o T. The so obtained morphism a : E’ 0 F - L(E, F) is injective.

Proof. Let z E ker a. One can write z in the form z = 7(ll, bI) +
... + T (ln) bn) and one can choose the elements bl, ... , bn to be linearly
independent. Then a(z) = a(T(lI, bi)) + ... + a (T(In , bn ) ) and a(z) (x)=

. (3(ll’ bI)(x) + ... + (3(ln, bn)(x) = 11 (x) bl + ... + ln(x). bn. Since by
hypothesis one has a(z) = 0 and bl, ... , bn are linearly independent one
gets 11 (x) - ... = ln (x) = 0 Vx and therefore z = 0. D

3.7 Proposition. The map a : EO F - L(E, F) is an epimorphism;
i.e. for morphisms cp, Y : L(E, F) -&#x3E; G one has cp o a = Y o a = cp = Y.

Proof. We may assume that G = K, and it is enough to show that if
cp : L(E, F) - G satisfies cp o a = 0, then cp = 0. We know that cp is of
the form cp = En 1 li o evai with ai E E and li E F’, and we can choose the
points ai to be linearly independent (if they are dependent, one can reduce
the number of terms in the sum). Since /3 = a o T one has cp o 03B2= 0. So one
has for every (k, b) E E’ x F

Since this holds for all k c E’ one gets En 1 li (b) - ai = 0, and this implies
li(b) = 0 for all i. Having this for all b E F one deduces li = 0 E F’ and
cp = 0. 

4. Categorical completeness of D

4.1 Proposition. The category DV S is complete and co-complete.
Proof. It is well known that the category VS of vector spaces (over K)

is complete since it has products and equalizers and co-complete since it has
coproducts and coequalizers.
One now considers the forgetful functor U : DVS - V S which associates
to an object (E, E’) the vector space E. With respect to U there exist all
initial and final structures. We just describe them and leave the verification
of the respective universal property as exercise.
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Initial structures: Suppose given a family of linear maps fi : E - Ei where
Ei = U(Ei, Ei). One defines E’ :=  UiEI ft(E/». Then one has the fol-
lowing universal property: If g : F - E is a linear map and F = U ( F, F’ ),
then g is a D VS-morphism ( F, F’) - (E, E’) iff fi o g is a DVS-morphism
(F, F’)- (Ei, E’i) Vi.
Final structures: Suppose given linear maps fi : Ei- E with E, Ei as
before. One defines E’ : ={l E E* / f*i (l) E E’iVi} . Then a linear map
g : E - F where F = U(F, F’) is a DVS-morphism ( E, E’ ) - ( F, F’ ) iff
g o fi is a DyS’-morphism (E, E’) - (Fi, F’) Vi.

The functor U has a left-adjoint and a right adjoint since any vector space
E has a coarsest and a finest DVS-structure. These are E’ := f 01 respec-
tively E’:= E* . Hence U commutes with limits and colimits. Limits (colim-
its) are obtained by taking the limit (colimit) of the underlying vector spaces
in VS, endowed with the respective initial (final) structure. D

4.2 Proposition. The inclusion functor i : V - DVS has a left
adjoint retracting functor p : DV S - D called separation functor. This
means that V is a reflective subcategory of DVS.

Proof. Let (E, E’) E DVS. We put N:= {x E E / 1(x) - OV1 E E’},
define pE as the vector space E/N endowed with the final Dys-structure
induced by the canonical projection TT: E - E/N, i.e. p(E, E’) = (E/N,
Ih E (E/N)* / h o TT E E’}). First one verifies that pE E D. Let

7r(x) -+ x(y) E E/N. Then z - y E N and therefore l(x) = l(y) for
some l E E’. The function l factors as 1 = h o 7r for a unique function
h : E/N - K, and h is linear. From the fact that I = h o TT is a morphism
one deduces by the finality of 7r that h is a morphism. And since h o TT is a
morphism, h E ( pE)’. D

4.3 Theorem. The category D is complete and co-complete. Limits in
D are the same as in DVS: colimits in V are obtained by applying the
separation functor o7 to the colimit taken in DVS.

Proof. By a well known categorical result 4.3 is a consequence of 4.1
and 4.2. D
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5. Locally Convex Spaces with Involutive Duality Functor

5.1 Proposition. Suppose we have a commutative diagram of functors

Suppose, furthermore, that the functor V is faithful and that R o S = Id.
Then S identifies A with the full subcategory B of B formed by the objects
Y satisfying the condition (S o R)(Y) = Y. (Remark that also U = V o S
is faithful).

Proof. We first show that the functor S : A -&#x3E; B can be factorized over
the full subcategory B of B formed by the objects Y of the form Y = SX
for some object of A; one has: S = i o So, where i is the inclusion functor
and S,,X - SX, So f - S f , for any object X and any morphism f of A.
We put Ro := R o i : Bo -&#x3E; A and show that So and Ro are each others
inverse.

(a)One has Ro o So=R oio So=RoS=Id.
(b’) For an object Y of B one has Y = SX for some X of A, hence
(So o Ro) (Y)= (SR) (Y)= (SRS) (X ) = S(X) = Y.
(b") Consider (So o Ro)(g) for a morphism g of B . One gets (using the
commutative diagram): (VSoRo)(g) = (VSR)(g) = (UR)(g) = V(g) and
since V is a faithful functor this implies (SoRo)(g) = g. Now (a) and (b)
show that A = B . D

We now consider separated locally convex spaces over R (or C). By the
theorem of Hahn-Banach the continuous dual F’ separates points of F, i.e.
(F, F’) E D. Since for a LCS-morphism f : Fi - F2 one has f *(F2) C Fl
one gets a functor 6: LGS -&#x3E; D by defining F - (F, F’) and f - f .

It is well known that for any separated dualized vector space E = (E, E’)
there exist separated locally convex topologies on E such that E’ becomes
the continuous dual. Among these topologies there exists a coarsest one,
called the weak topology, and a finest one, called the Mackey topology (of
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E with respect to E’) Let a E respectively pE denote the locally convex
space obtained by means of the weak respectively the Mackey topology. If
f : E - F is a morphism of D, then f : oE - oF and f : uE- ILF are
continuous and hence one has functors a : D - LCS and p : D --; LCS
which preserve the underlying vector spaces and maps. They have 6 as left-
inverse, i.e. d o o=d o u = Id. One easily verifies that o- is right adjoint and
IL is left adjoint to 6.

5.2 Theorem. Let W LCSrespectively MLCS be the full subcate-
gory of LCS formed by the ojects having the weak topology respectively
the Mackay topology. Each of these subcategories is isomorphic to to the
category D.

Proof of the first isomorphism.
Consider the diagram in 5.1 for A = D, B = LCS, S = VS, U and V being
the respective forgetful functor "underlying vector space", S = o, R = 6.
All the considered functors preserve the underlying vector spaces and linear
maps, hence the diagram commutes. Furthermore, 6 o a = Id and LCS,,
contains the locally convex spaces F satisfying u6 F = F, i.e. carrying the
weak topology. By 5.1 we obtain LCSo = W LCS and and D = WLCS.
The second isomorphism is proved in the same way. D

The fact that the categories D, W LCS and MLCS are isomorphic fol-
lows also from 2.1.9 and 2.1.11 in [4]. The results there are even without
separation hypothesis.

5.3 Remark. The three categories D, W LCS and MLCS are con-
cretely isomorphic categories over the base category VS. This means that
the objects are vector spaces with differently described structures yielding
the same morphisms. Similarly one can use open sets, or closed sets, or
neighborhoods, or closure operators for defining Top. "The differences be-
tween the various descriptions are regarded as inessential and we can in good
conscience call each of them T op" (citation from remark 5.12 in [1]). In this
sense we may write D = W LCS = MLCS. Another example of a con-
crete category over VS having numerous descriptions is Con, cf. [4].

6. An Involutive Duality Functor for Dualized Projective Geometries

Since we do not know whether the category which will be considered



46

admits a lifting of the Hom-functor, we cannot define a duality functor by
means of an object which should represent the functor. One proceeds dif-
ferently. It is well known that the set G* of all hyperplanes of a projective
geometry G is in natural way also a projective geometry, called the dual
geometry of G. One can extend the duality to a contravariant endofunc-
tor provided one uses appropriate morphisms. One has two kinds of mor-
phisms. Both are partial maps between the respective point sets, noted
g : GI - - - G2, i.e. maps g : GI B Ker g - G2 where Ker g, called kernel
of g, is a subset of G1. The notation g : G1 -- G2 will remind that g(x) is
not defined for all x E G1 (unless Ker g = 0). Let g : G1 - G2 be such a
partial map.

6.1 Definition.

1° g is called a morphism of projective geometries iffor every sub-
space F of G2 the set gll (F) : = g-1 (F) U Ker g isasubspaceof Gl.
2° g is called a homomorphism of pro jecti ve geometries iffor ev-
ery hyperplane H of G2 the set g# (H) is either G, or a hyperplane of G1.

Since any subspace is an intersection of hyperplanes one deduces that
homomorphisms are special morphisms. If g : G1 - G2 is a homomor-
phism one can define g* ( H) := gll ( H) if gll (H) is a hyperplane of G1; and
H E Ker g* otherwise, i.e. if gll (H) = G1. One verifies that the so de-
fined partial map is a homomorphism g* : G2* - G1 *. We also recall that
a J(a) := {H E G* / a E H} defines a homomorphism, with empty
kernel, noted J : G --&#x3E; G**. For details and proofs we refer to [3].

6.2 Definition. The category DPG has as objects the dualized
projective geometries, i.e. the couples (G, G’) where G is a projec-
tive geometry and G’ a subspace of the dual geometry G* satisfying the
separation condition: Q G’ = 0.
The DPG-morphisms from (G1, G’1) to (G2, G’2) are the homomorphisms
g : G1 - G2 which satisfy the following continuity condition: The
associated homomorphism g* : G2* - - -+ G1* restricts to the given subspaces.
This means that there exists a partial map g’ making commutative the fol-
lowing diagram:
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Since i2 and g* are homomorphisms, the same holds for il o g’. Subspace
inclusions are obviously initial (with respect to the forgetful functor from
the category of projective geometries and homomorphisms to the category
of sets and partial maps). So one deduces that g’ : G2’ - Gl’ is also a
homomorphism.

We shall provide G’ with a structure of dualized projective geometry by
choosing an appropriate subspace of (G’)*. The key is the following result.

6.3 Lemma. The map j defined by j(a) := {H E G’ / a E H} is a
homorraorphism j : G - (G’)*, has empty kernel, and is injective.

Proof. For any Q E G** one has Q E Ker (i*) = ill(Q) = G’ =

G’nH=G’=G’CQ=QG’ QQ=QQ=O. Since for S2 = J(a)
for some a E G one has a E nQ it is impossible that Q e Ker i*. So one sees
that i* o J and j both have empty kernel. They even coincide since one has
i*(J(a)) = i-1({H E G* / a E HI) - {H E G* / a E H} n G’ = j(a) for
all a E G. Now j = i* o J shows that j is a homomorphism. The injectivity
of j follows from the following lemma.

6.4 Lemma. For a E G one has n j (a) = {a}.
Proof. Trivially a E n j (a). Let also b E Q j (a) for some b= a. Then

the line generated by a and b, noted a * b, intersects the hyperplane Hi in a
unique point c := (a * b) n HI. Let now H be an arbitrary element of G’.
We claim that c C H.
Case 1: a E H. This means H E j (a) and hence b E H. Now c E H
follows.

Case 2: a E H. Since c E HI the case H = HI is trivial. So let H fl Hl.
Then H2 := (Hl n H) V a is a hyperplane of G and from H, HI E G’ one
gets H2 C G’ (the three hyperplanes are collinear in G* and G’ is a subspace
of G*). By construction H2 E j(a). From c E H2 = (H1 Q H) V a follows
that there is a point d E Hl Q H such that c E d * a. If c =d one obtains
a c c * d C Hi which is against the choice of Hl. Hence c = d E H.
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So we have obtained c E n G’ in contradiction to n G’ = 0 and one
concludes that n j (a) cannot contain any point different from a. D

We can now define on G’ a structure of dualized geometry by putting
G" : = j ( G) . In fact, j ( G ) C ( G’ ) * and as image by a homomorphism it is a
subspace. The separation condition holds, because if H E j (a) for all a E G
one obtains G C H which is absurd for a hyperplane H C G.

6.5 Proposition. Let g : G1 - G2 be a morphism of DPG. Then the
homomorphism g’ : G2’ - Gl’ is a morphism of DPG and hence one has
a contravariant endofunctor of the that category.

Proof. One has to verify that g’* restricts to the subspaces jv(Gv) of
(Gv’)*. This means that (g’)ll o jl = j2 o g. Using that g** o JI = J2 o g, cf.
11.4.7 in [3], one gets

6.6 Theorem. For every dualized geometry G the map j : G - G" is
an isomorphism of DPG.

Proof. We saw that j is an injective homomorphism. Surjectivity holds
according the definition of G". From j 0 j-1 Id follows that also j -1 is
a homomorphism. Trivially j and j -1 satisfy the continuity condition since
one has E"’ = j’(E’). D
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