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SHAPE AND STRONG SHAPE EQUIVALENCES
by Luciano STRAMACCIA

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XLIII-4 (2002)

RESUME. Les concepts d’6quivalences de forme (shape) et de
forme forte ont leur propre int6r8t ind6pendamment de la Th6orie
de la Forme elle-même. Ils peuvent 8tre définis dans le cadre abs-
trait d’une paire (C,K) de categories, ou C est 6quippde d’un fonc-
teur cylindre engendrant. Li6 a leur etude est le problème de carac-
t6riser les 6pimorphismes et monomorphismes d’homotopie dans C.
Pour le rdsoudre, l’auteur utilise la construction de 1’application cy-
lindre double et il introduit une propri6t6 d’extension d’homotopie
forte. Il étudie leurs connexions avec les concepts pr6c6dents.

0 INTRODUCTION 
’

Shape and Strong Shape can be viewed as theories that allow to approximate
general topological spaces by means of systems of spaces that have ni e ho-
motopical properties, such as absolute neighborhood retracts (ANR-spaces).
The shape category Sh(Top) [12] has objects all topological spaces, while a
shape morphisme : X --+ Y can be represented as a natural transformation
O- : [Y, -] - [X, -], where [X, -] : ANR - Set is the functor which asso-
ciates with every ANR-space P, the set [X, P] of homotopy classes of maps
X - P. A shape equivalence is a continuous map inducing an isomorphism
in the shape category. Since the concept of strong shape is more geometrical
in nature, the construction of the strong shape category SSh(Top) is much
more involved than the previous one and, consequently, it gives rise to a
more interesting concept of strong shape equivalence.
In this note we deal with a pair of (C, K) of abstract categories, where C is
endowed with a generating cylinder functor [9] and K is the subcategory of
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models, which plays the role of the category ANR in the topological case.
In such a context it is possible to define shape and strong shape equivalences
internally, without going through a construction of a shape or strong shape
category (see definitions 1.1 and 1.5). This is done in section 1, where we
also introduce a strong version of the homotopy extension property (def-
inition 1.6), which turns out to be useful in characterizing strong shape
equivalences.
The strong shape category of compact metrizable spaces SSh(CM) can be
obtained by localizing CM at the class of strong shape equivalences, while
the localization of CM at ordinary shape equivalences is not equivalent
to the ordinary shape category Sh(CM) ([4], see also [3]). More recently
in [13], the strong shape category SSh(pro Top), for the category of in-
verse systems of topological spaces, has been defined localizing pro Top
at its class of strong shape equivalences between inverse systems of spaces,
as defined in [11]. Although SSh(pro Top) contains SSh(Top) as a full
subcategory, the arguments in [13] do not seem to give a representation of
SSh(Top) as the localization of Top at strong shape equivalences. We feel
that the material contained in this paper could be of help in studying such
kind of problems.
In the second section we consider the double mapping cylinder construction
in order to obtain further characterizations of strong shape equivalences, also
generalizing some results from [6] and [7]. The abstract homotopy structure
given by a cylinder, or cocylinder, allows one to study homotopy analogues
of notions such as epimorphisms and monomorphisms. For instance [8] in-
troduced the notion of homotopy epimorphism : f : X - Y is a homotopy
epimorphism if, given ho, hl : Y ---+ P, ho f ri hl f implies that ho = hi .
This corresponds to ip : [Y, P]---+ [X, P] being 1-1. Here for us P will be
from a subcategory K of the basic category C, e.g. C = Top with K =

polyhedra. Then this notion of homotopy epimorphism will depend on the
subcategory K being used. Since a shape equivalence for (C, K) has to be a
homotopy epimorphism with respect to the subcategory of models K, then
we are able to shed some light on this problem, also considering the dual
case of homotopy monomorphism and coshape equivalences.

1 PRELIMINARY RESULTS

In what follows C will denote a finitely cocomplete category, endowed with
a cylinder functor (I, eo, el , O-). I : C --+ C is a functor written I (X) = X x I
andl(f X - Y) = f x1 : X x I ---+ Y x I. eo,e1 :1C--&#x3E;I ando:I--+1C
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are natural transformations such that O-e0 = creel = id.
We will also assume that the cylinder functor is generating in the sense of
[7].
Two morphisms f , g : X --+ Y in C are said to be homotopic, written f ri g,
if there is a morphism H : X x I - Y, such that Heo = f and Hex = g.
In such a case we say that H is a homotopy connecting f and g. The

equivalence class of a morphism f , generated by the homotopy relation, will
be denoted by [f], while the set of homotopy classes of morphisms from
X to Y will be denoted by [X, Y]. Consequently, one can define a notion
of homotopy equivalence in C. In particular, it turns out that, for every
X E C, the morphisms ef and e1X are homotopy equivalences.
Let now fix a full subcategory K of C. Then :

- a morphism f : X --+ Y has the homotopy extension property (HEP)
with respect to K, whenever the diagram

is a weak pushout w.r. to K. This means that, for every § : V ---+P P E K,
and homotopy F : X x I ---&#x3E; P such that Fe0x = Of , there exists a homotopy
G: Y x I--+ P with GeY0 = ø and G(f x1)=F.
A morphism f is called a cofibration when it has the HEP w.r. to C.

- the mapping cylinder M( f ) of a morphism f : X --+ Y is given by
the following pushout diagram

There is an induced morphism fl : M( f) - Y, such that f1jf = ly and
f1 II f -  fO-x. It is easily shown [9] that f can be decomposed both as
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f = f 1 f0 and f = f1 f’0 , where fi is a homotopy equivalence and f0 = II fe0X
and fo = TIfer are both cofibrations.

- for every X E C, let [X, 2013]: K ---+ Set be the functor that assigns to
every P E K the set [X, P]. Given f : X - Y, there is an induced natural
transformation f * : [Y, -] --+ [X, -], defined by composition with f .

Definition 1.1 A morphism f : X --+ Y in C is said to be a shape equiv-
alence for the pair (C, K), if f * is a natural isomorphism.

It follows that f is a shape equivalence whenever, for every P E K, the
following two properties hold :

(se.1 ) Ip : [Y, P] --+ [X,P] is onto, that is, for every g : X - P there
exists an h : Y - P such that h f ri g.

(se.2) Ip : [Y, P] --+ [X, P] is 1-1, that is, given ho, hl : Y - P with
ho f ri half, then ho ri hl .

In the sequel, we shall reserve the name of extensor for a morphism f : X -
Y satisfying condition (se.1 ) . In [6] such morphisms were called semiequiv-
alences. Condition (se.2) states that f is a homotopy epimorphism [8].
We point out that both the notions are relative to the pair (C, K), although
we shall often omit to indicate it explicitly.

Proposition 1.2 The class of extensors for (C, K) has the following prop-
erties :

1. Contains all homotopy equivalences.
2. It is closed under composition.
3. If a composition g f is an extensor, then f is a extensor.
4. If f : X - Y is an extensor and f’ = I, then f’ : X ---+ Y is also an

extensor.

5. f is an extensor iff f o is.

6. f x 1 is an extensor iff f is.
7. If f : X --+ Y is an extensor and has the HEP w.r. to K then, for

every g : X --+ P, P E K, there exists an h : Y -- + P such that h f = g.

Proof. (1) is obvious. Both assertions (2) and (3) follow from the observa-
tion that, given f : X - Y and g : Y --&#x3E; Z, then (g f )* = f *g* . (4) For any
g : X - P, P E K, there is an h : Y --+ P such that h f ri g. Since h f ri h f’,
the assertion follows. (5). Since f = f1 f0 and fi is a homotopy equivalence,
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the assertion follows from the previous ones. (6). Let us observe that, for
every P E K, there is a commutative diagram

Since both (et)p and (eô)p are bijections, it follows that ( f x 1) p is onto
iff f*p) is onto. (7). See, e.g., [9], pag.ll.

Proposition 1.3 The class of homotopy epimorphisms for (C, K) has the
following properties :

1. Contains all homotopy equivalences.
2. It is closed under composition.
3. If a composition g f is a homotopy epimorphism, then g is a homotopy

epimorphism.
4. If f : X - Y is a homotopy epimorphism and f’ = f , then f’ : X ---+ Y

is also a homotopy epimorphism.
5. f is a homotopy epimorphism iff fo is.

6. f x 1 is a homotopy epimorphism iff f is.

Proof. Let us show part (5). Let f be a homotopy epimorphisms and let
vo, VI : M ( f ) ---+ P, P E K, be such that v0 f0 = v1 f0. Then, v0 f1 f1 f0 =
V1 f1f1f0, being f 1 the homotopy inverse of f1. Hence, v0 f1 = vl f 1, from
which it follows vo ri vl . Conversely, let fo be a homotopy epimorphisms and
let ho, hl : Y - P, P E K, be such that h0 f = half. Then, h0 f1 f0 = hl fl f o
implies h0 f1 = h1 f 1, hence h0= h1, being f l a homotopy equivalence.

From the two propositions above we obtain the following

Theorem 1.4 The class of shape equivalences for (C, K) has the following
properties:

1. Contains all homotopy equivalences.
2. It is closed under composition.
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3. If two of the maps f , g, g f , are shape equivalences, so is the third.
4. If f : X - Y is a shape equivalence and f’ ci f , then f’ : X ---+ Y is

also a shape equivalence.
5. f is a shape equivalence iff fo is a shape equivalence.
6. f x 1 is a shape equivalence iff f is such. 

Proof. We only show (3). Let f : X - Y and g : Y - Z. It follows
from the two preceding propositions that shape equivalences are closed un-
der composition. Let g f and f be shape equivalences. It is clear that g
is then a homotopy epimorphism. Let us show that it is also an extensor.
Given t : Y - P, there is a v : Z - P such that vg f = t f . Since f is a
homotopy epimorphism, the assertion follows. Let now g f and g be shape
equivalences and let ho, hl : Y - P, P E K be such that ho f ri hl f . There
are morphisms to, t1, : Z --+ P with tog f ri ho f and ti g f ri hl f . Since then
to = tl and g is a shape equivalence, it follows that ho ri hl.

We remark that a morphism f is a shape equivalence iff fo (and fo) is also
a shape equivalence. Hence, in studying shape equivalences we may restrict
ourselves to consider morphisms that are cofibrations. Moreover, in such a
context, condition (se.1 ) can be substituted by the stronger one expressed
by 1.2(7).
The definition of strong shape equivalence is more involved and we need
some informations in order to give it.
For objects X E C and P E K, we shall denote by 7rPx, the fundamental
groupoid of P under X, as defined, e.g., in [2]. Let us recall that the

objects of -7rPx are the morphisms X --+ P in C, while a morphism cx =

{G} E nPX(h0,h1), written a : ho ==&#x3E; hI is a track from ho to hl . This

means that cx is the equivalence class of G : X x I - P, with respect to
the following equivalence relation : G = G’ iff there is a homotopy r :
Y x I x I - P (rel end maps), that is having the following properties:

Conditions (3) and (4) say, respectively, that r(eo x 1) is the constant

homotopy at ho and that r(ey x 1) is the constant homotopy at hl.
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Let us note that, for every f : X - Y in C, there is an induced mor-

phism (functor) of groupoids f lp : 7rPy --+ 7rPx defined by h t---4 h f and
{G} ---+ {G(f x 1) }. Furthermore, homotopic morphisms f= f’ : X - Y
induce morphisms of groupoids f# p and f#p , which are naturally isomorphic
as functors ([2], pag. 240).

Definition 1.5 A morphism f : X --+ Y is called a strong shape equiva-
lence for (C, K) if it is an extensor and, moreover, f# p : TrPy ---+ 7rPx is full,
for every P E K.

The condition that f#p is full, for every P E K, is equivalent to f being
a strong homotopy epimorphism in the following sense: given in C
morphisms ho, h, : Y ---+ P, P E K, and a homotopy G : X x I --+ P, G :
hof= hl f , there exists a homotopy H : Y x I ---+ P, H : ho ri hl , such that
H( f x 1) and G are homotopic rel end maps. In case C is the category Top
of topological spaces and f is a cofibration then, by ([2], 7. 2. 5 ) , the above is
equivalent to say that H( f x 1) = G.
Such considerations lead us to give the following

Definition 1.6 A morphism f : X - Y in C is said to have the strong
homotopy extension property (SHEP) (w.r. to K), if the following diagram
is a weak colimit (w.r. to K)

It follows that in Top a cofibration is a strong homotopy epimorphism iff it
has the SHEP. Hence a map which is both a cofibration and an extensor is

a strong shape equivalence iff it has the SHEP.

Theorem 1.7 The class of strong shape equivalences for (C, K) has the
following properties:

1. Contains all homotopy equivalences.
2. It is closed under composition.
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3. If f : X - Y is a strong shape equivalence and f’ ri I, then f’ is also
a strong shape equivalence.

4. f is a strong shape equivalence iff fo is.

Proof. It is clear that the composition of strong shape equivalences is a
strong shape equivalence. Moreover, the Vogt’s lemma [16] implies that
every homotopy equivalence is a strong shape equivalence. (3). f’ is an

extensor by 1.2(4). Since f# p is full, for every P E K, and f’p is naturally
isomorphic to flp, it follows that it is full as well. (4). f l is a homotopy
equivalence, hence a strong shape equivalence. If fo is also a strong shape
equivalence, it follows that f is. Conversely, let f be a strong shape equiv-
alence. From f = fl fo, one has f0= fl f, where fl is the homotopy inverse
of f1. The assertion then follows from (3) above and 1.2(5).

2 THE DOUBLE MAPPING CYLINDER CONSTRUCTION

With the same notations as in the previous section, let us consider the

following diagram in C

Its colimit is an object DM( f , g) of C, equipped with three morphisms
j0 : Y --+ DM( f , g), j1 : Z - DM( f , g) and .K f,g : X x I ---&#x3E; DM( f , g),
such that KJ,ge6- = jo f , K f,ge1X = jig, and having the suitable universal
property [9]. It is called the double mapping cylinder of the pair ( f , g ) .
In case the two morphisms f and g coincide, then we speak of the double
mapping cylinder of f and write simply DM( f ) for DM( f , f ) and K f for
Kf,f.
It is worth to point out that the triple (DM( f , g), j0, j1 ) is actually the

homotopy pushout of the diagram Y +---f X ---+ g Z and DM( f ) is the case
where the two morphisms involved are the same. The situation can be better
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illustrated by the following diagram

where the two squares are commutative and, for every triple (ho, hl; H),
h0, h1 : Y ---+ P, P E C, and H : X x I --+ P a homotopy connecting
ho f with hl f , there exists a unique morphism, : DM( f ) ---+ P, such that
-yK = H and yjo = h0 ’Yjl = he.
Let us note that there is a unique morphism (D : DM(f) ---+YxI such that
4PKf = f x 1 and CP jo = e0y, CP j1 = eiY .

Remark 2.1 If f : X - Y is a continuous map, then DM( f ) may be
described as the ad,junction space (X x I ) U f (Y x 81), where 81 = {0, 1}. If

f is an inclusion map, then D M ( f ) is the subspace (X x I) U (Y x aI) of Y x I.
In case f is a (closed) cofibration, the inclusion lF: X x I U Y x aI ---+ Y x I
is also a closed cofibration ([14], Th.6). A discussion of the double mapping
cylinder of a continuous map can be found in [5], [15] and, more recently, in
[9], see also [6], [10] and [11].

A version of the following theorem was proved in [6], Thm. 5.2, for C the

category of compact metric spaces and proper maps and K = ANR.

Theorem 2.2 If 4l : DM(f) --+ Y x I is an extensor, then f is a strong
homotopy epimorphism.

Proof. Let ho, hl : Y - P, P E K, and let H : X x I - P be a homotopy
connecting ho f and hl f . From the double mapping cylinder diagram one
obtains a morphism, : DM( f ) ---+ P such that qjo = ho, yj1* = hl and

-yKf = H. Since F = pF(HF e0DM(f)) is an extensor, then HF eoDM(f ) is itself
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an extensor, by Prop. 1.2(3). Since it is also a cofibration, from Prop. 1.2(7),
it follows that there exists a G : M(lF) --+ P such that GII lFe0 DM (f) =y. From
the commutative diagram

it follows that G jlF is a homotopy connecting ho and hl . In fact :

Hence, f is a homotopy epimorphism. Finally, let us observe that G jlF( f x

1) = Gj lF lF K f = GII lF eo DM(f ) Kf = -yK f = H, from which it follows that 0
is full, for every P E K.

Corollary 2.3 If f : X - Y and lF : DM( f) - Y x I are extensors, then
f is a strong shape equivalence.

Proposition 2.4 Let f : X ---+ Y be a morphism in C. If f has the SHEP
w.r. to K, then lF is an extensor for (C, K).

Proof. Let p : DM( f) - P, P E K. Then, there is a morphism V :
Y x I - P such that V (f x 1) = pKf and Vey = pji, i = 0,1. Since

V4)Kf = V(f x 1) = pKf and V(Dji = YeY = pji , i = 0,1, by the universal
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property of the double mapping cylinder, it follows that VlF = p.

It is clear that an extensor f : X ---+ Y is a strong shape equivalence whenever
either lF is an extensor or f has the SHEP w.r. to K. These last two facts
turn out to be equivalent in the category of topological spaces, in fact,
together with the above proposition, there the following theorem holds :

Theorem 2.5 Let f : X - Y be a cofibration in Top. If lF : DM( f ) ---+
Y x I is an extensor for (Top, K), then f has the SHEP w.r. K.

Proof. Given maps ho, h, : Y ---&#x3E; P, P E K, and a homotopy H : X x I ---+ P,
connecting ho f and half, there exists a map, : DM(f) ---+ P, such that
-yKf = H and qjx = ha, A = 0,1. Since (D has the HEP, by Prop. 1.2(5),
there is a homotopy T, : Y x I ---+ P such that TlF = q.

We obtain the following relations :
i. r( f x 1) = TlF Kf = qKj = H,
2. rer = TlF jx = yjx = ha, A = 0, 1,

from which it follows that F is a homotopy connecting ho and hl.

Corollary 2.6 Let f : X--+ Y be a cofibration in Top. The following
properties are equivalent:

1. f is a strong homotopy epimorphism.
2. f has the SHEP.
3. lF is an extensor.

Remark 2.7 In view of 1.4(4) and 1.7(3), the assumption that f has to be
a cofibration is almost harmless.

Proposition 2.8 Let f : X - Y be an extensor such that f x 1 is a

cofibration. Then f is a strong shape equivalence iff it has the SHEP w.r.
to K.
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Proof. Let ho, hl : Y ---+ P, P E K, and let H : X x I --+ P be a homotopy
connecting ho f with h1f . If f is a strong shape equivalence, there is a homo-
topy G’ : h0= hl such that G’( f x 1)= H. Since f x 1 is an extensor and a
cofibration, then there exists a homotopy G = G’ such that G( f x 1) - H.
Finally, since f is a homotopy epimorphism, it follows that G : h0= hl.

Example 2.1 Let Met be the category of metrizable spaces and Ar be
the full subcategory of absolute retracts for metrizable spaces. Every closed
embedding f : X - Y in Met is a strong shape equivalence w.r. to Ar. In
fact, every closed embedding of metrizable spaces is an extensor ([1], pag.
87) and has the HEP w.r.to Ar (this is the Borsuk’s homotopy extension
theorem, [1], pag. 94). Note that also $ : DM( f ) - Y x I is a closed
embedding of metrizable spaces.

3 THE DUAL CASE

The results of the previous sections, concerning homotopy and strong ho-
motopy epimorphisms, can be dualized in order to treat the problem of
homotopy monomorphisms. We state here the appropriate dual concepts.

Starting again from a pair of categories (C, K), let us consider, for every
X E C, the set-functor [-,X] : K - Set, P - [P, X]. Every morphism
f : X-- -&#x3E; Y induces a natural transformation f * : [-X]--+ [-, Y] . The

morphism f will be called here a coshape equivalence whenever f * turns
out to be a natural isomorphism. Then, f will be a coshape equivalence if

(cse.l ) f is a retractor, that is, for every g : P - Y, P E K, there is
some h : P ---+ .X such that f h - g.

(cse.2) f is a homotopy monomorphism, that is, for every ho, hl :
P ---+ X, the fact that f ho - f hl implies that ho ri hl .

Note that also these notions are to be considered with respect to (C, K).
We will assume that C is now finitely complete and that it is endowed with
a generating cocylinder functor « - )1, fO, fl, B), as defined in [9]. Here

(-)I : C --&#x3E; C, X - X I , f - ,f I , and eo, ei : (-)I - 1C, s : 1C ---+ (-)I ,
are natural transformations such thateos = Els = id. The homotopy relation
used here is that induced by the cocylinder functor.
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Let us recall that a morphism f : X ---+ Y is said to have the homotopy
lifting property (HLP) w.r. to K, whenever the following diagram is a weak
pullback w.r. to K,

The mapping cocylinder of a morphism f : X --+ Y is the object E( f )
which appears in the following pullback diagram

Every morphism f : X--+ Y in C has a mapping cocylinder decomposition
f = fo fl , where f 1 is a fibration, that is, it has has the HLP w.r. to C,
and f0 is a homotopy equivalence.
We have now the notion of double mapping cocylinder of f , which is
defined by the limit

in C of the diagram

Here again one should be careful that, in general, one defines the double
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mapping cocylinder DE( f , g) of a pair X f---+ y+--- Z and that DE ( f ) is

just an abbreviation for the case where f and g coincide. Then DE(f) is
the homotopy pullback of X ---+ Y+--- X [9].
All the results of the previous section can be dualized for retractors, homo-
topy monomorphisms and coshape equivalences. For instance, let us note
that there is a unique morphism : XI --&#x3E; DE f ), having the property that
vfw = f I and u0w = E0Y , UIW = fro It is interesting to give the dual form
of Theorem 2.2 and Cor. 2.6, as follows:

Theorem 3.1 If w : X I ---+ DE(f)) is a retractor, then f is a homotopy
monomorphism.

Proposition 3.2 Let f : X ---+ Y be a fibration in Top. The following are
equivalent :

1. f is a strong homotopy monomorphism.
2. f has the SHLP.
3. Bl1 is a retractor.

The definition of strong homotopy monomorphism and strong homotopy
lifting property (SHLP) are the obvious ones.
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