The boolean prime ideal theorem holds iff maximal open filters exist
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 43 (2002) no. 4, p. 313-315
@article{CTGDC_2002__43_4_313_0,
     author = {Rhineghost, Y. T.},
     title = {The boolean prime ideal theorem holds iff maximal open filters exist},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {43},
     number = {4},
     year = {2002},
     pages = {313-315},
     zbl = {1029.03037},
     mrnumber = {1949661},
     language = {en},
     url = {http://http://www.numdam.org/item/CTGDC_2002__43_4_313_0}
}
Rhineghost, Y. T. The boolean prime ideal theorem holds iff maximal open filters exist. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 43 (2002) no. 4, pp. 313-315. http://www.numdam.org/item/CTGDC_2002__43_4_313_0/

[1] H. Herrlich: The axiom of choice holds iff maximal closed filters exist. Math. Log. Quart. 49 (2003)2, to appear. | MR 1979139 | Zbl 1027.03039

[2] K. Keremedis and E. Tachtsis: On open and closed ultrafilters in topological spaces without the axiom of choice. Notes, March 2002.

[3] M. Zisis: OFE is equivalent to BPI. Preprint, March 2002.