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A NOTE ON THE HOLONOMY OF CONNECTIONS IN
TWISTED BUNDLES

by Marco MACKAAY

CAHIERS DE TOPOLOGIE ET
GEOMETRIE’DIFFERENTIELLE CATEGORIQUES

Volume XLIV-1 (2003)

RESUME. Les fibrds vectoriels tordus avec connexions ont ete
consid6rds a diff6rents endroits (cf. Bouwknegt &#x26; Mathai [2],
Kapustin [8] et les références qu’ils donnent). Dans cette note

1’auteur considere les fibr6s principaux tordus avec connexions et il
dtudie leur holonomie, qui se formule le plus naturellement possible
en termes de foncteurs entre groupes catdgoriques.

Introduction

Let M be a connected finite-dimensional smooth manifold: The holon-

omy map corresponding to a connection in a principal G-bundle over
fi4 yields a smooth group homomorphism

where PL1(M) is the then fundamental group of M and G a Lie group.
In Section 1 the reader can find the precise definition of thin homotopy,
but intuitively a homotopy between two loops is thin if it does not

sweep out any area. This formulation of holonomy is due to Barrett [1]
(see also Caetano and Picken’s work [5]), who also proved that one can
reconstruct both the bundle and the connection from the holonomy.

A natural question is whether there are generalizations of Barrett’s
results which involve "higher thin homotopy types" of M. Caetano and
Picken [6] defined higher thin homotopy groups of M, denoted Pnn(M).
One way to describe the full homotopy 2-type of M, which contains
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more information than just P1(M) and P2(M), is by means of the fun-
damental categorical group of M, denoted C2(M) (see Section 1). Recall
that, a categorical group is a group object in the category of groupoids.
Pickerl and the present author [9] defined the thin fundamental categor-
ical .qr07J,p, denoted C22(M), which encodes the information about the
thin homotopy 2-type of M. In that same paper we showed that if M is
simply connected, then a smooth group homomorphism P22 (M) -&#x3E; U(1)
corresponds precisely to the holonomy map of a U( 1 )-gerbe with gerbe-
connection. If llil is not simply-connected we showed that the gerbe-
holonomy can be described as a smooth functor between C22 (M) and a
certain categorical group over P11 (M), derived from the canonical line-
bundle over the loop space of M corresponding to the gerbe.

This paper is about the next questio,rl: given an arbitrary categor-
ical Lie group, 9, what geometrical structure on M yields a holonomy
iui-ictor between C22 (M) and 9? Theorem 3.6 shows that, for transitive
categorical Lie groups, i.e. for those which contain an arrow between

any two objects, the answer is twisted principal bundles with connection,
which we define in Section 2.

1 Categorical groups
Definition 1.1 A categorical group is a group object in the category of
groupoids. Th,is rnea,ns that it is a groupoid with a monoidal structure
(a multipliction) which satisfies the group laws strictly. A categori-
cal Lie group is a group object in the category of Lie groupoids, which
mens that the underlying grou,poid is a Lie groupoid and that the tensor
product defines a smooth operation with smooth inverses.

For some general theory about categorical groups we refer to [3].
Throughout the paper, let M be a connected finite-dimensional smooth
manifold and let * be a base-point in M. Our first example in this paper
is the fundamental categorical group of M, denoted C2 (M) . We want to
work with smooth loops and homotopies in M, but the problem is that
their composites need not be smooth in general. However, there is a
subset of smooth loops and homotopies whose composites are smooth:
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Definition 1.2 [5, 6, 91 A based loop l: [0, 1] -+ M is said to have a
sitting point at to E [0, 1], if there exists an E &#x3E; 0 such that l is constant
on [to - E, to + e]. We denote the set of all smooth based loops in M with
0 atld, 1 as sitting points by Qoo(M).

Sirnilarly, a ba,sed homotopy H : [0, 1] x [0, 1] -&#x3E; M, which I call a,

cylinder, has a sitting point (so, to), if there exists an E &#x3E; 0 such that H
is constant on the disc with centre (so, to) and radius E in [0,1] x [0,1].
Th,e set of all smooth based homotopies ’with all points in the boundary
of [0, 1] x [0, 1] being sitting points is denoted by °2(M).

In order to define C2(M), we need to introduce the notion of thin ho-
rn,otopy:

Definition 1.3 [1, 5] Two loops, l and l’, are called thin homotopic if
there exists a homotopy between them whose rank is at most equal to 1

everywhere, which is denoted by l-1 l’.

Definition 1.4 [1, 5] The thin fundamental group of M, denoted

P11 (M), consists of all thin horrzotop y classes of elements in Qoo(M).
The group opera,tion is in,duced by the usual composition of loops.

We can define C2(M) as follows:

Definition 1.5 The objects ojC2(M) are the elements of P11(M), which
we t,Prnpora,rily denotes by 171.

Fo-r any a, 3, ry, p E Qoo(M) and for any homotopies G: a -&#x3E; B 
and H : 1 ---t p, we say that G and H are equivalent zf there exist thin
homotopies A : a -&#x3E; 7 and B : B -&#x3E; u such that

The morphisms between [-y] and [p] are the equivalence classes of

modulo this eqv,ivalence relation.
The usual compositions of loops and homotopies define the structure

of a categorical group on C2(M), as proved in [9J.
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Remark 1.6 The usual definition of the fundamental categorical group
of M yields a weak monoidal groupoid, because the objects are taken to
be th,e loops themselves rather than their thin homotopy classes. In [9]
Picken and the author defined this strict model.

Sirnilarly we can define the thin fundamental categorical group of M,
deIloted C22(M).

Definition 1.7 [6, 9] Two cylinder, c and c’, are called thin homo-
topic if there exists a h,omotopy between them whose rank is at most

eq’aal to 2 everywhere, which is denoted by c N c’.

Definition 1.8 [9] Th,e categorical group C22 (M) is de fined exactly as
C2 (M) except th,a,t the equiva,lence relation (1) is now

Next we show how to construct a categorical group from any central
extension of groups,

We first construct the underlying groupoid, denoted E x E/H =&#x3E; G.
This is a well-known construction due to Ehresmann (see [10] for refer-
ences). 

Definition 1.9 The objects of

are- the elements of G, the morphisms are equivalences classes in

E x E/H, where the action of H is defined by (el, e2)h = (elh, e2h).
Let 7/.s denote such an equivalences class by (e1, e2], and consider it

to he o, rnorphism f rom 7r(ei) to P(e2). Composition is defined by
[e 1, e2 h][e2, e3] = [e 1, e3h], where h E H. The identity morphism or un,it
of g G G x6’ taken to be 1. = [e, e], f’or any e E E such that P(e) = g.
The in/verse Of [e-1, e2l is [e2, ell -
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Lemma 1.10 The group operations on G and E induce a monoidal
structure on (3). The tensor product on objects is simply the group
operation on G. On rnorphisrrr,s the tensor product is defined by [e1, e2l Q9
[e3, e4] = [eie3, e2e4]. Because G and E are groups, this makes (3) into
(l categorical group.

Proof: Since the extension is central, the composition and tensor prod-
uct satisfy the interchange law, i.e.

vvll8Ilever both sides of the equation make sense. The other requirements
for a monoidal structure follow immediately from the group axioms in
Ga,lldE. D

Lemma 1.11 rl (2) is a central extension of Lie groups, then (3) yields
a, categorical Lie group.

Proof: It is well-known that E -7T4 G defines a principal H-bundle.
See [10] for a proof that (3) is a locally trivial Lie groupoid for any
principal H-bundle. Clearly the tensor product and the inverses are
smooth as well. 0

Clearly we can recover E from (3) by considering the subgroup of all
morphisms of the from [1, e] with the tensor product as group operation.
The target map then defines the projection onto G with kernel H. There
is a simple characterization of categorical groups coming from central
extensions.

Definition 1.12 A categorical group is called transitive, if there is a
monophism between any two objects.

Lemma 1.13 There is a bijective correspondence between transitive

categorical (Lie) groups and central extensions of (Lie) groups.

Proof: An arbitrary transitive categorical group, 9, corresponds, in the
way explained above, to the central extension



44

where g1(1, o) is the set of all 1-morphisms starting at the unit object, Go
is the set of all objects and t is the target map. The transitivity ensures
that t is surjective. In any categorical group t is a group homomorphism
and the interchange law, mentioned already in the proof of Lemma 1.10,
ensures that 91 (1, 1) is central in 91 (1,o). 0

Note that C2 (M) and Ci(M) are transitive if and only if M is simply
connected.

Remark 1.14 If g is not transitive, then it does not correspond to a
central extension, brt to something more general called a crossed mod-
ule. Fot- an explanation we refer to [3].

2 Twisted principal bundles and connec-
tions

A tlllJisted bundle is a geometric structure whose failure to be a bundle
is defined by an abelian Cech 2-cocycle. They appear in the literature
im several places [2, 8]. In this section I have tried to give a systematic
exposition of some basic facts about twisted bundles and connections,
using Brylinski’s construction [4] of the abelian gerbe which expresses
t,he obstruction to lifting a principal G-bundle to a central extension E
of G. Nothing in this section is new strictly speaking, but I hope that
writing out everything explicitly is useful for the reader.

Let U = {Ui: i E I} be a good covering of M of open sets, i.e. all

intersections

of elements of’ U are contractible or empty. From now on we fix a central
extension of Lie groups, denoted as in (2) .

Definition 2.1 A twisted principal E-bundle, usually denoted P, con-
sists of a prin,cipal G-bundle, P, and a set of local principal E-bundles
Q’Il q’-&#x3E; U,,, ’which allow for the natural projections Qi pi-&#x3E; Qi/H, together
with a set ot’ bundle isom,orphism,s ()i : Qi/ H -+ Pi = Plui and a set of
bundle isomorphisms Øij: Qilu,j -+ Qj|Uij such that Oji = 0-1 holds and
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the following diagrams commutes:

T’llJO tUJisted principal E-bundles, denoted P = (P, Qi, ()i, Oij) and P’ =
(pl, Q’i, ol O’ij), are equivalent if there are bundle isomorphisms Y: P -
P’ and (/)i: Qi -&#x3E; Q’i such that the following diagrdm commutes:

The following lemma is an easy consequence of our definitions and we -
leave its proof as an exeréise.

Lemma 2.2 The commutativity of’ (4) implies that there exists a

8rn,ooth Cech 2-cocycle on M with values in H, given by local functions
h’ijk: Uijk -&#x3E; H, such tha,t

holds, for arl,y q E Qi IUijk’
The  commutativity of (5) implies that there exists a Cech 1-cochain

n-rr, A4 ’uJith values in H, given by local functions hij : Uij -&#x3E; H, such that

h,ol(18, for any q E Qi|Uij. Furthermore, the equation

holds on ’Uijk. 
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Remark 2.3 Brylinski [4] shows that, given a principal G-bundle and
the, central extension, there is a canonical H-gerbe associated to them,
whose equivalence class is represented by hijk in the previous lemma.
Thle Qi ir, Def : 2.1 are local trivializations of that gerbe and each Oij is

an, isomorphism between two different trivializations. As he shows, one
can always choose (Qi, Øij) which define a twisted E-bundle and any two
chloices lead to equivalent twisted E-bundles.

Remark 2.4 Choosing trivializations of all Qi yields a definition of the
twisted E-bundle in terms o f smooth functions eij: Uij - E such that
Cji = Cij-1 and 

holds orc Uijk- Similarly, one can express the equivalence of twisted E-
by smooth functions ei : Ui -&#x3E; E satisfying

On Uij. 

Definition 2.5 A twisted principal E-bundle P = (P, Qi, ()i, Øij) is

cu,l,l,ed flat if the hijk in Lemma 2.2 are constant functions. Two flat
twisted princzpal E-bundles are called flat equivalent if there exists an
equivalence (Y, Øi) between, them, such that the hij in Lemma 2.2 are

constant funnctions.

Remark 2.6 From Brylinski’s study [4J of the obstruction gerbe already
mentioned we deduce at once that a flat twisted principal E-bundle is
equivalent, in the sense of our De finition 2.1, to an ordinary principal
E - bUrl,dle, but not necessarily equal to one.

Remark 2.7 If NI is simply-connected, then any transitive Lie alge-
b,t-oz’(1., with fibre L(E), can be integrated to a flat twisted principal E-
bundle according to Mackenzie’s results in[10j on the obstruction theory
.loT integrating transitive Lie algebroids to Lie groupoids. 1 His results

1 I thank Mackenzie for malcing this remark after a talk I gave in Sheffield on
twisted bundles.
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also show that equivalent Lie algebroids yield flat equivalent f lat twisted
principal bundles, at least if the choice of central extension is the same
(one can always mod out H and E by a discrete central subgroup, which
makes no diff-erence for the corresponding Lie algebras of course). There
is (J, good notion of a con,nection in a transitive Lie algebroid [10] and
’it semms likely that such a connection can be integrated to a flat connec-
tion ’in the corresponding flat twisted principal bundle, as defined below.
IT/, that case th,e res7ilts in this paper would provide a notion of holon-
moy fot- connections in transitive Lie a,lgebroids, even if they cannot be
to true principal bundles.

Next let us explain what a connection in a twisted principal E-
lmmdle, P = (P, Qi, ()i, Oij), is. Following Chatterjee’s terminology for
connections in gerbes [7], we distinguish between 0- and 1-connections.

Definition 2.8 A 0-connection in P consists of a G-connection, w, in
the principal G - bundle P and E-connections, ni, in the local principal
E-bundles Qi, such tha,t

hold.s, where * denotes the pv,sh-forward for connections.
Two twisted principal E-bundles, P and P’, with 0-connections,

(w, Th:) and (w’, ni’) respectively, are equivalent if there exists an equiva-
lence 

such that 

Remark 2.9 It, might seen that too m,a,ny 0-connections are equiva-
lent according to the definition above, but that is because we have not

yet defined 1-connections nor the equivalence between twisted principal
lbundles with both, 0- and 1-conm,ectzon.

In tIle following lemma we derive two easy consequences of (6) and
(7), tIle proof of which we omit. Note that the adjoint action of E
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on L(H) is trivial and, therefore, for any i E I, the associated bundle
Qi x L(H)/- is canonically isomorphic to the trivial bundle Ui x £(H).
Tlius any form on Qi, with values in the associated bundle above, that
vanishes on vertical vectorfields, can be canonically identified with a
form on Ui with values in L (H) .

Lemma 2.10 Equation (6) zmplies that there exists a 1-form on each
Ui.i with, values in L(H), denoted Aij, such that

holds. Furthermore, we h,a,ve Aji=Aij and

on Ui.jA:- Using the trivializations of Lemma 2.2 we get

on Uij. 
Equation (7) implies that there exists a 1-form on each Ui with values

in, £(H), (denoted Bi, such that

hold8. Furthermore, we have

n-rr, Uij. Using local trivializations we get

Remark 2.11 Given a G-connection in P, Brylinski [4] constructs a
connective structure for the canonical gerbe mentioned in Remark 2.3.
This consists o f a, local A1Ui, L(H)-torsor on each Ui together with some
data relating these different local torsors. A 0-connection in a twisted
bUr/Idle is nothing but an object in each torsor. Brylinski shows that
()-connections always exist.
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Definition 2.12 Let P be a twisted bundle with a 0-connection ni. A
1-connection in (P, ni) consists of 2-forms Fi on Ui with values in £(H)
.’;a,tis.f7jing

orl, Uij. 
A connection in, P consists of a 0-connection, (rJi), and a 1-

connection n;rr, (P, ni). 
Two twisted E-bundles, P a,rr,d P’, with connections, (ni,Fi) and

(ni’, FI) respectively, are equivalent if there exists an equivalence

such that 

’loh,er-e Bi was defined in Lemma 2.10.

Remark 2.13 A 1- connection is wh,at Brylinksi [4] calls a curving and
li,e shows that there al1uays exists one for a given abelian gerbe with
connective structures.

Definition 2.14 Let (P, Fi) be a twisted bundle with connection,
then the global 3-f orrrc on All with values in L(H) defined by

-r;.s called the curvature. Th,e connection is called flat if

on M.

The following theorem follows directly from Brylinski’s [4] analogous
result for abelian gerbes.

Lemma ’2.15 A twisted bundles is flat if and only if it admits a flat
connection.
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3 Holonomy
Let 9 be the categorical Lie group associated to a central extension
of Lie groups (2). In this section I first show how the holonomy of
a connection in a twisted principal E-bundle assembles nicely into a
functor 

and then I show that this functor contains all the information about the
twisted bundle and its connection.

Throughout this section a principal bundle with connection is al-

ways considered in terms of local forms P = (eij, gij, hijk, Ai, Di, Aij, Fi),
where (gij, D;) defines a principal G-bundle with connection, (eij, Ai, Fi)
define the local bundles Qi and the 0- and 1-connection in P and hijk
and Ajj were defined in the Lemmas 2.2 and 2.10.

Given a smooth cylinder

such that c(s, 0) = c(s,1) = * for all s e, [0,1], choose an open covering
of the image of c in M. Let Vi = c-1 (Ui), where Ui is an open set

in tlle covering of C([0,1]2). Next choose a rectangular subdivision of
[0, 1]2 such that each little rectangle Ri is contained in at least one open
set, which for convenience I take to be Vi. Denote the edge Ri n Rj by
Eij, and the vertex R1. O Rj n RkO Ri by Vijkl. Let E(c) E U(1) be the
following complex number:

The last two products are to be taken over the labels of contiguous
faces in the rectangular subdivision only and in such a way that each
face, edge and vertex appears only once. The convention for the order
of the labels is indicated in Fig. 1, and the orientation of the surfaces
im tllat picture is to be taken counterclockwise. If c is closed, then E
is exactly equal to the gerbe-holonomy as Picken and I showed in [9],
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Figure 1: concrete formula for gerbe-holonomy

so, in that case, its value does not depend on any of the choices that
were made for its definition. In general 6 depends on the choices that
we made in (10), of course. As a matter of fact, its value only depends
on the choice of covering of the boundary of c([0, 1]2), because changes
in tIle covering of the "middle" of c([0,1]2) do not affect E, which can

be shown by repeated use of Stokes’ theorem. Let us give one more
ill-defined definition. Let

be a loop, based at *, in M. Since g;j, D; is an honest principal G-
bundle with connection, one can define in the usual way their holonomy
along £, denoted by Ho (l) e H. When one tries to do the same for
Cij, Ai, the usual, formula for the holonomy is not well-defined. However,
this should not stop us. Let the image of l be covered by certain Ui
again, and choose a subdivision of [0, 1] such that each subinterval Ii is
contained in the inverse image of at least one open set, taken to be Vi .
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Let Vi,i+1 be the vertex Ii n Ii+ 1. Define 1-£1 (f) E E as

Im (11) Pexp f means the path-ordered integral, which one has to use
because E is non-abelian in general. For the same reason the order
im the product is important. We are now ready for the definition of
the llolonomy functor H, which of course has to be independent of all
choices.

Definition 3.1 Let l represent a class in 7ri(M) and define

As Ternarked already this is well-defined.
Let C: [0, 1)2 - All represent a class in C22(M)([l], [£’]). Define

Th,c ttext lemma shows that this is well-defined indeed.

Lemma 3.2 The holonomy functor 1i, as defined in Def. 3.1, is a well-
dc,.fined functor between categorical Lie groups

which is independent of all the choices that we made for its definition.

Proof: Showing that 1l preserves the categorical Lie group structures is
very easy, once it has been established that it is well-defined. Therefore
I only show the latter. To prove well-definedness one has to show two
t,hings: that (12) does not depend on the choice of covering of c, and that
(12) is equal for all representatives of the equivalence class of c. Let us
first prove the first of these two statements. As far as H1 (l) and H, (E’)
are concerned, it is clear that only the choice of covering of the boundary
of c effects their value. We already argued that the same is true for the
value of c, due to Stokes’ theorem. It now suffices to see what happens
when we introduce an extra vertical line in our rectangular subdivision
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Figure 2: change in covering

and a new covering of the new (smaller) rectangles at the boundary. In
Fig. 2 one can see such a change.

The notation is as indicated in those two pictures. Let us first com-
pare the values of H1 (l) in the two pictures. In the calculations below

the pull-back E* has been suppressed to simplify the notation. In the

first picture the part of H1 (l) that matters is equal to

a,nd in the second’ picture that part becomes

Now, we can rewrite (14) to obtain (13) times an abelian factor. In order
to do this we have to use the transformation rule for the path-ordered
integral:

I

Uaiy the equations satisfied by the Ai as a connection in a twisted
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principa) E-bundle, we see that (14) can be rewritten as

Using (15) we see that this is equal to

Fiiially, using that the coboundary of e is equal to h, we get

Of course a similar calculation can be made for H1 (l’) . A straightfor-
ward calculation using Stokes’ theorem, which I omit, now shows that
tIle inverse of the extra abelian factor in (16) times the extra abelian
factor in H1 (l’) cancel against the extra (abelian) factor in E(s) which
appears when it is computed for the same change in covering.

Next let us prove that (12) is constant on thin homotopy classes.
Let 

be two cylinders which represent the same class in C22(M) ([l], [l’]). We
have to show that
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Figure 3: snake

where li-1l and l’-1 £’ for i = 1, 2. Without loss of generality we may
assume that £2 = l and l’2 = l- Let A be a thin homotopy between l1
and l and let B be a thin homotopy between l’1 and £’, such that

If the same covering of the boundaries is used, then E(AC2B-1) = E(c1),
which follows from the general theory of gerbe holonomy developed
in [9]. Therefore we have

It only remains to prove that, for a fixed covering of the boundaries, we
liave

and

Given a rectangular subdivision of [0,1]2 as above, one can write the
loop around the boundary of [0,1]2 as the composite of loops which just
go around the boundary of one little rectangle Ri at a time and are
connected with the basepoint via a tail lying on some of the edges. See
Fig. 3 for an example, which is like a snake (follow the numbers, such
that each arrow is numbered on the left-hand side).
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. Note that the contribution of the 2-forms Fi for e (A) and e (B) is

trivial, because both A and B are thin. Using the transformation rule
for path-ordered integrals (15) in the same way as above it is not hard
to see that His (snake) equals

im the first case and

im the second case. Now recall that on each open set Ui we have an
honest principal E-bundle with an honest connection Ai, because only
globally these data do not match up. Therefore in both cases the value
of ll£ 1 around the boundary of each Ri equals 1, because A and B are
thin. The conclusion is that the expressions in (18) and (19) are both
equal to 1 as well. 0

Clearly the connection in P is flat if and only if 71 is constant on ordinary
liornotopy classes of cylinders, which happens if and only if 1i defines a
fllIlctor 1i: C2 ( M) -&#x3E;g. 

Note that the lemma above implies that the element

is well-defined for any c: [0, 1]2 -&#x3E; M. Kapustin [8) studied the special
case in which E = GL(n, C) and c(O, t) = * equals the trivial loop at
the basepoint. His main mathematical result about the holonomy of
connections in twisted vector bundles seems to be that tr(1i¡(f’)f(C)) is
a well-defined complex number in that particular case.

In order to understand the sequel, one should note that G acts by
conjugation both on itself and on E.

Definition 3.3 Given a holonomy functor, 1-l, one can define the con-
j’ugate holonomy functor Hg = g-1Hg, for any 9 E G, by

and 
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As a matter of fact there is a natural isomorphism between 1-£ and 1-£9
defined by

for a.yy loop l. Note that this natural isomorphism is well-defined in-
deed. 

Lemma 3.4 Equivalent twisted principal E-bund les with connection
gi’ue rise to colinjugate holonomy functors.
Proof: R,ecall that two twisted principal E-bundles with connections,
(lenoted ii, eij, hijk, Ai, Di, Aij, Fi and g’ij, e’ij, h’ijk, A’i, DL A’ij, Ff respec-
tively, are equivalent if

where Pi o ej = .9i. Thus we see that

holds, for any loop E, where by convention Uo is the open set that covers
the basepoint.

We now have to show that the identity

liolds, for any cylinder c : l1 -&#x3E; fl2. Using the transformation rule (15)
again we get
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Analogously we get

Using Stokes’ theorem it is now easy to see that e’ (c) cancels these two
abelian factors so that

Filially, the result follows from the observation that conjugation by go (*)
is equal to conjugation by eo(*), because E is a central extension. 0

Putting together Barrett’s [1] results about the reconstruction of

bundles with connections from their holonomies and Picken and my [9)
analogous results for gerbes, one now almost immediately gets the fol-
lowing lemma.

Lemma 3.5 Given a smooth junctor of categorical Lie groups

th,eTe exists a t,wzsted principal E-bundle with connection whose holon-
omy functor itS equal to 1i.

I.l1t z6’ t,h,e holonomy junctor oj a given twisted principal E-bundle
with connection, then the twisted principal E-bundle with connection
constructed from 1í is equivalent to the given one.

Proof: Barrett’s results [1] allow us to construct gij and Di for a given
holonomy functor. The rest of the proof relies on the same techniques
as employed in [9]. We only sketch the construction here. Let us see

what ei.i and Ai are in terms of the holonomy functor 1£. In [9] we chose
a fixed point in each open set, called xi E Ui, and a fixed point in each
double overlap, Xij E Uij. We picked a path from the basepoint * E M
to each :Ei and showed how to fix paths in Ui from Xi to any other point
in Ui and from xij to any other point in Uij. We also showed how to
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fix homotopies inside U? between any two homotopic paths in Ui. In

particular we got a fixed loop

for any point y E Uij. Call this loop lij(y). We also got a fixed homo-
topy, Cij(y), between lij, (xij) and lij(y). Now consider

Take a representative of H(cij (xij)) in E x E, which of course is of the
form (e, e). For any y E Uij, take the unique representative of (20) of
the form (e, e’ ) and define

The choice which this reconstruction of eij involves, corresponds to
gauge fixing. By convention we fix the representative of H(Cji(Xji))
to be (e-1, e-1 ) . Then the identity

follows immediately. Because we have

we can define the 2-cocycle

Note that this definition of the 2-cocycle is equal to the one given in [9].
Different choices of representatives of H(Sij(Xij)) in E x E yield an
equivalent twisted principal E-bundle.

Analogously we can reconstruct the Ai. Given a vector v E Ty (Ui),
we can represent it by a small path q(t) in Ui, whose derivative at t = 0
is equal to v . Then there is a loop
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Call it l1(q(t)). For each value of t, we can use the fixed homotopy in
Ui to get a homotopy, ci (q(t)), from the trivial loop at * to li(q(t)).
Consider

Define

It is not, hard to see that

is exactly the abelian 1-form that we reconstructed in [9]. The fact that
the definition of Ai(v) does not depend on the particular choice of q(t)
follows precisely from the same arguments that we used in that paper.

The reconstruction of the 1-connection Fi is exactly the same as
im [9], because it only depends on the value of the holonomy functor
aground closed cylinders.

The rest of the proof is similar to the proofs of the analogous results
for bundles and gerbes in [1] and J9] and we omit the details. 0

Clioosing a different basepoint in M and a path from that basepoint
to * yields an equivalence between the two respective thin fundamental
categorical groups. This equivalence induces an equivalence relation on
those holonomy functors li which correspond to the same equivalence
class of twisted principal E-bundle with connection. Just as for ordinary
connections, two holonomy functors are equivalent if and only if they
are conjugate by an element in G. Together with Lem. 3.2, Lem. 3.4
and Lern. 3.5 these remarks prove the following theorem:

Theorem 3.6 There is a bijective correspondence:

{twisted principal E-bundles on M with connectioni /-
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