Simplicial n-fold monoidal categories model all loop spaces
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 44 (2003) no. 2, pp. 105-148.
@article{CTGDC_2003__44_2_105_0,
     author = {Fiedorowicz and Vogt},
     title = {Simplicial $n$-fold monoidal categories model all loop spaces},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {105--148},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {44},
     number = {2},
     year = {2003},
     mrnumber = {1985834},
     zbl = {1052.18002},
     language = {en},
     url = {http://archive.numdam.org/item/CTGDC_2003__44_2_105_0/}
}
TY  - JOUR
AU  - Fiedorowicz
AU  - Vogt
TI  - Simplicial $n$-fold monoidal categories model all loop spaces
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2003
SP  - 105
EP  - 148
VL  - 44
IS  - 2
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://archive.numdam.org/item/CTGDC_2003__44_2_105_0/
LA  - en
ID  - CTGDC_2003__44_2_105_0
ER  - 
%0 Journal Article
%A Fiedorowicz
%A Vogt
%T Simplicial $n$-fold monoidal categories model all loop spaces
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2003
%P 105-148
%V 44
%N 2
%I Dunod éditeur, publié avec le concours du CNRS
%U http://archive.numdam.org/item/CTGDC_2003__44_2_105_0/
%G en
%F CTGDC_2003__44_2_105_0
Fiedorowicz; Vogt. Simplicial $n$-fold monoidal categories model all loop spaces. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 44 (2003) no. 2, pp. 105-148. http://archive.numdam.org/item/CTGDC_2003__44_2_105_0/

[1] J.M. Boardman, R.M. Vogt, Homotopy-everything H-spaces, Bull. Amer. Math. Soc. 74 (1968), 1117-1122. | MR | Zbl

[2] C. Balteanu, Z. Fiedorowicz, R. Schw" Anzl, R.M. Vogt, Iterated monoidal categories, to appear. | MR | Zbl

[3] J.-M. Cordier, Sur la notion de diagramme homotopiquement coherent, Cah. Topologie Geom. Differ. 23 (1982), 93-112. | Numdam | MR | Zbl

[4] J.-M. Cordier and T. Porter, Homotopy coherent category theory, Trans. Am. Math. Soc. 349 (1997), 1-54. | MR | Zbl

[5] M. Artin, A. Grothendieck, J.L. Verdier, Théorie des topos et cohomologie étale des schémas, Springer Lecture Notes in Mathematics 269 (1972). | MR

[6] R. Godement, Topologie algébrique et théorie des faisceaux, Paris: Hermann, 1973. | MR | Zbl

[7] A. Joyal and R. Street, Braided tensor categories, Advances in Math. 102(1993), 20-78. | MR | Zbl

[8] C. Kassel, Quantum Groups, Springer-Verlag, 1994. | MR | Zbl

[9] D.M. Latch, The uniqueness of homology for the category of small categories, J. Pure and Appl. Algebra 9 (1977), 221-237. | MR | Zbl

[10] S. Maclane, Categories for the working mathematician, Springer-Verlag, 1971. | MR | Zbl

[11] J.P. May, The geometry of iterated loop spaces, Lecture Notes in Mathematics, Vol. 271, Springer, 1972. | MR | Zbl

[12] D.G. Quillen, Higher algebraic K-theory I, Springer Lecture Notes in Math. 341 (1973), 85-147. | MR | Zbl

[13] R. Street, Two constructions on lax functors, Cahiers Topologie Geometrie Differentielle 13(1972), 217-264. | Numdam | MR | Zbl

[14] R.W. Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Phil. Soc. 85(1979), 91-109. | MR | Zbl

[15] R.W. Thomason, Symmetric monoidal categories model all connective spectra, Theory and Appl. of Categories 1 (1995), 78-118. | MR | Zbl

[16] R.M. Vogt, Convenient categories of topological spaces for homotopy theory, Arch. Math. 22 (1971), 545-555. | MR | Zbl

[17] R.M. Vogt, Homotopy limits and colimits, Math. Z. 134 (1973), 11-52. | MR | Zbl