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SHEAVES FOR AN INVOLUTIVE QUANTALOID
by W. Dale GARRA WAY

CAHIERS DE TOPOLOGIE ET

GEOMETRIE DIFFERENTIELLE CATEGORIQUES
Volume XLVI-4 (2005)

Abstract

Dans cet article, nous explorons d’abord les ensembles a valeur 
dans Q, un quantaloide avec involution. Nous d6finissons alors
la cat6gorie des pr6faisceaux de Q comme des foncteurs a valeur
dans les ensembles a partir desquels nous définissons les faisceaux
en termes de la propriété d’amalgamation unique de familles
compatibles. A partir de ceci, nous montrons que la cat6gorie
des ensembles a valeur dans Q est 6quivalente a la cat6gorie des
faisceaux quand Q est "pseudo-rightsided" .

1 Introduction

In 1984 Higgs[9] showed that, for a complete Heyting algebra 1-£, the
category of H-valued sets is equivalent to the category of sheaves on H.
His category of H-valued sets is equivalent to the category of left adjoints
in the symmetric idempotent splitting completion of the category of
matrices on H. It is well known that the category of D7i-valued sets is
equivalent to the presheaf category SET1toP, where DH is the complete
Heyting algebra of down sets of H. The following diagram represents
these results

Around the same time Mulvey, building on the Gelfand-Naimark the-
orem, explored the lattice of closed linear subspaces of a C*-algebra
and called the general form a quantale[11]. A quantale is a one object
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supremum enriched category and is a generalisation of complete Heyt-
ing algebras. The results led to the study of sheaves on a quantale
Q in terms of Q-valued sets. There have been different definitions of

Q-valued sets, but all begin with matrices of Q as their starting point.
A couple of years later, extending the work of Freyd and Carboni-

Walters, Pitts worked with supremum enriched categories (quantaloids)
and showed that a subcategory of the category of quantaloids, called
bounded complete distributive categories of relations (bcDCR), is equiv-
alent to the opposite category of grothendieck toposes. In fact the equiv-
alence is given by the functors MAP -1 REL : GtopoP --&#x3E; bcDCR where
REL takes a Grothendieck topos to the category of relations and MAP
sends a bcDCR to the category of left adjoints[15]. The completion
of a bounded distributive category of relations is given by taking the
category of matrices and splitting the symmetric idempotents. This

gives the completion with respect to coproducts and the splitting of
symmetric idempotents. Any complete Heyting algebra is a bounded
distributive category of relations and the category of left adjoints in the
completion is the category of H-valued sets of Higgs. This result points
the way to defining the category of sheaves on a quantaloid Q as the
category of left adjoints in the idempotent splitting completion of the
category of matrices on Q. This category has been studied by Van den
Bosche[17] and most recently by Gylys[7].

In this paper we define the categories of Presheaves, SETQop, for
Q an involutive quantaloid and by extending the equivalence of Higgs
we define the category of sheaves for Q a pseudo-rightsided quantaloid.
We begin with an exploration of the category of Q-valued sets and the
notions of strictness and completeness of a Q-valued set. By utiliz-
ing the relationship between the one object supremum enriched view
of a Heyting algebra and the traditional multiobject view we construct
the category of presheaves for Q. Using the work of Merovitz[10] as
a template we generalise the equivalence of Higgs to pseudo-rightsided
quantaloids and show that the category of Q-valued sets is a reflective
subcategory of the category of presheaves. This result guides us to the
definition of the category of sheaves for Q in terms of the unique amal-
gamation of matching families. It now follows that every Grothendieck

topos can be formulated in this way.
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2 Q-valued sets for quantaloids
We begin with an exploration of quantaloids and Q-valued sets for Q a
quantaloid, but before that we introduce the concept of semicategories.

Definition 2.1 A semicategory C consists of
. A set of objects ICI
. For each pair of objects A, B, a set of morphisms C(A, B).
. For each triple of objects A, B &#x26; C, a function, called composition,

OABC : C (B, C) x C (A, B) --&#x3E; C (A, C)
which satisfies the associativity axiom. 10,

We represent the composite OABC (f , g) by f o g or just fg. A semi-
category is then a category without the identity axioms.

Example 2.1 A one object serrLicategory is a semigroup, where we take
the morphisms as the elements of the semigroup. 0 

Example 2.2 We can construct a one object semicategory out of a C*-
algebra A by taking as the morphisms the elements in A and the com-
position of morphisms is determined by the multiplication in A. This is
a category if and only if A is unital. 0

Definition 2.2 Let V be a rraonoidad category. A V-semicategory con-
sists of

. A set of objects |C|.

. For each pair of objects A, B, an object C(A, B) of V.

. For each triple of objects A, B &#x26; C, a V-morphisrrc

which satisfies the associativity axiom. 0

We represent the composite &#x26;(p, q) by either p&#x26;q or just pq. This
differs from V-categories by the removal of the identity axioms.
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Definition 2.3 If C and D are V-semicategories, then a V-semifuntor
F : C - D consists of

. A function F :|C| -&#x3E; |D|.

. For each pair of objects A, B a V-rraorphism

such that for any triple of objects, A, B &#x26; C, the following square com-
mutes.

Our particular interest will be with the monoidal category SUP of
complete supremum lattices and suprema preserving functions.

Definition 2.4 A quantaloid Q is a supremum enriched semicategory.

The composition of morphisms in a quantaloid thus satisfies the
following equations

for all morphisms p and q of Q and for all families of morphisms pi and
qi . In a quantaloid Q each morphism set Q(A, B) has a distinguished
morphism, T AB, which is the supremum of all morphisms in Q(A, B) . A
one object quantaloid is frequently called a quantale. If the quantaloid
Q is in fact a supremum enriched category, then we will say that Q is
a unital quantaloid.
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Example 2.3 A complete Heyting algebra 1-£ is a unital quantale with
an identity element T . In particular the lattice of open sets of any
topology is a quantale. 0

Example 2.4 The powerset of a semigroup 9 is a quantale with the
composition of two subsets X, Y equal XY = {xy |x E X and y E Y}. If
9 is a group, then it is unital with the subset {e} acting as the identity.&#x3E;

Example 2.5 Mulvey[llJ showed how to construct a quantale, called
MAX (A), out of a C*-algebra A, where the morphisms are taken to be
the closed linear subspaces of A. The composition of two linear subspaces
X and Y is given by setting XY = closurefxy I x E X and y E YI.
If A has an identity element, then MAX(A) is unital iuith the identity
the subspace generated by the unit. 0

Example 2.6 The category with sets as objects and relations as mor-
phisms is a quantaloid. In general for £ a Grothendieck topos, the cat-
egory of relations onE is a quantaloid. &#x3E;

Example 2.7 A distributive category of relations (DCR) is a uni-

tal quantaloid that is cartesian (see [15J) and every object is discrete

(See[15],[4]). It is complete (CDCR) if it has all coproducts and all sym-
metric idempotents split (for the latter we invoke the fact that every
DCR is involutive). A DCR is bounded (denoted bDCR) if there is a
srraall set of objects G that has the property that

lA = V{pq I codomain(q) = domain(p) E G and pq  1A}.

A one object bDCR is a complete Heyting algebra and for E a Grothen-
dieck topos the category of relations of £ is a bounded and complete DCR
(denoted bcDCR). 0

Recall that the Gelfand-Naimaxk theorem tells us that the category of
locally compact Hausdorff spaces is equivalent to the category of com-
mutative C*-algebras and that the existence of a unit in the C*-algebra
is encoded in the equivalence with compact Hausdorff spaces. It has
thus been interpreted that the study of non-commutative C*-algebras
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is the study of non-commutative topologies. When trying to generalise
to all C*-algebras one should work with semicategories. Mulvey[11]
interpreted the quantale MAX (A) as an appropriate notion of non-
commutative topology.

Definition 2.5 Let Q be a unital quantaloid. A morphism q : A --&#x3E; B
is a map if there exists an arrow q# : B - A such that

where, the arrows lA and 1B respectively represent the identity arrows
on the objects A, and B . 0

Denote the relationship between q and q# by q -1 q#.

Definition 2.6 Let Q be a unital quantaloid. The category MAP(Q),
of maps for Q, has objects I QI, the objects of Q, and arrows, the maps
in Q. 0

Example 2.8 Pitts[15] showed that the functor

which sends a bcDCR to its category of maps, is an equivalence of cat-
egories. For the particular case when Q is the quantaloids of relations
the maps are just the functions. &#x3E;

In MAP(Q) we have the following well-known results.

Theorem 2.1 If Q is a supremum enriched category and A q B is
a map in q, then the following hold

1. q = qq#q

2. q is a monomorphism if and only if lA = q#q.

3. q is an epimorphism if and only if 1B = qq#
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4. q is an isomorphism if and only if it is both a monomorphism and
an epimorphism

Proof:

1) 9 = q1A  qq#q 1Bq = q.
2) If lA = q#q and qpl = qp2 for morphisms Pl and p2, then

If q is a monomorphism, then since qlA = qq#q, we have 1A = q#q. By
duality we get 3) and 4). 1

Definition 2.7 A quantaloid Q is involutive if there is a SUP-semi-
functor of the form ()* : Qop-&#x3E; Q, that is the identity on objects and
satisfies ()*op()* = 1. 0

If Q is involutive, we thus have for morphisms p, q and qi

Involutive quantales were introduced by Mulvey to aid his research
on C*-algebras. See, for example, his work with Pelletier in [13].

Example 2.9 By definition C*-algebras come equipped with an invo-
lution, which passes down to the associated quantale MAX (A). For X,
a linear subspace of A, define X* to be the linear subspace {x* x E X}.
0

Example 2.10 A complete Heyting algebra is involutive with the in-
volution the identity rnorphisrn. More generally, any quantale where the
morphisms commute has the identity morphism as an involution. 0

Example 2.11 The power set of a group 9 is involutive with the in-
volution determined by the inverse. If X is a subset of g, then X* =
{x-1 I x E X}. 
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Example 2.12 The quantaloid of Relations has an involution given
by taking the inverse relation. In general every DCR has a canonical
involution, which is definable from the given structure (see, for example,
[4J or [15J). 

Definition 2.8 Let Q be an involutive quantaloid. Q satisfies Freyd’s
law of modularity[6] if every triple of arrows r : A - B, s : B - C
and t : A - C satisfies sr A t  s(r A s*t). &#x3E;

Example 2.13 All Heyting algebras satisfy Freyd’s law of modularity.
This is trivial since in this case we have s A r A t  s A (r A s A t). 0

Example 2.14 The powerset of a group 9 satisfies Freyd’s law of mod-
ularity. Suppose that g is in XY A Z then g is in Z and XY. So there
exists h E X and k E Y such that g = hk. It now follows that k E X*Z
thus g is in X(Y A X * Z) . 0

Example 2.15 The quantaloid of Relations satisfies F’reyd’s law of
modularity and, in particular, every DCR does as well. &#x3E;

We will say that a map q : A - B is symmetric if q -1 q* and denote
the semicategory of symmetric maps by MAP* (Q). The following result
gives us a situation in which all maps are symmetric.

Theorem 2.2 Let Q be an involutive unital quantaloid. If Q satisfies
Freyd’s law of modularity and if q is a map, with q -1 p, then p = q*
(Note: for simplicity we have set q# = p).

Proof: First
qp = qpp p:5 p*p and p*q* = p*q*qq*  qq*.

Using these inequalities we now apply the law of modularity and show
that p  q*.
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In a similar way we show that q*  p thus p = q* . ~

The next definition is a sufficient condition for the main results that

follow. It would be interesting to know if it is also a necessary condition.
It is suspected not to be the case.

Definition 2.9 For Q an involutive quantaloid, Q is pseudo-rightsided
if for every arrow q : A - B, qq* q q implies that qq* q = q. 0

Observe that for a C*-algebra A, if a closed linear subspace A of
A satisfies AA*A  A, then it follows that AA* and A*A are sub C*-
algebras of A. Thus there is an approximate unit made up of elements
of A and A* and so it seems likely that if AA*A  A, then we should
pick up all of A (we have not been able to show that this is true) .

Lemma 2.3 If the quantaloid Q satisfies Freyd’s law of modularity
and if for every morphism q : A --&#x3E; B, q qTBB, then Q is pseudo-
rightsided (Recall that T BB is the top arrow in Q(B, B)).

Proof: For every morphism q : A - B we have

If the quantaloid Q is a category, then q qTBB for every object B.
This result tells us that every bcDCR is pseudo-rightsided and so the
results that follow carry over to every Grothendieck topos.

3 Q-valued sets

Expanding on the work of Higgs, Pitts, Gylys and others we construct
the category of Q-valued sets and then explore some subcategories. In
the particular case where Q is pseudo-rightsided we will see that all of
these subcategories are equivalent. The exploration of these categories
isolates the relevant details that come into play when we explore the
category of sheaves on Q. We begin with the category of matrices on a
quantaloid.
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Definition 3.1 For Q an involutive quantaloid, Mat(Q), the category
of matrices consists of

o Objects: Pairs (X, pX) where X is a set
and px : X --&#x3E;|Q|

v

Note the usual definition of a matrix would have M : (Y, py) --t (X, pX).
Also note that M(y, x) is a Q-morphism from px (x) to pY (y)

It is easy to show that the semicategory of matrices on a quantaloid
is a quantaloid with the supremum defined pointwise. If the quantaloid
is unital, then the semicategory of matrices is unital, with the unit
given by the diagonal matrix Ax. It is also the completion of Q as
a quantaloid with respect to all coproducts (see, for example, [5]). If

Q is involutive, then MAT(Q) is involutive with the involution, ()° :
MAT(Q)op--&#x3E;MAT(Q), on a matrix N : X--&#x3E; Y defined by N°(y,x) =
N(x, y)*, for a matrix N.

Recall that for a lattice G the supremum is left adjoint to the down
functor, D : L --&#x3E; D(L). This extends to matrices on a unital quantaloid
in the following way. For M : X -&#x3E; Y, a matrix on Q, define the functor
DM : X -&#x3E; Y to be the matrix on DO given by DM(y, x) = (M(y, x))|.
In this case D does not preserve the composition of morphisms, since it
is being asked to relate unions to supremums. Thus D is a lax functor.

Now given N : Z W, a matrix on DQ, define V N : Z - W to
be the matrix on Q where (V N) (w, z) = V{q I q E N(w, z)}. In this
case it is easy to see that V : MAT(DQ) - MAT(Q) is a functor.

Since the supremum distributes over the composition of arrows we
can show that the composite V oD is the identity functor on MAT(Q).
Let Ax be the identity matrix on the set X in the category of matrices,
MAT(DQ). By setting ex = 6.x we obtain a lax transformation[5]
6 : 1MAT(DQ) -&#x3E; D o V. So, in a sense, we can say that V is lax left
adjoint to D.

Definition 3.2 For Q an involutive quantaloid, the semicategory of
modules of Q consists of the following
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. Objects: endo arrows q : A -&#x3E; A that satisfy qq  q and q* = q.

9 Arrows: a morphism p : q, - q2 is a Q-morphism that satisfies

Denote the semicategory of modules on Q by MOD(Q). Since
modules are defined by an inequality the lax adjunction from above,
V -lidx D : MAT(DQ) -&#x3E; MAT(Q), easily extends to give a lax adjunc-
tion V Hiax D : MOD(MAT(DQ))-&#x3E; MOD(MAT(Q)).

In the literature symmetry(q = q*) is usually not required for a mod-
ule (see for example Betti[3]). They are also frequently called bimodules
(see for example Rosenthal[16]).
Definition 3.3 For Q an involutive quantaloid, the symmetric idem-
potent splitting completion of Q consists of the following

. Objects · endo arrows q : A - A that satisfy qq = q and q* = q.

. Arrows. a morphism p : 91 - q2 is a Q morphism that satisfies

We will denote the symrnetric idempotent splitting corrapletion of Q by
KAR*(Q). The idempotent splitting completion is also know as the
Karoubian envelope, hence the notation. 0

The lax adjunction that exists for matrices and modules does not ex-
tend to the idempotent splitting completion. Since D does not preserve
the composition, it does not preserve the objects.
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Definition 3.4 Let Q an involutive quantaloid. The category, Q-Set,
of Q-valued sets consists of

9 Objects: Triples (X, pX , dX), where (X, px) is a matrix object
and Jx : (X, pX) -&#x3E; (X, pX) is a matrix arrow
satisfying

&#x3E;
It is easy to see that the category MAP* (KAR*(MAT(Q))) is the

category of Q-valued sets. When the context is clear we will drop the
subscript from 8x and px.

Example 3.1 For Q an invodutive quantaloids and q : A -&#x3E; A a sym-
metric idempotent. arrow in Q there is a Q-valued set [q] = ({*}, Pq, 8q)
where p(*)=A and Jq(*, *) = q. These objects are known as singletons.
It is clear that every Q-valued set of the forrn ({*}, p, 8) is equal to [q]
for some symmetric idempotent. arrow q. For p : ql -&#x3E; q2 an arrow

in MAP*(KAR*(Q)) there is a Q-Set morphism ap : [ql] - [q2] where
ap(*, *) = p and that all such morphisms must be of this form. It follows
that the full subcategory of Q-Set generated by the singleton Q-valued
sets is isomorphic to the category MAP* (KAR*(Q)). &#x3E;

4 Complete Q-valued sets

Integral to the work of Higgs was the notion of singletons. For his result
Higgs made use of the fact that for a complete Heyting algebra an H-
valued set (X, dX) can be recovered from the morphisms of the form
[q] a (X, dX) via Va aao = 8 x, where the supremum is taken over all
morphisms with domain [q] and codomain (X, 8x).
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Definition 4.1 For (X, pX, dX) a Q-valued set a Singleton morphism
is a morphism [q] fl (X, pX, dX). 0

We will usually denote a(x, *) by a(x). A singleton morphism is
then an X-indexed family of arrows with common domain that satisfies
for all x, x’ E X

Definition 4.2 For (X, pX, dX) a Q-valued set we say that x E X is
strict if for every x’ E X we have

and

v

If every x E X is strict, then we say that (X, px, 8x) is strict. Denote
the full subcategory of Q-Set generated by the strict Q-valued sets by
strict(Q).

Example 4.1 If x is a strict element of (X, px, 8x)’ then there is a
singleton morphism [x] ax (X,Px,8x) given by ax = 8(-,x), where
[x] is the singleton Q-valued set associated to the symmetric idempotent
8(x,x). 0

Lemma 4.1 If Q is a pseudo-rightsided quantaloid, then Strict(Q) is
equal to Q-Set.

Proof: If (X, px, 6x) is a Q-valued set, then by pseudo-rightsidedness
we have

by pseudo-rightsidedness
since ddd 56

since ddd
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Thus d(x, x) &#x26; d(x, x’) = d(x, x’). Similarly for d(x’, x) &#x26; d(x, x) =
d(x’, x). I

Thus for every distributive category of relations Q, every Q-valued
set is strict. In particular, when E is a Grothendieck topos the Q-valued
sets of the quantaloid REL(£) are all strict.

Definition 4.3 A Q-valued set (X, pX, dx) is atomic if

where the supremum is taken over the singleton morphisms with codo-
main (X, pX, dx). 0

Denote the full subcategory of Q-Set generated by the atomic Q-
valued sets by Atomic(Q). We will show that the category Atomic(Q) is
equivalent to the category Strict(Q). In many of the subsequent proofs
it is the atomic property that is needed as opposed to strictness.

Lemma 4.2 If (X, pX, dX) is strict, then it is atomic.

Proof: This follows because we have -y-y’ dx for all singleton mor-
phisms -y and by strictness we have

We now build an equivalence i= A : Atomic(Q) --&#x3E; Strict (Q) which
makes use of the singleton morphisms. We will later show that A factors
through a functor category, SET Qop, when Q is pseudo-rightsided. We
then use this to define sheaves for Q.

If (X, px, dx) is a Q-valued set, then there is a Q-valued set

where

a is a singleton morphism}
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0 p- is defined by p ( a : [q] -&#x3E; (X, pX, dX)) = A where A!4 A.

. J(a,/3) =aoB.
To show that J is an idempotent observe that aoyyoB  0:°/3. When

-y equals a we have ao aao B= a°/3 thus J is an idempotent. (X, p, S) is
strict since

for all singletons a and B. Since (X, p, d) is strict it is atomic.
For (X, pX, dX) R (Y,py,8y) a morphism of Q-valued sets there is

a morphism A(R) = (X, p, d) R (Y, p, d) given by R(a,B) = a°RB. We
immediately have the following

Lemma 4.3 Q-Set A Strict (Q) is a lax functor.
Proof: For composable morphisms R and S observe that

We have equality when codoma,in(S) is atomic. Thus A is a functor
from Atomic(Q) to Strict(Q).

Lemma 4.4 If (X, pX, dX) is atomic, then (X, pX, dX) is isomorphic
to (X, p, S)
Proof: Define the isomorphism (X, px, dx) 1 (X, p, d) by setting
e(a, x) = aO(x). It is easy to check that e is a morphism and to see that
it is an isomorphism. Observe that
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and

For i : Strict(Q) -&#x3E; Q-Set, the inclusion functor, we thus have
Al = 1 Strict(Q). There is a natural isomorphism 77 : lA-&#x3E; 1Q-set given
by setting nx(x, a) equal to E° (x, a), which is just a(x), for each Q-
valued set (X, pX, dX). Thus A is right adjoint to the inclusion.

We now have the following equivalence of categories.

Theorem 4.5 If Q is an involutive quantaloid, then Strict (Q) is equiv-
alent to Atomic (Q)

Proof: The equivalence is witnessed by the functors

Definition 4.4 A Q-valued set (X,Px,8x) is complete if it is strict
and every singleton is of the form ax = 8( -, x). 0

Denote the full subcategory of Q-Set generated by the complete
Q-valued sets by Comp(Q).

Lemma 4.6 If(X,Px,8x) a Q-valued set, then (X, p, 6) is Complete

Proof: We want to show that for a singleton [q] --&#x3E;A (X, p, d), A has
the form 8(-,a) for some singleton a : [q] -&#x3E; (X, pX, dX). To this end
examine
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Our goal is to show that A(O, *) = d(B, a), where the latter is equal to
V{B°(*,x) &#x26; a(x,*)}. Comparing with the last line of the equation
x

above we define a to be the matrix

It is now easy to show that a is a singleton morphism on (X, pX, dX)
from which it follows that A = 8( -, a) (we denote the latter by Aa). I

The following is an immediate consequence of this.

Theorem 4.7 If Q is an involutive quantaloid, then the categories
Strict(Q) and Comp(Q) are equivalent.
Proof: The equivalence is given by

5 Subobjects
The category of Q-valued sets has a terminal object, 1 = (I Ql, p, T),
where T (A, B) = TBA is the top arrow from B to A (Note: we as-

sume that TBC&#x26;TAB = TAC). For any object, (X, Px, 6x), there is a
morphism , given by
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It is easy to see that this is in fact a morphism of Q-valued sets. If S

and R are morphisms between (X, pX, dX) and (|Q|, p, T), then we have

Thus S = R and so (|Q|, p, T) is terminal.
Each morphism of Q-valued sets factors as an epimorphism followed

by a monomorphism in two canonical ways via

It follows that a subobject, (X, pX, dX) - (Y, py, dy), can be formulated
via the factorizations as follows

Using the first factorization, a subobject of (Y, py, 8y) is isomorphic to
one of the form (Y, p, 8’), where 6’  6 and 6’6 = 6 = 66’. When Q is an
involutive quantale the subobjects of the terminal object are singletons
[q]-&#x3E;aq ({*}, T), where q is a two-sided symmetric idempotent. That
is q&#x26;T = q = T&#x26;q and qq = q = q*. Thus the lattice of subobjects
of the terminal object, sub (1), is the lattice of two-sided symmetric
idempotents.

6 Presheaves

When defining the category of presheaves for an involutive quantaloid
we use the fact that for H, a complete Heyting algebra, the regular
interpretation of H as a partial order can be recovered from the one-
object quantale interpretation, HQ, via
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Observe that each morphism in MAP*(KAR*(xQ) is a monomorphism.
Recall that for a quantaloid Q, MAP*(KAR*(Q)) is equivalent to the
full subcategory of Q-SET generated by the singletons. We will denote
the category of monomorphisms in MAP*(KAR*(Q)) by Q.

Let sub(T) be the lattice of subobjects of the top element of Q. For
Q a quantale, sub(T) is a sub-lattice of Q. In particular we may have
an arrow ql --&#x3E;p q2 in Q while q2 may not be a subobject of T. From
previous comments [q2l is a subobject of [T] if and only if q2 is a two-
sided symmetric idempotent. If H is a complete Heyting algebra we do
have HQ equal to sub(T) equal to 7-l.

Definition 6.1 Let Q be a quantaloid. The category of presheaves on
Q is the category SETQop. 0

Given a presheaf F, an arrow ql --P+ q2 and x E F(q2) denote
F(p)(x) E F(qi) by x|p. We say that x is restricted to p.

We now build an adjunction -D - Y : SETQop-&#x3E; Comp(Q) from
which we will define the category of sheaves on Q 

Let (X, pX, 8x) be a complete Q-valued set and define a presheaf
O((X, px, 8x)) = Fj as follows

. On Objects A 1 A:

. On Arrows q I q’:
For a morphism of Q-valued sets, (X, pX, dX)R-&#x3E; (Y, pY, dY), define

a transformation (D(R) = FdX -&#x3E;TR F5, by setting TR (q) (a) = Ra. It is

easy to show that for Q a quantaloid (D is a functor (In fact it is functor
from Q-Set to SETQop). 

Define the functor W : SETQ op-&#x3E; Comp(Q) first by defining a
functor W : SETQop -&#x3E; DQ-Set. Recall that DQ is the quantaloid
whose objects are as in Q and a morphism from A to B is a down
set in Q(A, B) . Given a presheaf Qop -&#x3E;F SET define a DQ-valued set

1 by
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such that x E F(q) and

Let F -&#x3E;T G be a transformation. Then a morphism of Q-valued sets,
, is defined by

where, for x e F(q), Tx is the element Tq (x) of G(q) . Note that RT (y, x)
is equal to dG(y, Tx)

Theorem 6.1 SETQop-&#x3E;Y DQ-Set is a functor, If Q is a pseudo-
rightsided quantaloid

Proof: We first need to show that for a presheaf F, dF is an idem-
potent matrix. We have that dF  dFdF since if p1p2* E dF (x, y), then
p1p*1p1p2* which equals p1p2* is contained in dFdF(x, y).

Now assume that p1p2*p3p4* E dFdF(x, z) .
if p 1 : r 1 -&#x3E; 91, p2 : r1 -&#x3E; q2, P3 : r2 -&#x3E; 92, P4 : r2 -&#x3E; 93 are

the arrows in Q that witness p1p*2p3p4 E dFdF(x, z), then we have the
following diagram in Q.

To show that p3p2p2p3 is an idempotent observe that we have
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Since Q is pseudo-rightsided the above becomes an equality. Thus

We clearly have that P3P2P2P3 is a monomorphism from P3P2P2P3
to r2 To show that p*2p3 is a morphism from p3p2p2p3 to ri the only
difficult part is to show that p2p3p3p2p2p3 is equal to p*2p3 which the
pseudo-rightsidedness of Q gives us..

Since the top section of the diagram witnesses p1p*2p3p4* E dFdF(x, z)
we obtain x|p1P2*p3 = Z|P4P*3P2P*2P3. Thus (P1P*2PP3)&#x26;(P4P*3P*2P3)*=P1P*2P3P4
is an element of 8p(x, y). It now follows that 8p is idempotent. In fact
dF is strict and hence atomic. If p1p*2 E dF (x1,x2), then pl p2 = p1p*1p1p2
is an element of dF(xi, xi) &#x26; dF(x1, X2). From which it follows that 

which tells us that JF is strict, and thus isomorphic to a complete Q-
valued set.

Now to show that for F --’4 G a transformation of presheaves, RT
is a morphism in DQ-Set. Since RT(y,x) = JG(Y,-r,,) we immediately
have bGR,. = R, . To show that RrbF = Ar we want to show that

First we clearly have

If ; then thus

Now assume that ;

Pictorially we have
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We see that and so PlP*P3P* is an element of

6G(z, Tz). This tells us that I hence

the desired equality and thus Rr is a morphism in KAR(MAT(Q)).
Similarly RT is a morphism.

To show that RT - RT we begin by showing that dF(x, y) C 6G (Tx , Ty).
Assume that x E F(ql) and y E F(q2) and that x|p1 = Ylp28 Pictorially

By naturality of T, Tx|P1 
= 

TYI P2 and so we have
This tells us that

For the other inequality we have



265

Thus RT is a DQ-Set morphism.
Finally to show that composition of morphisms is preserved we have

for a second transformation Go-&#x3E; H

Composing Bl1 with the functor V : DQ-Set - Q-Set gives us a
functor Bl1 : SETQ-op -&#x3E; Q-Set.

Recall on page 15 we defined the functor A : Atomic(Q)-&#x3E; Strict(Q),
which takes an atomic Q-valued set and sends it to the Q-valued set of

singletons.

Lemma 6.2 if Q is a pseudo-rightsided quantaloid, then the functor
A is the composite YO : Q-Set - Q-Set.

Proof: Since Q is pseudo-rightsided we need only work with complete
Q-valued sets. Assume aap1 = Bap2. Then we have

This tells us that YOd(a, B)  a°B.
Since we are working with complete Q-valued sets the only singletons

are morphisms of the form ax.
We first examine the case where a and B are monomorphisms. It is

easy to show that diagrammatically we have the following

To show that the diagram commutes observe that
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by pseudo-rightsidedness

Thus a’,3,3’aa’o, which is equal to aO (3 by pseudo-rightsidedness, is

less than or equal YOd(a, B), hence we have YO(a, (3) equal to A(a, (3).
Examine the case where we have morphisms ax : [q] - (X, px,dx)

and ax : [x] - (X, px, dx) (it need not be the case that q = d(x, x)).

This tells us that YO(ax, ax) = A(ax, ax), since

Finally we bring the two preceding parts together. Let ax and ax,
be two arbitrary singletons. We have

where the middle morphisms have the form

by the previous cases

I

Theorem 6.3 If Q is a pseudo-rightsided quantaloid, then Q-Set is a
reflective subcategory of SETQ .
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Proof: We take the natural isomorphism 6, of Lemma 4.4, to be the
counit of our adjunction. The unit, n : 1 -&#x3E; OY, is defined on a presheaf
F by nF(q)(x)= ax, where ax(x’,*) = dF(x’, x) (the Yoneda embed-
ding). To see that this is natural observe that for any morphism T, the
first composite in the defining square is OY(n(x)) = RT ay, from which
we have

The second composite is simply

To show that the two triangle equalities hold, first examine the com-

posite is the arrow

So we have that OEnOd(B) is equal to

Thus 5 is the identity transformation on D. Now

examine the other triangle Note that we have
where i
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So the composite becomes

Thus the triangle equalities hold and so Q-Set is a reflective subcat-
egory of SETQ . ~

7 Sheaves

As we have previously seen, we know that when £ is a Grothendieck
topos, (REL(E)-Set), the Q-Set construction on the category of rela-
tions of E, yields a category that is isomorphic to E. Also REL(E)
is a bounded complete distributive category of relations and, as such,
we obtain an equivalence between the categories of REL(E)-valued sets
and complete REL(g)-valued sets. By examining when the unit of the
adjunction we constructed in the previous section is an isomorphism
we arrive at the following definition of covers, matching families and
amalgamations for the presheaf category SETQ-op.

Let 1-(, be a complete Heyting algebra and h an element of H. Tra-
ditionally a cover of h consist of a family of elements, (ki E H), that
satisfies Vki = h.

Definition 7.1 For q : A-&#x3E; A, a syrremetric iderrapotent in Q, a cover
of q is a family of arrows in KAR* (Q)
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such that

This matches the traditional notion of a cover for 1-£ a complete
Heyting algebra. There is a morphism ki : h -&#x3E; hi, in the category
KAR* (H), if and only if ki  h A hi. So a cover satisfies the equation
V(ki* A ki) = Vki = h. Thus the ki form a cover. On the other hand
if the ki form a traditional cover of h, then the morphisms ki : h -&#x3E; ki
constitute a cover.

Let F be a presheaf of a complete Heyting algebra, 1-£, and let
(ki : h -&#x3E; hi) be a cover of h. Traditionally, a matching family for the
cover consists of a family of elements (zj E F(ki)), that must satisfy
(xi)| (kinkj) - (xj)|(kinkj). In our case this needs to be loosened slightly.
Definition 7.2 Given a cover (pi : q - qi), a matching family for a
presheaf F, is a family (zj E F(qi)) such that

where p, : r -&#x3E; qi and P2 : r -&#x3E; qj are arrows in Q. 0

It is easy to see that a traditional matching family of a complete
Heyting algebra 1-l satisfies conditions 1 and 2 above.

Now a matching family for a cover, (ki : h -&#x3E; hi), is a family of
elements (zj E F(hi)). It need not be the case that xi|kiAkj - xj|kiAkj, 
but we do have, by condition 1, V{k I xi|k - xj|k} - ki A kj. For each
ki A kj, we obtain a cover of ki A kj (the k’s) and a matching family
in the traditional sense (the xi|k,). Condition 2 is a technical condition
needed at a latter stage which is trivially true in the Heyting case.

Definition 7.3 Given a matching family (xi E F(qi)) of the cover
(Pi : q - qi) an amalgamation is a y E F(q) such that for every i E I ;
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Definition 7.4 A presheaf F of a quantaloid Q is a sheaf if every
matching family has a unique amalgamation. Denote the full subcategory
determined by the sheaves of SETQ, by SHV(Q). 0

Let 1-(, be a complete Heyting algebra, F a sheaf, (ki : h-&#x3E; hi) a
cover, and y an amalgamation of the matching family (zj E F(hi)). If

hi = V{k I xilk = Ykl, then the k’s are a cover for hi and the xi|k are a
matching family for this cover. This immediately implies that xi = ylki , 
since both are amalgamations of this family. Thus F is a sheaf in the
traditional sense.

Lemma 7.1 F is a sheaf if and only if 77F is an isomorphism

Proof: Assume that F is a sheaf. Then for a morphism a : [q] --&#x3E; YF
the following family of arrows,

is a cover of q and (x E F(8F(x, x))) is a matching family since we have

So there is a unique amalgamation y such that

Thus qF is an isomorphism.
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Now assume that nF is an isomorphism and let (pi : q --&#x3E; qi)iEl be a
cover of q and (zj E F(qi)) a matching family.
Define a : (q] - iii F by

if x = xi
otherwise

if x = xi
otherwise.

The only difficult part in showing that a is a morphism is to show
that YFa = a. This follows from the second matching family condition
(We would like to dispense with the need for this condition but we have
not been able to show that a is a morphism without it). Thus there is
a unique y E F(q) such that

And so F is a sheaf.
This theorem shows us that a singleton [q] a-&#x3E; (X, px, dx) represents

the unique amalgamation of a matching family. The cover is given by
the arrows a(x), the matching family by x E X such that a(x)= 1
and the unique amalgamation is the y such that a = aye

The following result is now automatic.

Theorem 7.2 For Q a pseudo-rightsided quantaloid,

Proof: We want to show that for (X, px, dx) a Q-SET, Od is a
sheaf. We will show that (D6 -&#x3E;nOd OYOd is an isomorphism from which
the result follows. We know that OY(X, px, dx) is complete. If there

is a morphism [q] A --&#x3E; (X, px, dx) that equals YOd(-,a)= YOd(-, B),
then we have a’a = a°B, which implies that a  B from which equality
follows. Thus nOd is an isomorphism, hence (D6 is a sheaf.
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Pictorially we have the following diagram illustrating the relation-
ship between presheaves and complete Q-valued sets when Q is pseudo-
rightsided.

The following is an immediate consequence of this and the work of
Pitts[15]. I

Corollary 7.3 For Q a bDCR, SHV(Q) is a Grothendieck topos

Corollary 7.4 For E a Grothendieck topos E = SHV (REL(E))

8 Conclusion 

There have been different approaches to the exploration of the correct
notion of sheaves for a quantale and, by extension, a quantaloid. Most
start from the template of Q-valued sets, which are matrices on Q sat-
isfying some set of axioms. Mulvey and Nawaz[12] define Q-valued sets
for a right Gedfand quantale slightly differently than our approach. For
them a Q-valued set is a triple (X, px, 8x) where 5 : X x X--&#x3E;Q and
p : X-&#x3E; arrows(Q) satisfy a set of axioms. Note that p in this context
does not pick out the single object of Q, but an arrow of Q. A presheaf
for Mulvey and Nawaz is a set X and a pair of mappings L : Q x X - X
and R : X x Q--&#x3E; X together with a mapping E : X --&#x3E; Q that also sat-
isfy a set of conditions. They then proceed to construct an equivalence
between sheaves and complete Q-valued sets. Gylys in [7, 8] expanded
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on this approach generalising to quantaloids and involutive quantaloids
utilizing partiad maps.

Another approach to this problem was taken by Borceux and Cru-
ciani in [I]. They examined right quantales, introducing a notion of
symmetry for Q, without the presence of an involution. They define a
Q-valued set as a pair (X, dx), where X is a set and 6 : X x X- Q.
This satisfies dd  d and a symmetry condition. A presheaf for them
is a pair (v, F) where v is an arrow of Q and F : vl -&#x3E; SET. Then,
with an appropriate definition of sheaves they construct an equivalence
between Q-valued sets and sheaves.

Our approach has been to generalise the work of Higgs. In our con-
text a Q-valued set is an object in the completion of Q as a quantaloid
with respect to coproducts and the splitting of symmetric idempotents.
A sheaf is a set-valued functor from the category of maps in the symmet-
ric idempotent splitting completion of Q to SET satisfying appropriate
conditions. Of interest is how far can this approach be extended without
the use of symmetry.
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