Combinatorial stacks and the four-color theorem
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 47 (2006) no. 1, pp. 29-49.
@article{CTGDC_2006__47_1_29_0,
     author = {Attal, Romain},
     title = {Combinatorial stacks and the four-color theorem},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {29--49},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {47},
     number = {1},
     year = {2006},
     mrnumber = {2220060},
     zbl = {1107.18005},
     language = {en},
     url = {http://archive.numdam.org/item/CTGDC_2006__47_1_29_0/}
}
TY  - JOUR
AU  - Attal, Romain
TI  - Combinatorial stacks and the four-color theorem
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2006
SP  - 29
EP  - 49
VL  - 47
IS  - 1
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://archive.numdam.org/item/CTGDC_2006__47_1_29_0/
LA  - en
ID  - CTGDC_2006__47_1_29_0
ER  - 
%0 Journal Article
%A Attal, Romain
%T Combinatorial stacks and the four-color theorem
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2006
%P 29-49
%V 47
%N 1
%I Dunod éditeur, publié avec le concours du CNRS
%U http://archive.numdam.org/item/CTGDC_2006__47_1_29_0/
%G en
%F CTGDC_2006__47_1_29_0
Attal, Romain. Combinatorial stacks and the four-color theorem. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 47 (2006) no. 1, pp. 29-49. http://archive.numdam.org/item/CTGDC_2006__47_1_29_0/

[1] K. Appel and W. Haken: Every planar map is four colourable (Illinois J. Math. 21 (1977), pp. 429-567). | Zbl

[2] R. Attal: Combinatorics of non-Abelian gerbes with connection and curvature (Annales de la Fondation Louis de Broglie, vol. 29 n° 4, pp. 609-634; math-ph/0203056). | MR

[3] J.C. Baez and M. Carrion Àlvarez: Quantum Gravity (http://www.math.ucr.edu/~miguel/QGravity/QGravity.html).

[4] D. Bar-Natan: Lie Algebras and the Four Color Theorem (Combinatorica 17-1 (1997) pp. 43-52; q-alg/9606016). | MR | Zbl

[5] A. Cayley: On the colouring of maps (Proc. London Math. Soc. 9, p. 148, 1878).

[6] M.M. Kapranov: Analogies between the Langlands Correspondence and Topological Quantum Field Theory (In Functional Analysis on the Eve of the 21 st Century, edited by S. Gindikin et al., Progress in Mathematics 131, Birkhaüser, 1995). | MR | Zbl

[7] L.H. Kauffman and H. Saleur: An Algebraic Approach to the Planar Coloring Problem (Comm. Math. Phys. 152 (1993), pp. 565-590). | MR | Zbl

[8] A.A. Kirillov: Representation Theory and Noncommutative Harmonic Analysis I (Encyclopaedia of Mathematical Sciences, Volume 22; Springer-Verlag, 1994). | MR | Zbl

[9] S. Mac Lane: Categories for the Working Mathematician (Springer Verlag, 1997). | MR | Zbl

[10] R. Penrose: Applications of negative dimensional tensors (in Combinatorial Mathematics and its Applications, D. J. A. Welsh, Academic Press, 1971). | MR | Zbl

[11] A.J. Power: A 2-Categorical Pasting Theorem (J. Algebra 129 (1990), pp. 439-445). | MR | Zbl

[12] N. Robertson, D.P. Sanders, P. Seymour, R. Thomas: The four-colour theorem (J. Comb. Theory (Series B), 70 (1997), pp. 2-44). | MR | Zbl

[13] P.G. Tait: On the colouring of maps (Proc. Roy. Soc. Edinburgh, pp. 501-503, 1879-80). | JFM

[14] R.A. Wilson: Graphs, colourings and the four-colour theorem (Oxford Science Publications, 2002). | MR | Zbl