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STRUCTURAL PROPERTIES OF ENDOFUNCTORS

by A. BARKHUDARYAN, V. KOUBEK AND V. TRNKOVA

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XL VII-4 (2006)

ABSTRACT. Un foncteur F : 1K ---+ L est un DVO-foncteur s’il est
naturellement equivalent a tout foncteur G : K -&#x3E; L tel que pour
tout K-object X , FX soit isomorphe a GX . On d6montre que chaque
DVO-foncteur F : SET -i SET est finitaire (c.-h-d., preserve les
colimites dirigees) .

1. INTRODUCTION AND MAIN THEOREM

Inspired by [6,7], systems of functorial equations were introduced
and investigated in [10]. These are systems of equations of the form

where F is a functorial symbol and a, /3 are cardinal numbers. A
functor F : SET -7 SET is a solution of a system S if, for every
equation F(a) = B of S,
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Clearly, if F is a solution of S, then every functor naturally equivalent
to F is a solution of S as well.

Following [10], we say that a system S of functorial equations is
solvable (or uniquely solvable) if it has a solution (or a solution unique
up to natural equivalence).

In [10], the solvability of the systems of two functorial equations

is discussed in the dependence of the quadruple (a1, a2, B1, B2) of
cardinal numbers. In ’almost all’ cases, the decision whether the

system is solvable or not is presented in [10]. For the cases remaining
open in [10], it is impossible to give a simple YES/NO answer to the
question about the solvability of the system because, as proved in [4],
the answer depends on the set-theory used. In contrast to this, the
following statement is absolute:

the solution of an arbitrary uniquely solvable system of func-
torial equations is a finitary functor (i.e., one which preserves
directed colimits).

In fact, every functor F : SET - SET determines its canonical

system of functorial equations, namely the system

F(a) = card F(a) for all cardinal numbers a.

This canonical system extends every system of functorial equations
solvable by F. If S is a uniquely solvable system and F is its solu-
tion, then the canonical system of F is also uniquely solvable, i.e., F
satisfies the following condition:

if G : SET -&#x3E; SET is a functor with card GX = card FX for
all sets X, then G is naturally equivalent to F.

The functors satisfying this condition are called DVO-functors (i.e.,
Determined by their Values on Ob jects) . The DVO-functors are in-
vestigated in [2,3,4]. In [4], every DVO-functor is proved to be fini-
tary, which immediately implies that the solution of any uniquely



244-

solvable system of functorial equations is finitary. However, in [4]
this result is proved only under a specific set-theoretical hypothesis.
The aim of the present paper is to give an absolute (unfortunately,
more involved) proof. Here we prove the following (absolute!)
Main Theorem. Every DVO-functor SET -&#x3E; SET is finitary.

Its converse is false, for there are many finitary functors which are
not DVO. On the other hand, there are also many finitary functors
which are DVO (see [2,3,4]; the full description of all DVO-functors
remains unresolved). Hence there also are many uniquely solvable
systems of functorial equations: all the canonical systems of the DVO-
functors and, possibly, some of their reducts (but a small system of
functorial equations, i.e., one consisting only of a set of equations, is
never uniquely solvable, see [10]). 

Finally, let us mention that the above field of problems can be
easily transformed to a more general setting: for arbitrary categories
K, L a functorial equation

is solvable by any functor F : K -&#x3E; L with FX isomorphic to Y; the
concept of solvability and unique solvability of systems of functorial
equations is evident. Also, every functor F : K -&#x3E; L determines

its canonical system of functorial equations; this system is uniquely
solvable if and only if F is a DVO-functor (i.e., naturally equivalent
to any G : K -&#x3E; L with GX isomorphic to FX for every X E obj K).
Problem. For which cocomplete categories K and L is every DVO-
functor K -&#x3E; L finitary?

2. THE IDEA OF THE PROOF AND THE PRELIMINARIES

2.1 The present paper is completely devoted to the proof of Main
Theorem. The general scheme of the proof is quite straightforward:
given a functor H : SET -7 SET which is not finitary, one has to
find a functor G : SET -7 SET, not naturally equivalent to H, such
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that card GX = card HX for all sets X. In fact, we shall construct
two functors GI , G2 : SET -&#x3E; SET which are not naturally equivalent
and such that

for all sets X.

The reason for doing this is that the internal structure of the given
functor H could be very complicated, while only a partial knowledge
of it suffices to find many functors G : SET -&#x3E; SET with card HX =

card GX for all sets X . But a direct proof that H is not naturally
equivalent to such a functor G is a problem. If we construct two such
functors G1, G2, both with a relatively simple internal structure, we
are able to ensure that they are not naturally equivalent. Then at
least one of them is not naturally equivalent to H.

2.2 If H is an endofunctor of a locally finitely presentable category K,
then its finitary part Hf is the left Kan extension of the restriction
of H to the category of the finitely presentable objects of K. Then
Hf is really finitary (i.e., it preserves the directed colimits) and it is
a subfunctor of H, i.e., there is a ’canonical’ monotransformation of
Hf into H (see e.g. [1]).

Clearly, SET is locally finitely presentable and the finitely pre-
sentable objects are just finite sets. Since this paper deals only with
endofunctors of SET, we shall use a specific description of the above
notions which is more suitable for our computation of the cardinali-
ties.

If H : SET -&#x3E; SET is a functor, its subfunctor is any functor
G : SET - SET such that GX C HX for all sets X and Gg is the
domain-range restriction of Hg for every mapping g : X -&#x3E; X’ (thus
Hg(GX) 9 GX’). And the finitary part Hf of H is the subfunctor
of H given on a set X by the formula

(where Im k denotes the image of a mapping k in question) and Hf g is
just the domain-range restriction of Hg for all mappings g : X ---i X’ .
Since Hg sends the set Hf X into Hf X’, this definition is correct.
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This set-theoretical description permits us to investigate the sets
HX B Hf X and to compute their cardinalities. In fact, the functors
G1 and G2 mentioned in 2.1, will be constructed (in Section 6 of the
present paper) so that Hf is also the finitary part of GI and G2, and

card(HXB HfX) = card(G1X B HfX) = card(G2X B HfX)
for all sets X.

2.3 We have to recall some simple properties of endofunctors of SET.
The trivial functor Co (=the constant functor to the empty set)

is finitary, hence it does not contradict to Main Theorem and we
can restrict ourselves only to non-trivial functors. Any non-trivial
endofunctor G of SET sends every non-empty set to a non-empty set
and there is a natural transformation

of the identity functor Id into G. In fact, if 1 = {*} is a standard
one-element set, we choose a E Gl and for every set X we define

ux : X -&#x3E; GX by

where v., : 1 -&#x3E; X is the mapping sending * to x.
The transformation p is either a monotransformation or it factor-

izes as

where Co,1 is the functor sending 0 to 0 and all non-empty sets to 1.
Every transformation T : CO,1 --t G is called a distinguished oint

of G in [5,8] and rX (*) is a distinguished point of G in GX for every
non-empty set X. Clearly, Gg (rX (*)) = rX’ (*) for every mapping
9 : X -&#x3E; X’ . Hence every distinguished point p E GX of G in GX
lies in Gf X where Gf denotes the finitary part of G.

If A, B are subsets of a set X and iA : A -&#x3E; X, iB : B -&#x3E; X
denote the inclusions, then every x E Im GiA n Im GiB is

a distinguished point of G in GX whenever A n B = 0 or
an element of Im GiAnB, where iAnB : A n B -&#x3E; X is the
inclusion, whenever A n B # 0 (see [8]).
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Hence if x E GX is not a distinguished point of G in GX (e.g. if

x E GX B Gf X), then the system

is the inclusion}

is a filter on the set X, see [5,8].
2.4 Given a functor H : SET -&#x3E; SET which is not finitary, the filters
just described provide a tool to derive a formula for card(HX B HfX)
in 3.5. The functors G1, G2 mentioned in 2.1-2.2 are constructed
in Section 6, and elementary expansions discussed in Section 5 are
the building blocks of this construction. Transformation monoids

investigated in Section 4 serve to prove that the constructed G1 and
G2 are not naturally equivalent. Observe that, for any functor K :
SET - SET, any set X and any x E KX , the system

is a transformation monoid and, if v : K - K’ is a natural equiva-
lence then the transformation monoids MKX(x) and

are strongly isomorphic (for details, see Section 4). Transformation
monoids which are not strongly isomorphic are inserted at the appro-
priate places in the construction of G1 and G2, and this ensures that
GI and G2 are not naturally equivalent (for details see Section 6).
This will finish our proof.

3. ABSTRACT FILTERS

3.1 Definition. Let F be a filter on a set X and g be a filter on a
set Y. We say that they are equivalent if there exist F E F, G e g
and a bijection b of F onto G such that, for every F’ C F,

F’ E F if and only if b(F’) E 9.
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Any class A of all mutually equivalent filters is called an abstract
filter. If a filter F (on a set X) is an element of an abstract filter A,
we say that F is a location (on the set X) of the abstract filter A.
Let us denote A(X) the set of all locations of A on X.

Rerraark. By the above equivalence, the class of all filters (on all sets)
is decomposed into classes of mutually equivalent filters. Let )0)
denote min{cardF F E YI. If F and 9 are locations of an abstract
filter A, then, clearly, IFI = 1!;l and cardnF = cardnG. Let us

denote |A| = |F| and |nA| = card n F for a location F of A (on a
set X).

Observation. If F is a location of A on a set X and if f : X - Y
is a map injective on some F E F then the filter 9 with a basis
{f(F))| F E F} is a location of A ori Y. We shall write 9 = f(F).

3.2 Abstract filters and their locations are useful tool for the exami-
nation of functors SET - SET and the following lemma will be often
used.

Lemma. For every abstract filter A and every set Y, A(Y) = 0 if
card Y  |A| and card A(Y) &#x3E; card Y if card Y &#x3E; max{|A|, N0}.

Proof. If F E F for a location 0 of A then card F &#x3E; |A|. Hence if
F is a location of A on a set Y then card Y &#x3E; IAI. Thus A(Y) = 0
for all sets Y with card Y  IAI. If card Y &#x3E; max{|A|, N0} then
card(Y x Y) = card Y and since on every fibre Y x {y} there is a
location of A, it follows card A(Y) &#x3E; card Y. 0

3.3 For a functor H and x E HX let us recall (see 2.3) the family

FHX(x) = fY C X I x E Im Hi for the inclusion i : Y - X}.

If x E HX is non-distinguished then 8 % (z) is a filter on X.
Clearly, if x E HX B Hf X then |FHX(x)| is infinite.
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Notation. For an arbitrary functor H : SET - SET and for a filter
0 on a set X, let us denote

3.4 Lemma. Let H : SET - SET be a functor and let F and G be
locations of an abstract filter A on X and Y, respectively. Then there
exists a mapping f : X -&#x3E; Y such that H f maps bijectively p(H, F)
onto p(H, G). If both F and G are locations of A on a set X and if
F # G then p(H, F) n p(H, G) = 0.

Proof. If both F and 9 are locations of A, F on X and G on Y, then
there exists a bijection b of some F E F onto some G c G such that
for F’ C F, F’ E F if and only if b(F’) E G. If f : X - Y is an
arbitrary extension of b then G = f(F) (see 3.1 Observation) and
hence Hf(x) E p(H, G) for all x E p(H, F), see also [5,9]. Hence Hf
maps p(H, F) bijectively onto p(H, G). If X = Y and x E p(H, F) n
p(H, G) then

3.5 Convention. In what follows, the symbol

denotes the system of all abstract filters A with

By 3.4, we get card p(H, F) = card p(H, Q) whenever both T and
G are locations of an abstract filter A; let us denote this cardinal
number p(H, A). Then for every X # 0
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4. TRANSFORMATION MONOIDS

4.1 Let us recall that a transformation monoid M on a set X is a set
of mappings f : X -&#x3E; X closed with respect to the composition of
mappings and containing the identity mapping. We abbreviate the
words ’transformation monoid’ to ’t-monoid’.

If M is a t-monoid on a set X and M’ is a t-monoid on a set Y then
we say that they are strongly isomorphic if there exists a bijection
b : X - Y such that 

is a monoid isomorphism of M onto M’.

4.2 For every functor G : SET - SET, every x E GX determines a
t-monoid MGX (x) on X, namely 

If p is a natural equivalence of G onto a functor G’ then, clearly, for
every set X and every x E GX ,

The t-monoids form a more subtle tool for examining set functors
than filters (e.g. if x,y E GX and FGX (x) = aG (y), then not neces-
sarily MGX(x) = MGX(y)), and we shall use them in our construction.
4.3 For a filter JF on a set X, let M(F) denote the t-monoid consisting
of f : X - X which are injective on a set from F and {f(F)|F E F}
form a basis of F.

One can verify easily that

(1) 9)1(F) is really a t-monoid on X;
(2) if g E OO1(F) is injective on a set F E F and f : X - X is a

mapping inverse to g on g(F) then f E M(F);
(3) an idempotent mapping g : X - X is in fl(0) if and only if

Im g E F;
(4) F = {Im(f)| f E M(F)}.
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4.4 Now, let us suppose that card n F &#x3E; 3. Let us choose distinct

u, v E n F and denote

Proposition. 911(F, u) is not strongly isomorphic to 911(F, u, v).

Proof. We prove that fx E X | Vf E 9R(F,u), f (x) = x} = {u}.
Since f(u) = u and f (v) = v for all f E M(F, u, v) the proof will be
complete. Consider x E X B n F, then X B {x} e 0 and therefore
every mapping f : X -&#x3E; X such that f(y) = y for all y E XB {x} and
f (x) # x belongs to M(F, u) (and also to 9)1(F, u, v)). A mapping
f which is an arbitrary permutation of n F and f (y) = y for all

y E X B n F belongs to VJ1(F). Since card n F &#x3E; 3 a suitable choice
of a permutation guarantees the required statement

RerrLark. This proposition will be used in the proof of Main Theorem
to show that the functors G1 and G2, which we shall construct in 6.,
are not naturally equivalent.

4.5 In the rest of the paragraph we assume that a filter F on a set
X with n F # 0 is given.
Definition. A mapping f : X -&#x3E; Y is called F-simple if there exists
a set F E T such that f is injective on F.

Fix a set 0 # W C n F. We write that fi -w f 2 for F-simple
mappings fl, f2 : X - Y if there exist F E F and g E VJ1(F) such
that g(w) = iu for all w E W and f, o g(x) = f2(x) for all x E F.

4.6 Lemma. For every set Y, the relation -w on the set of all
F -simple mappings f : X - Y is an equivalence.

Proof. Clearly, -w is reflexive. We prove that Nyy is symmetric. Let
fl, f2 : X -&#x3E; Y be F-simple mappings with fl Nyy f2. Then there
exist 9 E VJ1(F) and F E F such that g(w) = w for all w E W and
fl o g(x) = f2(x) for all x E F. We can assume that g is injective
on F because F E F and g E M(F). Then g(F) E F. By 4.3(2),
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there exists 9 : X -&#x3E; X E 9R(.F) such that g o g(x) = x for all x E F.
Hence g(w) = w for all w E W because W C F. For every y E g(F),
f2 o 9(y) = flog o g(y) = f1(y) and hence f2 ~ w fl. Now we show
that ~w is transitive. Let f, -w f2 ~w f3 for F-simple mappings
fl, f2, f3: X -&#x3E; Y. Then there exist g, g’ E 9N(T) and F, F’ e 0 such
that g(w) = g’(w) = w for all w E W, f, o g(x) = f2(x) for all x E F
and f2 o g’(x) = f3(x) for all x E F’. Then Z = F’ n(g’)-1(F) E T
and fl o (g o g’)(z) = f2 o g’(z) = f3(z) for all z C Z. Clearly,
g o g’ E 9N(.F) and g o g’(w) = w for all w E W. Hence fi ~w f3. 0

4.7 Lemma. Let fl, f2 : X -7 Y be F-simple mappings with fl ~w
f2 and let h : Y - Z be an arbitrary mapping. Then either both

h o f1 dnd h o f2 are F-simple mappings with h o f, -w h o f2 or
neither h o f, nor h o f2 is F-simple and h o fl (w) = h o f2 (w) for all
wEW.

Proof. We have only to prove that h o fl is 0-simple if and only if
h o f2 is F-simple, the other statements are obvious. Since fl Nw f2
there exist g E M(F) and F E T such that g(w) = w for all w E W
and fl og(x) = f2(x) for all x E F. We can assume that g is injective
on F. If h o fl is F-simple then h o fl is injective on a set F’ E 0.
Consider F" = Fng-1(F’) E F, then g(F") C F’ and hence ho fl og
is injective on F" and h o fl o g(x) = h o f2(x) for all x E F", thus
h o f2 is F-simple. By symmetry, we obtain that from the fact that
h o f2 is 0-simple it follows that h o fl is F-simple. 0

4.8 Lemma. Let f, E M(F). Then f, ~w f2 for an F-simple
mappings f2 : X -7 X if and only if f2 E M(F) and fi (w) = f2(w)
for all w E W.

Proof. Observe that if a mapping f2 : X -&#x3E; X is 0-simple and
f2 ~w fl for f, E 9Jl(F) then f2 E 9R(.F) (because M(F) is closed
under composition) and f2(w) = fl(w) for all w E W. Conversely,
assume that fl, f2 E M(F) such that fl(w) = f2(w) for all w E
W. Then there exist Fl, F2 c F such that fi is injective on Fi and
fi(Fi) E F for i = 1,2. Then F = f1(F1) nf2 (F2) E T and also
Fil = Fi nfi- 1 (F) e 0 for i = 1, 2. By 4.3(2), there exists g’ E m(F)
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such that f, o g’(x) = x for all x E F. Clearly g = g’ o f2 E VJ1(F)
and f, o g(x) - f, o g’ o f2(x) = f2(x) for all x E F2. Since W C

n F = g’ (n F) C FQ n F’2 and since f1 and f2 are one-to-one on n F
and 11 (w) = f2(w) for all w E W we conclude that g(w) = w for all
w C W. Thus f, -w f2 and the proof is complete. D

As a consequence we obtain this

Corollary. The cardinal number of the set m(F)/ ~w is equal to
the cardinal number of the set of all injective mappings from W into
nF.

5. EXPANSION OF FUNCTORS

5.1 Let K : SET --&#x3E; SET be a functor and X be a set with card X &#x3E; 1.

We are going to construct a functor G which extends K by the addi-
tion of one element, say a, to KX . The functor G has to enclose K
and a together ’as tightly as possible’, i.e., to add new elements to
any KY only when it is absolutely necessary, for, in a ’tight enough’
extension, we shall be able to control the cardinalities of GY. More-
over, we also need to control the internal structure of G, i.e., the
knowledge of the filters and of the t-monoids of the newly added el-
ements. This will be possible whenever the filter and the t-monoid
of a in GX are prescribed. However, the filter and the t-monoid will
have to have properties which make the whole construction possible.

5.2 So let a filter F on the set X be given such that IFI = card X,
n F # 0. Moreover, let a non-empty set W C n F be given. Recall
the t-monoid M(F) defined by F in 4.3, F-simple mappings f : X -
Y and the equivalence -w both defined in 4.5. We need them in our
construction. We ’add Gf(a) to KY’ for every F-simple mapping
f : X -&#x3E; Y. On the other hand, we want to map G f (a) into KY
whenever f : X -&#x3E; Y is not F-simple. To do it ’functorially’, we
need further instruments: a natural transformation u : Id -&#x3E; K
of the identity functor Id into K (such tL does exist, see 2.3) and an
element u E W. Hence our construction will depend on the quadruple
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of ’parameters’

5.3 Construction. For an F-simple mapping f : X -&#x3E; Y, let [f] de-
note the equivalence class of ~w on the set of all F-simple mappings
X -&#x3E; Y containing f .

For a set Y, define

where we suppose that the union is disjoint. If h : Y - Z is a

mapping then for every y c GY define

Observation. By 4.6 and 4.7, G is a correctly defined functor from
SET into itself and K is its subfunctor and the element a mentioned
in 5.1 is precisely [1x], where-lx is the identity mapping of X. We
call it the elementary expansion of K (determined by (u, F, W, u)).

5.4 In the lemmas below K, X, F, W, u, u are as above. Moreover,
let A denote the abstract filter of F (i.e., F is a location of A on the
set X, see 3.1 ) .
Lemma. FGY(y) is a location of A for every y E GY B KY and
for every set Y. Further, FGX([f]) = F if and only if f E M(F).
Moreover, MGX([1X]) {f E M(F) f(w) = w for all w e W}.
Proof. Assume that y = [f] for an F-simple mapping f : X - Y.
Thus there exists F C F such that f is injective on F. Consider
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the inclusion mapping, then there exists a mapping g : X -&#x3E; Z

such that f(z) = 60 g(z) for all z e F’. Since f is F-simple we
conclude that g is F-simple. By 4.3(3), every idempotent mapping
h : X -&#x3E; X with Im(h) = F’ belongs to M(F), hence f ~wl o g and
thus f(F) C FGY([f]). Conversely, if Z E FGY([f]) and if i : Z -&#x3E; Y

is the inclusion then there exists an F-simple mapping 9 : X -+ Z
such that i o 9 ~w f and hence there exists F’ E F with F’ C F and
f(F’) C Z. Therefore f(F) = FGY([f]). The fact that f is F-simple
demonstrates that FGY([f]) is a location of A. From the definition of
M(F) it follows that f(F) = F for a F-simple mapping if and only
if f E M(F), and the second statement follows. The third statement
is implied by Lemma 4.8. D

5.5 Lemma. If W = {u} and card n F &#x3E; 3 then for every set Y and
every y E GY B KY, the set {z E Y| f(z) = z for all f E MGY(y)} is
a singleton.

Proof. Consider y = [g] E GY B KY and let U = {z E Y| f(z) =
z for all f e MGY([g])}. If h E MGY([g]) then Gh([g]) = [g] implies
that hog ~w g and from the definition of ~w it follows that h(g( u)) =
g(u). Therefore g(u) e U. By Lemma in 5.4, FGY([g]) is a location of
A and hence card n FGY(y) = card n F &#x3E; 3. One can easily see that
if t E Y B n FGY([g]) then the mapping h : Y -&#x3E; Y such that h(t) # t
and h(s) = s for all s E Y with s # t satisfies Gh([g]) = [g] and hence
t E U (see also [5,9]). If t E n FGY ([g] ) with t # g(u), then there exists
t’ E n F with g(t’) = t and t’ # u. Let h : X -&#x3E; X be a mapping
such that h(x) = x for all x E X B n F, the restriction of h on n F
is a permutation of n F with h(u) = u and h(t’) # t’. Since g is F-
simple there exists F E V such that g is injective on F and therefore
there exists a mapping h’ : Y -&#x3E; Y such that g o h(x) = h’ o g(x) for
all x E F. Hence h’(t) / t and g Nyjr h’ o g. Thus Gh’([g]) = [g] and
t E U. D

5.6 Summary. Let K : SET -&#x3E; SET be a functor, let G be an

elementary expansion of K determined by the quadruple (u, F, W, u),
and let A be the abstract filter containing F. Then
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(1) if I FI is infinite and W is finite then

for every set Y whenever FKY(y) is a location of A for no
y E KY;

(2) there exists a E GX B KX such that MGX(a) = {f E OO1(F) |
f(w) = w for all w E W};

(3) if card n F &#x3E; 3 and W = {u} then for every set Y and every
y E GY B KY, OO1f (y) has exactly one ,fix-point (i. e., there
exists exactly one v E Y with f (v) = v for all f E 9AG (y))

Proof. If FKY(y) is a location of A for no y E KY then, by 3.5 and
5.4, card(GY B KY) = p(G, A) card A(Y). By Lemma and Corollary
in 4.8,

because A E A. From 3.2 and IAI &#x3E; t%o it follows that

and (1) is proved. Lemma 5.4 implies (2) and Lemma 5.5 implies
(3). R 

6. THE CONSTRUCTION OF G1 AND G2

6.1 An amalgam 2( = {G(j)|j E J} of functors with a base K is a
system of functors such that K is a subfunctor of Gj for all j E J
and

G(j1)X fl G(j2)X = KX for all sets X and all jl, j2 E J with
j1 # j2.

If, for every set X , Ujcj G(j)X is a set, we can define the sum of the
amalgam U by the simple rule

GX = UjEJ G(j)X and each G(j) is a subfunctor of G.
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Clearly, G is a correctly defined functor and, for every set X,

6.2 Now we are going to complete the proof of Main Theorem. Let
a functor H : SET -&#x3E; SET which is not finitary be given. Then, by
3.5,

where A and A(X) are as in 3.1, p(H, A) and A are as in 3.5. Since
H is not finitary, p(H, A) # 0 for at least one A E A.
We aim to construct functors G1, G2 : SET - SET which are not

naturally equivalent and satisfy

and

for all sets X. Both GI and G2 will be obtained as sums of suit-
able amalgams with a base Hf . These amalgams consist of suitable
elementary expansions G(j) and G2(j) of Hf . However, to get the
quadruples (u, F, W, u) from which the elementary expansions will
be constructed (see Section 5), we need one more simple trick. For

any filter F on a set X with |F| &#x3E; N0, put

if n 0 is infinite,
if n 0 is finite (including n F = 0),

where Q is a set with card Q = 3 and x n Q = 0. Clearly, if F
is equivalent (in the sense of 3.1) to 9 then QF is equivalent to
QG; hence we have determined 4lA for every abstract filter A and
card n F &#x3E; 3 for every location T of 4lA.
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Lemma. If A E A then

Proof. Since A E A, IAI is infinite. If card Y  |A| then card A(Y) =
0 = card cpA(Y). If card Y &#x3E; IAI | = |QA| then, clearly,

Since card Y3 = card Y  card A(Y), see 3.2, we conclude that

The reverse inequality is evident. D

6.3 Now we are ready to describe the quadruples used in Section 5.
First we choose a natural transformation p from the identity functor
to H(f). For every A E A, choose one location of QA on a set
X with card X = |A| and two distinct elements u, v E n F. Let Gf
be the elementary expansion of H(f) determined by the quadruple
(u, F, {u}, u) and G2 be the elementary expansion of H (f ) deter-

mined by the quadruple (u, F, {u, v}, u). Let us denote p(H, A) · GiA
the sum of the amalgam of 2li = {Gi(j)| j E J} for i = 1, 2
where card = p(H, A), Gi(j) is naturally equivalent to the ele-

mentary expansion GAi of H(f) for all j E J and i = 1, 2 and

Gi(j)X n Gi(j’)X = H(f)X for all distinct j, j’ E J, for all sets X
and for i = 1, 2. Then, by 5.6, for every set Y and i = 1, 2,

Finally, let Gi be the sum of the amalgam 
for i = 1, 2 . Then, for every set Y and for i = 1, 2,
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by the equation in 3.5.

6.4 It remains to show that G1 is not naturally equivalent to G2.
Since H # H(f), there exists Ao E A such that p(H, Ao) =f- 0. Let
F be a location of QA0 on a set X with cardX = laol. Assume
that v is a natural equivalence of G1 onto G2. Then v maps the

finitary part H(f) of G1 onto the finitary part H(f) of G2, hence
vx maps GIX B H(f)X bijectively onto G2X B H(f)X. Then for

every x C G1X B H(f)X, the t-monoid MXG1(X) must be strongly
isomorphic to MG2X(vX(x)), see 4.2. But for every x E GIX, the t-
monoid MG1X (x) has at most one fix-point, see 5.5, and MG2X [1x] has
at least two fix-points, u and v. This is a contradiction, and therefore
G1 and G2 are not naturally equivalent.

The proof of Main Theorem is now complete.
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