Smash product of E(1)-local spectra at an odd prime
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 48 (2007) no. 1, pp. 3-54.
@article{CTGDC_2007__48_1_3_0,
     author = {Ganter, Nora},
     title = {Smash product of $E(1)$-local spectra at an odd prime},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     pages = {3--54},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {48},
     number = {1},
     year = {2007},
     mrnumber = {2317294},
     zbl = {1126.18007},
     language = {en},
     url = {http://archive.numdam.org/item/CTGDC_2007__48_1_3_0/}
}
TY  - JOUR
AU  - Ganter, Nora
TI  - Smash product of $E(1)$-local spectra at an odd prime
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2007
SP  - 3
EP  - 54
VL  - 48
IS  - 1
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://archive.numdam.org/item/CTGDC_2007__48_1_3_0/
LA  - en
ID  - CTGDC_2007__48_1_3_0
ER  - 
%0 Journal Article
%A Ganter, Nora
%T Smash product of $E(1)$-local spectra at an odd prime
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2007
%P 3-54
%V 48
%N 1
%I Dunod éditeur, publié avec le concours du CNRS
%U http://archive.numdam.org/item/CTGDC_2007__48_1_3_0/
%G en
%F CTGDC_2007__48_1_3_0
Ganter, Nora. Smash product of $E(1)$-local spectra at an odd prime. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 48 (2007) no. 1, pp. 3-54. http://archive.numdam.org/item/CTGDC_2007__48_1_3_0/

[Bou85] A. K. Bousfield. On the homotopy theory of K-local spectra at an odd prime. Amer. J. Math., 107(4):895-932, 1985. | MR | Zbl

[CH02] J. Daniel Christensen and Mark Hovey. Quillen model structures for relative homological algebra. Math. Proc. Cambridge Philos. Soc., 133(2):261-293, 2002. | MR | Zbl

[DHKS04] William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith. Homotopy limit functors on model categories and homotopical categories, volume 113 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2004. | MR | Zbl

[EKMM97] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras in stable homotopy theory, volume 47 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. | MR | Zbl

[Fra96] J. Franke. Uniqueness theorems for certain triangulated categories possessing an adams spectral sequence. K Theory Archives 139, 1996.

[Fra01] Jens Franke. On the Brown representability theorem for triangulated categories. Topology, 40(4):667-680, 2001. | MR | Zbl

[GM96] Sergei I. Gelfand and Yuri I. Manin. Methods of homological algebra. Springer-Verlag, Berlin, 1996. Translated from the 1988 Russian original. | MR | Zbl

[Hov99] Mark Hovey. Model categories, volume 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999. | MR | Zbl

[Hov01] Mark Hovey. Model category structures on chain complexes of sheaves. Trans. Amer. Math. Soc., 353(6):2441-2457 (electronic), 2001. | MR | Zbl

[Hov04] Mark Hovey. Homotopy theory of comodules over a Hopf algebroid. In Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, volume 346 of Contemp. Math., pages 261-304. Amer. Math. Soc., Providence, RI, 2004. | MR | Zbl

[HS98] Michael J. Hopkins and Jeffrey H. Smith. Nilpotence and stable homotopy theory. II. Ann. of Math. (2), 148(1):1-49, 1998. | MR | Zbl

[HSS00] Mark Hovey, Brooke Shipley, and Jeff Smith. Symmetric spectra. J. Amer. Math. Soc., 13(1):149-208, 2000. | MR | Zbl

[Kra05] Henning Krause. Cohomological quotients and smashing localizations. Amer. J. Math., 127(6):1191-1246, 2005. | MR | Zbl

[ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998. | MR | Zbl

[Rav92] Douglas C. Ravenel. Nilpotence and periodicity in stable homotopy theory, volume 128 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith. | MR | Zbl

[Ree74] C. Reedy. Homotopy theory of model categories. Preprint, www-math.mit.edu/~psh/ # Reedy, 1974.

[Sch01a] Stefan Schwede. S-modules and symmetric spectra. Math. Ann., 319(3):517-532, 2001. | MR | Zbl

[Sch01b] Stefan Schwede. The stable homotopy category has a unique model at the prime 2. Adv. Math., 164(1):24-40, 2001. | MR | Zbl

[SS00] Stefan Schwede and Brooke E. Shipley. Algebras and modules in monoidal model categories. Proc. London Math. Soc. (3), 80(2):491-511, 2000. | MR | Zbl

[SS03] Stefan Schwede and Brooke Shipley. Stable model categories are categories of modules. Topology, 42(1):103-153, 2003. | MR | Zbl

[W0198] Jerome J. Wolbert. Classifying modules over K-theory spectra. J. Pure Appl. Algebra, 124(1-3):289-323, 1998. | MR | Zbl