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CAHIERS DE TOPOLOGIE ET Vol XLIX-3 (2008)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

ON CLONES DETERMINED BY THEIR INITIAL SEGMENTS
To Ji¥i Addmek on his 60th birthday
by J. SICHLER and V. TRNKOVA

Abstract
Les réponses respectives aux questions de savoir quand I’existence d’isomor-
phismes de clones locaux implique I’existence d’un isomorphisme de clones
global différe pour les clones terminaux, les clones polynomiaux et les clones
centralisateurs des algebres universelles finitaires. Dans chacun de ces trois cas,
la réponse est étroitement liée au type de similarité des algebres considérées.

1 Introduction

When do local isomorphisms of two clones imply their isomorphism?

Recall that an abstract clone with a base object a is a small category k whose
object set obj k = {a®, a,a?,...} consists of all finite powers of its base object a,
in which for every n € w = {0.1,2,...} a unique n-tuple of product projections
7r§") : a" — a is specified and enumerated by all i € n = {0,1,...,n — 1}.
F. W. Lawvere called the abstract clones algebraic theories, and employed them to
present his elegant categorical view of varieties of finitary algebras in [6, 7].

For any clone k and n € w, let k,, denote the full subcategory of k determined
by the set {ao, a,...,a"! }. We call k, the n-segment of k.

Let k and k' be clones with respective base objects a and a’ and respective
projections 7r§") € k(a".a) and (7r§"))’ € k((a')*,a’) foralli € n € w. A functor
H : k — k' is a clone homomorphism if

H(a") = (/)" and H(x!") = (™Y foralli € n € w.

i

An isomorphism of & onto k' is a clone homomorphism that is one-to-one and
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surjective. If there is a clone isomorphism of k onto k' we write k = k’. Homomor-
phisms and isomorphisms of clone segments are defined analogously. We say that
clones k and k' are locally isomorphic if k,, = k], for every n € w.

P. Hall [5] originally introduced what we call here a clone on a set X as a
system C consisting of finitary operations f : X” — X with n € w containing
all Cartesian projections pgn) : X™ — X given by pgn)(xo,...,xn_l) = x; for
i € n € w, and closed under the operations S;* of superposition defined for any
fosoo oy fm—1: X" > Xandany g : X™ — X with m,n € w by

Spt(g; fos -+ vy fm—1)(Z0, - -+, Tn—1)
= g(f(](.'l,‘o, . ,l‘n_l), e ,fm_l(.'l,‘o, . ,xn_l))

for every (zo,...,Zn-1) € X"
Any clone C on a set X is isomorphic to an abstract clone with a base object X,
by means of simply extending C by all maps f : X™ — X™ such that p(m) ofel

1
for ¢ € m € w and then forgetting the actual form of the maps forming the extended

category. We denote f = foX - - - X f,—1 the unique member of C satisfying p§m) o
(fox -+ + X fm—1) = f; forevery j € m.

Conversely, any abstract clone k& with a base object a is isomorphic to a clone
on the underlying set X of the algebra A = Fy(w) with w free generators in the
variety determined by the abstract clone k. The collection of all term functions of
A is then a clone C on the set X that provides an alternative description of k.

Any algebra A = (X, {0, | 0 € X}) whose basic operations o, are all finitary
determines three natural clones on its underlying set X:

o the clone tA of all its term functions, that is, the least clone on X containing

all basic operations o, of the algebra A;

o the clone pA of all its polynomial functions, that is, the least clone on X
containing all basic operations o, of A and all constant maps X" — X for
eachn € w;

e the centralizer clone cA, that is, the least clone on X containing all homo-
morphisms A" — A foreachn € w.

Clones on a set or, equivalently, clones of all term operations of algebras have
become central in algebraic investigations, cf. [3, 4, 11, 13, 14, 15], for instance.
Centralizer clones of algebras and of algebraic systems were recently characterized
in [21].

In Section 2, we show that locally isomorphic polynomial clones of two alge-
bras of any bounded finitary similarity type must always be isomorphic, and also
give an example of two algebras whose finitary type is unbounded and whose poly-
nomial clones are locally isomorphic but not isomorphic. Clones of term operations
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behave differently: Section 3 shows that locally isomorphic term clones of algebras
with at least one binary operation and countably many unary operations need not
be isomorphic. And in Section 4 we show that algebras with just two unary opera-
tions can have non-isomorphic but locally isomorphic centralizer clones. Aspects of
representability of clones from a given class C as centralizer clones of algebras are
considered in Section 5. The concluding Section 6 relates our results to elementary
equivalence of clones and their segments.
All category theory notions we use here can be found in [1], of course.

2 Clones of polynomial functions

For any algebra A on a set X, the polynomial clone pA is a clone that includes
all constant maps between any two finite powers of X. More precisely, we have
X% = {0} and for every n € w the unique constant map 7, : X" — X° = {0}
with the value 0, and for every x = (z1,....2,) € X" with n € w the map &
given by £x(0) = x. The constant maps X™ — X™ are then exactly the maps of
the form & o 7,,, with x € X™. We say that any such clone on the set X has all
constants.

All isomorphisms of clones (or clone segments) with all constants have a spe-
cific form.

Lemma 2.1. Let k and k" be clones with all constants on the respective sets X and
X' (or clone segments with all constants containing at least the first powers X and
X' of these sets). Then K : k — k' is a clone (segment) isomorphism of k onto k' if
and only if there is a bijection 3 : X — X' such that

K(f)=8"0 fo(B87Y)™ forevery f € k(X™, X™),

where 3 : X' — (X")! denotes the bijection given by 3'(x)(i) = B(x(i)) for every
i=1,...,L

Proof. Let K have the described form. If f € k(X™, X") and g € k(X™, XP),
then K(f) = "o fo(37")™ and K(g) = BPogo(B~")" sothat K(g)o K(f) =
BPogofo(B~1)" = K(gof). And for f = 1xm we obviously have K (f) = 1(xm,

(m)

so that K is a functor. For any projectionp; ' : X™ — X and any x € X™ we have

[Bop{™ o (B1)™(x)](i) = [Bop{™ (B~ ox)](i) = BoB"(x(i)) = x(i) for every
i=1....,m,so that K(pgm)) : (X")™ — X' is the i-th projection. Therefore K
preserves all products. The functor K ! given by K~1(f') = (837!)" o f’ o f™ for
every f' € K'((X")™,(X’)") is the obvious inverse of K. As a result, the functor
K is a clone (segment) isomorphism.
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For the converse, let K : k — k' be a clone (segment) isomorphism. Since k
contains X and k' contains X', we have K (£;) = &g(,) for some bijection 3 :
X — X'. Forany x = (z1,...,Tm) € X™ we have & = &, X -+ X&g,,
so that K (£x) = &g(z) X+ X€p(z,) = Epm(x) because K preserves products.
If f € k(X™ X") and x € X™, then f o {&x = &j(x) and hence £ﬁn(f(x3) =
K(&f(x)) = K(f)oK(&x) = K(f)o&gm(x)- Evaluating this equality at 0 € X", we
get 3"(f(x)) = K(f)(B™(x)) forevery x € X™, from which "o f = K(f)o8™
follows. Since (3™)~! = (8~!)™, we conclude that K(f) = ™o f o (3~1)™, as
claimed. O

Theorem 2.2. For any two algebras having a bounded finitary similarity type, their
clones of polynomial functions are isomorphic whenever they are locally isomor-
phic.

Proof. Let A = (X,X) and B = (Y,Y’) be finitary algebras such that their re-

spective sets of k-ary operations satisfy ¥, = X) = 0 for all & > max{2,m},

and let K : (pA)m — (pB)m be an isomorphism of the respective segments

of their polynomial operations. These segments thus contain all basic operations

of these algebras. By Lemma 2.1, there is a bijection 8 of X onto Y such that

K(p) = Bopo (B)* for every k-ary polynomial function of A with k < m.
Define, for any r-ary polynomial function p € pA,

K*(®)(1,---,yr) = Bop(B (w1)s---. B ()

Then K* is one-to-one, and hence the image of pA under K* is a clone on the
set Y. Since K* extends the segment isomorphism K : (pA)m — (pB)m of the
segment (pA),, containing all basic term operations of A and because K* preserves
the composition and assigns constants via the bijection 5 of X onto Y/, all of the
image of pA under K* is contained in pB.

Let H : (pB)m — (pA)m be the inverse of K. Then H is associated with the
inverse 3! of 3, see Lemma 2.1. Let H* : pB — pA be given by

H*(q)(z1,...,z,) = 8 o q(B(x1),-..,B(z)) forany q € pB(B", B).

The clone morphism H* thus extends H and, by the symmetry of the hypothesis,
it maps pB into pA. Since H* and K* are each other’s inverses, the clone pA is
isomorphic to the clone pB. 0

Observation 2.3. If A is a finite algebra and if pA is locally isomorphic to pA’,
then A’ is finite and pA is isomorphic to pA'.

Proof. The underlying set X’ of A’ is clearly bijective to the underlying set X of
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A, so that the set of all bijections of X onto X' is finite. One of the bijections p,
with n € w associated with the segment isomorphism K, : (pA), — (pA’)n must
therefore occur infinitely many times. Let p = p, be such a bijection. Then the
infinite set S = {m € w | p;m = p} is cofinal in w, and we write S = {my <
my < ...}. Since the segment isomorphisms Ky, , and K, share their defining
bijection p, the isomorphism K, , extends K,,, for every i € w. Setting

K =| J{Km, |i€w}
thus gives rise to a product preserving isofunctor of k onto k. |
The example below shows that, for infinite algebras, it is essential that the sim-
ilarity type of at least one of them be bounded.

Example 2.4. There exist algebras of the same unbounded countable finitary simi-
larity type whose polynomial clones are locally isomorphic but not isomorphic.

This example is presented in 2.4.1-2.4.7 below.
2.4.1. We define two algebras A and A’ with the respective underlying sets
X ={0}U{am,bm |m=1,2,...} and X' = XU{ag,bo}-

Forany m =1,2,...and k € {1,...m}, the basic k-ary operations o, j of A are
defined by

bm if (zo,...,Tk-1) = (@m,-..,Q
am'k(xo’”"xk_l)={ Om otlgerv,vise. ko) = o)

The algebra A’ on the set X’ will have the operations o, , defined as above (that
is, the operations o,  of A are extended by O to the appropriate powers of the
underlying set X’ of A’) and, in addition, for any k£ > 1, a single k-ary operation
o k given by

b() if (1’0 ...,.Tk-__l) = (ao,... ,ao),
e { 0 other\:vise.

It is obvious that any of these operations o, j are totally symmetric in the sense
that o, k(Zo, - -+, Tk—1) = Cmk(Tp(0)s - - - » Tp(k—1)) for any permutation p of the
set k, and that Im(a,, k) = {0, by, } for every m € w and every appropriate k.

2.4.2. The k-ary operations ap, i with 1 < k < m and the operations aq j with
k > 1 depend on all their k variables.

Proof. Replacing any single entry of (am, - .., an) by 0 changes the value of a;, &
from b, to 0. O

-213 -


file:///ieuj}

SICHLER & TRNKOVA -CLONES DETERMINED BY THEIR INITIAL SEGMENTS

2.4.3. The polynomial clone pA of the algebra A is the set S consisting of all
projections, all constants, and of all composites oy, i © 7, where ¢ : k — pisan
arbitrary mapping (recall that 7r[¢](0) =oco¢foreveryoc € XP)and1l < k <m.

Proof. We show that the collection § is closed under the superposition operations
S,P(g, an ceey fp—l) =go (f())( T >kfp—l)-

If g is a constant then g o (foX - - - X fp—1) is constant, while if g = 71'](.” ) is a projec-
tion then g o (fox - -+ X fp—1) = fj.

So let us assume that g = am,kOﬂ["’] forsome ¢ : k — p. Let fo,..., fp—1 ber-
ary members of S, and let us denote h; = f4(;) fori € k. Then ST (g: fo, ..., fo-1) =
Qm.k © (hoX T >.(hk_1).

If hiy = apro 7%l for some i and 1, and if h; is not constant, then the
only non-zero value of h; is by # am and hence the only value of F' = ayp,  ©
(hox +-- xhg_y) is 0. If h; is constant, then its value must be a,, for otherwise
the only value of F'is 0. In the remaining case, every h; is either a projection or a
constant with the value a,, and at least one h; is a projection, for otherwise F' would
be constant.

Since ay, k is totally symmetric, we may assume that h; = 7r(r)i fori € [ and
that hy, ..., hx—1 are the constants with the value a,,. Thus if a,, denotes the r-ary
constant with the value a,,, then

F(zo,... Tr_1) = Qmk © (wl(/)r()o)k ces 5(71'5;()1_1) X G X -+ X8m)(Tos -+, Tr_1).
The only possible non-zero value of F is b, and this value occurs exactly when
Ty) = am forall ¢ € l. Therefore F' = a0 7%l for some 1 < I < r and
Yil—r.

Altogether, the system S is closed under all the operations S¥. Since S contains
all constants, all projections and all basic operations of A, we have & = pA, as
claimed. |

The proof of 2.4.4 below is a simple extension of the proof of 2.4.3.

2.4.4. The polynomial clone pA’ of the algebra A’ is the set S’ consisting of all
projections, all constants, and of all composites o, . © 7l® with 1 < k < m and
all o . © 79 with k > 1, where ¢ : k — p is an arbitrary mapping. O

Forany k > 1 and appropriate m, any composite 3 = «, oml¥ is a two-valued
function, and this is because B(am, . ...am) = by and 3(0,...,0) = 0.

2.4.5. Any p-ary two-valued polynomial function 3 of A depending on all its vari-
ables has the form 3 = amp for some 1 < p < m. In addition to these, the only
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p-ary two-valued polynomial functions (3 of A’ depending on all their variables have
the form 3 = ogp withp > 1.

Proof. Let 3 be a p-ary two-valued polynomial function of A. Then 3 has the
form 8 = ami o 79 for some ¢ : k — p, by 2.4.3, that is, B(0) = amk(o o
¢) for every o € XP. If ¢ : k — p is not surjective, then B(zo,...,ZTp—1) =
amk(Z(0)s - - - » To(k—1)) does not depend on any variable x; with i ¢ Im(¢). Thus
¢ is surjective.

Suppose that the surjective map ¢ is not injective, and let v : p — k& be such
that ¢ o v = 1, is the identity map. For any sequence 0 € XP define a sequence
o* € X* by setting

won | o) ifi=~(j) forsome j € p,
(@) _{ am  ifi ¢ Im(y).

Thus 0*oy = o and hence 3(0) = am k(009) = am k(0 0y09). Since o™ € XFis
the constant sequence with the value a,, exactly when o*oyo¢ € XP is the constant
with the value a,, it follows that o, k(0 0y 0 @) = am k(o). Furthermore, since
o* € Xk is the constant with the value a,, exactly when o € XP is the constant
with the value a.,, we also have oy, k(0*) = am p(0). Altogether, 3(0) = om p(0)
for every o € XP, sothat 8 = o p.

If the surjective map ¢ is also injective, then 8 = o, © 79! is obtained from
o i by a permutation of its variables. But oy 4 is totally symmetric and hence
B = am k in this case. This proves the claim about the algebra A. The proof for A’
is similar. O

Now we strengthen the previous claim a little.

(A) Any two-valued polynomial function 3 : AP — A of A has the form § =
Ok oml¥! for some injective ¢ : k — p and some 1 < k < m. In addition to
these, the algebra A’ has two-valued p-ary polynomial functions of the form
B =appo 7%l with k > 1 and an injective ¢ : k — p.

Proof of (A). If 3(xo, . ..,xp—1) depends on its variables zo, ..., zx_; and no oth-
ers, then 3(xo, ..., 2p-1) = B(0,...,zk—1) for some k-ary 3 depending on all
its variables and having the same two values as 3. This gives rise to an injective
¥ : k — psuch that 8 = 3o n[¥l. But any k-ary two-valued polynomial function 3
depending on all its variables has the form 3 = O for some m > k, by 2.4.5, so
that 8 = oy i © 7%l as claimed. The proof for the algebra A’ is similar. O

2.4.6. The clone pA’ is not isomorphic to pA.
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Proof. For any two-valued polynomial functions 3 and 3’ of respective arities k and
k' depending on all their variables we define

3 < B =4 k' < kandIm(3') = Im(B).

Thus a, < amk exactly when k' < k < m and, according to 2.4.5, no other
comparable pairs of two-valued polynomial functions of A depending on all their
variables exist. For the algebra A’ we have the additional comparable pairs ag x <
agr with 1 < k/ < k, see 2.4.5. Therefore all <-chains in pA are finite while pA’
has an infinite such chain. And the relation < must be preserved by any polynomial
clone isomorphism. a

2.4.7. For every N > 1, the (N + 1)-segments of the clones pA and pA’ are
isomorphic.

Proof. In view of Lemma 2.1, we only need to exhibit a bijection 7 : X’ — X such
that
7 logonk e (pA')nyi forevery k-ary g € (pA) N1,

and such that for the inverse 4 ! of 4 we have
roho(y M € (pA)ny1 forevery k-ary h € (pA') 41

This is clear for any bijection ~ in case when g or & is a constant or a projection. In

fact, (y~1)¥ o 7¥1 0 47 = #l¥] for any generalized projection 7!*! determined by

the map ¢ : k — p with k, p > 1. In general, we denote K(g) = (377!)¥ 0 gor?.
For the bijection ¢ : w — w \ {0} given by

N+1 ifn=0,
o(n)=< n ifl<n<N,
n+1 ifn>N,

we define our particular bijection v : X’ — X by setting 7(0) = 0, and v(a,) =
ag(n) and y(by) = by, for every n € w.
Next we show that

(e) ‘7_10 a,,,_ko')k = Qg-1(m).k whenever 1 < k£ < m.
Form = N + landevery k € {I...., N + 1} we have

Y loaniikov*(ag.....a0) =1"'oansik(ant1.... . an41)

=" bns1) = bo
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andy loapns1k09%(0) = 0forany o # (ao, ..., ag). Therefore y~! OQN41,kO
v = apinthecaseof 1 <k<m=N+1.
Next suppose that 1 < m < N. Forevery k € {1....,m} we have

Y o amr o (ams o am) =7 L o ama(@me -y am) =7 (bn) = b

1 1

andy ooy, ro0n*(c) = 0forany o # (am,- - - ,am). Therefore v~ oam‘ko'y" =
miifl <k<m<N.

Finally, suppose that n > N + 1. Then m — 1 > N, and because y(am—1) =

ag(m-1) = am for any such m, for every k € {1,...,m} we have
T oame oY (am-1.-- - am-1) =71"'oami(am,...,am)
= V—I(bm) =bm-1
and v~ loa,, 0¥ (c) = Oforany o # (@m—1,-..,@m_1),S0 that'y“loam,ko'y’c =

Qg-1(m),k als0 in this case. This completes the proof of (e).

Now let 8 : AP — A be a two-valued function from the segment (pA) x 41, that
is,letl1 <p < N.Then/3 =anko 7¥! for some 1 < k < m and some injective
map ¥ : k — p, by 2.4.5(A). Butthen 1 < k < N, so that a,, € (pA)n+1 and
xl¥l e (pA)N+1- Since K is a functor preserving all generalized projections ¥l
using (e) we conclude that

K(B) = K(amr) o™ = ag-1(my 4 0 7Y € (pA' 41

Since K~ (ank) = 70 ank © (771)* = ag(n)x for every basic operation an k
of A’, a similar argument shows that K ~!(3') € (pA)n+1 for every two-valued
polynomial function 3’ : (A")P — A’ of A'. d

Remark 2.5. We do not know whether or not the polynomial clone of an algebra
with finitary unbounded similarity type can be locally isomorphic, but not isomor-
phic to the polynomial clone of an algebra whose finitary type is bounded.

3 Clones of term functions

For algebras of bounded finitary similarity type, their clones of term functions be-
have unlike clones of polynomial functions: non-isomorphic clones of term func-
tions can be locally isomorphic. The first example of algebras of unbounded finitary
similarity type confirming this fact was constructed in [20]. Example 3.2 below of-
fers algebras with one binary and countably many unary operations. In view of the
remark below, the binary operation is needed.
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Remark 3.1. If k is a unary abstract clone with a base object a, that is, if £ is the
clone generated by the monoid k(a, a), and if K’ is a clone locally isomorphic to k,
then &’ must be isomorphic to k. This is because every f € k(a", a) has the form
f=go 7r§") for some g € k(a,a), and the existence of a segment isomorphisms
implies that the clone k' has the same property. This of course applies to term
clones of any unary algebras, and hence shows that the use of a binary operation in
Example 3.2 below is necessary.

Example 3.2. There exist two finitary algebras with one binary and countably many
unary operations whose clones of term functions are locally isomorphic but not
isomorphic.

Proof. For an algebra A = (X, X) on the set X with the set ¥ of basic operations,
we denote ¥, C ¥ the set of all its n-ary basic operations.
In our example, algebras A and A’ have sets of operations

o = Xj = {0}, Yi={ok | k=12,...} U{oxc}s
¥y = X5 = {6}, 51 =21\ {owe}
and are thus of the same similarity type.
The actual algebras A and A’ will be the free algebras on w generators in two
distinct varieties we now describe. To write the defining identities of these varieties,
we define some particular terms first. In what follows, we write every (n + 1)-ary

term t as t(xo, . . . , &) With exactly this sequence of variables.
First we inductively set

B (o, 1) = B(xo, 1),
B™(xo,...,xn) = BB (Z0,- - Tn-1):Tn).

Then, for any sequence p = (pp, - .., pn) With p; € {1} U {ok | k > 1} for every
i =0,...,n, we denote

pf;,(an e axn) = ﬁn(po(xo),pl(l‘]), s 7pn(1'n))-

All our defining identities are of the form ¢ ~ 0 for every term ¢ having a subterm p
satisfying one of the following conditions:

(1) pis0;

(2) p = 0jB(...) or p = gjok(...) for any j,k > 1 (here co > k for every
integer k£ > 1);

G) p=8(..,8(.-.));
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(4) p = ph with some p; € {01, ...,0,} or with at least one repeating variable.
We call any such term ¢ a zero term.

Observation 3.2.1. It is clear that any term with a zero subterm is a zero term itself,
and that substituting any term into a zero term produces a zero term.
Thus, for instance,

B4(o5(x0), T1,06(72), 05(x3), 0oo(z4))
is a term of A but not of A’, while

B*(05(x0), 1, 06(22), Z0, 05(x4)) and
164(0-5(1"0)7 X1, 0'6(:1.2)7 xs3, 0'1($4))

are zero terms of both algebras because the first one has a repeating variable x and
the second one has the subterm o with an index that is too small.

Lemma 3.2.2. The deductive closure of the set of all defining identities consists of
all identities t ~ t' such that either t and t' are both zero terms or else t(xg, . . ., Tp,)
= t'(xg,...,2n) is the same non-zero term.

Proof. Let = be the least equivalence on the set of all terms ¢ containing all defining
identities t ~ 0. Then ¢ & t’ exactly when both t and ¢’ are zero terms or t = t'. We
need only show that ~ is preserved under the subterm replacement and under the
substitution.

For the subterm replacement property, let s be a subterm of ¢ and let ¢’ be ob-
tained from ¢ by the replacement of s by a term s’ such that s & s. Then either s is
a zero term and hence s’ is a zero term and therefore both ¢ and ¢’ are zero terms (by
Observation 3.2.1), or else s’ = s and hence t’ = t. Hence = is preserved under the
subterm replacement.

For the substitution property, let s &~ s’ and let z be a variable in s = s'. Letr
be any term, and let ¢ and ¢’ result from the substitution of r for every occurrence of
the variable z in s & s’. Then either s and s’ are zero terms and hence ¢ and ¢’ are
zero terms (by Observation 3.2.1), orelse s = s/, and then t = t/. Thus ¢ ~ ¢’ in
either case, so that = is preserved under the substitution. O

Observation 3.2.3. For any n > 1, the (n + 1)-ary term
(20, - s Zn) = B"(000(20); - - - 1 Too(Tn))

of A is a non-zero term. Indeed, noting that every subterm of v, = pj, with p =
(Ooos - - - » 000 ) has pairwise distinct variables and is of the form v, with1 <m <n
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or else it is oo (iz;) OF a variable x;, one can readily see that it fails to satisfy any of
the conditions (1)—(4).

Lemma 3.2.2 ensures that the term functions of either free algebra are in one-
to-one correspondence with the elements of the respective sets consisting of all
non-zero terms and one zero term 0 of each arity. We thus retain the notation
t(zo, - - . , n) also for the term functions.

3.2.4. We show that tA is not isomorphic to tA’. Suppose that H : tA — tA’
is an isomorphism. For any non-zero unary term operation oy of A, the non-zero
term operation H (o) is also unary, and hence H(0) = oy, for some m € w.
For any n > 1, the clone tA contains the (n + 1)-ary non-zero term function
Yn(Z0y - -+ Zn) = B 0o0(Z0), - - - , 0o (zn)). Therefore H(G™) is (n + 1)-ary and

H ()0, - -+ +yn) = H(B")(om(¥0), - - - +0m(Yn))

is the zero term function in tA’ for every n > m, see (4). Thus H is not injective,
and hence the clone tA’ cannot be isomorphic to tA.

3.2.5. Next we show why, for every m > 1, the (m + 1)-segments of tA and of tA’
are isomorphic.

Any non-zero term function beginning with 3" must have all its n + 1 variables
pairwise distinct. The highest power in (m + 1)-segments is the m-th, so that it is
enough to consider non-unary term functions that begin with 8" withn < m — 1.
We make the assignment 0 — 0, 8" — (", 1 — 1, and for every o, € X}

Ok if k < 2m,
Of — Oc lfk = 2m.
or_1 ifk>2m.

In particular, the unary terms of A’ are bijectively assigned to the unary terms of
A. We use composition to extend this assignment to the (m + 1)-segment (tA) 41
Thus, for instance, the assignments for three similar term functions from the 6-
segment of A’ (i.e., m = 5 and hence 2m = 10) are

and 8*(010(20), - - -, 010(z4)) — B (000(Z0): - - -, 0oc(24)) — Where the first term
function is non-zero because 4 < 10.
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It is now apparent that this assignment is an (m + 1)-segment isomorphism of
(tA")m+1 onto (tA)m+1. This establishes the validity of Example 3.2. O

The question of whether or not a similar example exists of algebras with finitely
many finitary operations remains unresolved.

4 Centralizer clones

In this section we prove Theorems 4.1 and 4.3 below.

Theorem 4.1. There exist algebras C,C’ € Alg(1, 1) whose centralizer clones cC
and cC’ are locally isomorphic but not isomorphic.

Definition. For a clone k£ and a category K, any full embedding ® : k — K
preserving all finite products is called a representation of the clone & in XC. If such
a functor ® exists, we say that k is representable in K. If for every n € w there is a
full embedding ®,, : k, — K preserving all finite products, we say that k is locally
representable in K.

As shown in [16], the centralizer clone cB of any algebra B of a countable
similarity type is representable in Alg(1,1). Using [20, 21], we also easily obtain
Theorem 4.3 below.

Recall that a category S is strongly connected if all its hom-sets S(a, b) are non-
void. An S-object ¢ is called terminal if the hom-set S(a, t) is a singleton for every
S-object a. We also recall the following result of [20].

Theorem 4.2 [20]. For any abstract clone k with a base object a, these two condi-
tions are equivalent:

(i) ifk is locally representable in a category K then k is representable in K;
(ii) for some n < m, there is a split epi in k(a™,a™).

If the condition (ii) of Theorem 4.2 fails, that is, if any k(a™,a™) contains a
split epi only when n > m, we say that the clone & is loose.

Theorem 4.3. For any strongly connected countable loose clone k, there exists a
Sfull subcategory C of Alg(1, 1) closed under all finite products such that k is locally
representable in C but not representable in C.

Theorems 4.1 and 4.3 use the following result of [21].

Theorem 4.4 [21]. For any countable strongly connected category S with a terminal
object there is a full embedding ®s : S — Alg(1,1) preserving all finite products
existing in k.
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Proof of 4.1 and 4.3. To prove Theorem 4.1, we recall that algebras A and A’ de-
fined in Example 3.2 have respective clones tA and tA’ of term functions which are
countable, strongly connected and have a terminal object. As abstract categories
k = tA and k¥’ = tA/, these clones with base objects a and a’ have respective full
embeddings @ : k — Alg(1,1) and & : k' — Alg(1,1) that preserve finite
products. Setting C = ®,a and C' = ®pa’ thus gives algebras whose central-
izer clones are locally isomorphic but not isomorphic. This completes the proof of
Theorem 4.1.

The proof of Theorem 4.3 is also very simple. According to [20], for any count-
able strongly connected loose clone k, there is a countable strongly connected cat-
egory S closed under all finite products in which & is locally representable but not
representable. The full subcategory C = ®5(S) of Alg(1,1) isomorphic to S be-
cause of Theorem 4.4 then satisfies the conclusion of Theorem 4.3. The countable
strongly connected clone & has a representation elsewhere in Alg(1,1), of course,
by Theorem 4.4. O

5 On C-universality

Definition 5.1. Let C be a class of clones. We say that a category X is C-universal
(or C-u for short), if every clone k& € C is representable in K. If every full subcate-
gory of K closed under finite products other than the one-object subcategory on the
terminal object of K is C-universal, we say that X is hereditarily C-universal (or
hC-u).

A category K is conditionally C-universal (or cC-u) if every clone k € C locally
representable in K is representable in . And K is hereditarily conditionally C-
universal (or hcC-u) if every full subcategory of K with more than one object that
is closed under finite products is conditionally C-universal.

For a given class C of clones, the trivial implications between these four prop-
erties of a category K are as follows.

(a)hC-u —— (3) C-u

l l

(7) hcC-u — (8) cC-u
In what follows, we prove these three results:

(A) acharacterization of classes C such that every category K with finite products
satisfies (6) cC-u, that is, every K is conditionally C-universal;
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(B) a characterization of the classes C for which there is a category K which
satisfies (o) hC-u;

(C) for the class C of all strongly connected countable clones, we show that the
category Alg(1, 1) satisfies (3) C-u but not (-y) hcC-u, and that the category
Bool of all Boolean algebras satisfies () but not (3).

We begin with (A), which is fully answered using the result of [20] quoted above
as Theorem 4.2. Indeed, a class C has the property that every category K with finite
products is cC-u iff C does not contain any loose clone.

Now we turn to (B).

Definition. For a clone k with a base object a and a natural number M > 1, let Mk
denote the clone which is the full subcategory of k& with

objMk = {aO,aM,a2M,a,3M, .
and product projections specified as the powers

(MM . nM
in] ra”

[ —aforiencuw.

Proposition 5.2. For a class C of clones, these properties are equivalent:
(i) there exists a hereditarily C-universal category K;

(ii) for any two clones k., k' € C and every natural number M, the clone k can
be represented in MFK'.

Proof. If C satisfies (ii), then every k' € C is a hereditarily C-universal category,
and hence (i) holds.

If C does not satisfy (ii), then there exist k, k' € C such that k is not repre-
sentable in k’. If K is a hereditarily C-universal category, then k' € C can be
represented in K. If & : k¥’ — K is such a representation, then ®(k’) is a full subcat-
egory of K which is not C-universal because k is not representable in it. Therefore
K is not hereditarily C-universal. O

Proposition 5.2 thus establishes our answer to (B).

Remark 5.3. All classes known to satisfy (ii) of Proposition 5.2 are very small.
Examples are singleton classes consisting of the clone of all continuous maps of the
Cantor discontinuum, or of the clone of a Hilbert cube, or of any clone whose base

object a is isomorphic to its square a?.

-223 -



SICHLER & TRNKOVA -CLONES DETERMINED BY THEIR INITIAL SEGMENTS

Question. Are there non-singleton classes C of clones satisfying (ii) of Proposi-
tion 5.2?

We now turn to (C).

Observe that a clone k with a base object a is a strongly connected category
exactly when k(a®, a) # 0, and that a° is the terminal object of k. According to
Theorem 4.3 from [21], the category Alg(1.1) is C-universal for the class C of all
countable strongly connected clones, and hence it satisfies (3) for this class.

To see that Alg(1,1) fails to satisfy () for this class C, we begin by choosing
any countable strongly connected loose clone k € C (see 4.2). According to [20],
there is a category K closed under finite products such that k is locally representable
but not representable in K. Inspection of the construction of K in [20] shows that, for
our given clone k, the category K satisfies the hypothesis of the above Theorem from
[21]. Thus K has a representation K’ in Alg(1, 1). Since K’ is a full subcategory of
Alg(1, 1) closed under finite products and because k is locally representable but not
representable in K = X', we conclude that Alg(1, 1) is not hereditarily conditionally
C-universal, and hence fails to satisfy (7).

The remainder of (C), that is, the fact that (v) does not imply (3) is supported
also by categories other than the category Bool of Boolean algebras. In [20], the
following categories were considered and the references quoted used:

(1) the category Set of sets and mappings and, for any infinite cardinal a, its full
subcategory whose objects are sets X with cardX < a, see [9];

(2) the category OTop of all O-dimensional spaces and all their continuous maps,
and its full subcategory BTop of all Boolean spaces, see [9];

(3) the category of all Tychonoff spaces containing an arc, see [9];
(4) the category Bool of Boolean algebras, see [8, 10, 15];
(5) the category Poset of all partially ordered sets, see [12];
(6) the category DL ; of all distributive (0, 1)-lattices, see [12].
Using the quoted results, in [20] it is shown that all these categories are con-

ditionally C-universal for the class C of all clones. The proof uses the following
notions.

Definition 5.4. Let K be a category. We say that X is monoid determined if for
any b,c¢ € obj K and any isomorphism ® of the monoid K (b, b) onto the monoid
K(c, c) there exists an isomorphism ¢ € K(b,c) such that ®f = ¢ o f o ¢~ ! for
every f € K(b,b). Another property of K is that K is weakly monoid determined,
meaning that for any sequence {b, | n € w} C obj K such that there is a monoid
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isomorphism W, : K(b,.b,) — K(bpt1.bny1), there is a cofinal subset ' C w
and for any n < m in W' there is an isomorphism ¢,, ,, € K(b,,.by,) such that

-1
(I)n.mf = p.mO f o én_ms where q)n.m =V¥,_10...0 v,.

Finally, a category K with finite products is guileless if every b € obj K is a genera-
tor of the full subcategory of K determined by {b" | n € w} C obj K.

It is easily seen that these notions are hereditary with respect to full subcate-
gories closed under finite products. Thus each of the categories under (1)-(6) is
hereditarily conditionally C-universal for the class C of all clones. On the other
hand, none of them is C-universal for many singleton classes C. This is because
no nontrivial group G is isomorphic to the monoid K(a,a) of any a € objK, so
that these categories are not C-universal for any singleton class C = {k} such that
k(a,a) = G (where a is the base object of the clone k).

6 A note on elementary equivalence

Any abstract clone k with a base object a can be viewed as an w-sorted algebra
whose carrier X, of the n-th sort is the set k(a",a) of all k-morphisms a" — a,
and which has

(n) (n

(c) n distinct nullary operations 7 "', ..., ) € X, of each sort n € w, and
y op 0 1

n—

(s) forany m.n € w, a heterogeneous operation given by
S,,;,(}L fo.... *fn—l) =ho (fOX Tt >.<fn—1)~
where fo..... fno1 € X;nand h € X,,.

Hence every abstract clone k determines a unique w-sorted algebra whose opera-
tions are described in (c) and (s), and any such algebra satisfies the equations

(E1) S,’,l(h;ﬂé"), My = b for every n € w,

n-1
(E2) Sl},(ﬂ'g");fo, veisfnor) = fiforallm,n € wandi € n,

(E3) Shi(h; Si(goi for- - fr=1)s-- - SP(gp-1: for-- -\ fa=1))
= S (Sh(higo.----Gp=1): for- s fn1) forallm,n,p € w.

Conversely, any such w-sorted algebra determines, up to an isomorphism, an
abstract clone k. To see this, we simply name a base object a for &, and formally
require that k(a™,a™) consist of all n-tuples of members of the carrier X, of the
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sort m [along with the unique ‘void’ O-tuple in case of n = 0]. Once the composite

gOfOff = (fO,--'afn—l) € k(amaan) andg = (907"'7gp—1) € k(an,ap) is
defined as

go f = (S::L(g()wfo’ . '7fn—1)7 LR} Srr:l(gp—.l; .an (RN f'n—l))v

an abstract clone arises because of (E1)—(E3).

The first order language of abstract clones (see [2] or [18], for instance) is then
the first order language of the w-sorted algebras just described. Let k be an abstract
clone. For each m € w, the symbols of the language are, first, countably many
variables f (m) g(’"), ... of the m-th sort (interpreted as members of k(a™,a)),
secondly, constants 7r§-m) with j € m of the m-th sort (interpreted as the named
projections in k(a™, a)) and, finally, operation symbols S7, (interpreted as the com-
position in k in the manner already described). Terms of the m-th sort are then
described in the usual way: all variables and constants of the m-th sort are terms of

the m-th sort, and so is any expression S™, (t(™); tgm), e ,tilnl)l) in which ¢(™ is a
term of the n-th sort and tgm), ey tf:f)l are terms of the m-th sort, and every term

of the m-th sort is created through these rules. Equalities t(® = u(™) of terms of
the same sort are the atomic formulas of the language. As is usual, any formula is
obtained by means of logical connectives and quantifiers, and a sentence is a closed
formula.

Informally, for any abstract clone k, this first order language recognizes all its
named product projections, and allows only equalities of composites falling into the
same k(a™, a) as its atomic formulas.

Clone or clone segments are elementarily equivalent if their corresponding w-
sorted algebras satisfy the same sentences of the first order language. It is clear
that isomorphic clones are elementarily equivalent. In fact, since each first order
sentence refers only to finitely many variables and hence to finitely many sorts,

(e) locally isomorphic clones are elementarily equivalent.

Examples 2.4 and 3.2 thus respectively exhibit pairs of algebras of the same sim-
ilarity type whose polynomial or term clones are elementarily equivalent but not
isomorphic. Algebras in Alg(1, 1) whose centralizer clones are elementarily equiv-
alent but their n-segments are isomorphic exactly when n < N for some given finite
N were constructed already in [17].
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