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CAHIERS DE TOPOLOGIE ET Vol. XLIX-3 (2008) 
GEOMETRIE DIFFERENTIELLE CATEGORIQUES 

ON CLONES DETERMINED BY THEIR INITIAL SEGMENTS 

To Jifi Adâmek on his 60th birthday 

by J. SICHLER and V. TRNKOVÂ 

Abstract 
Les réponses respectives aux questions de savoir quand l'existence d'isomor-

phismes de clones locaux implique l'existence d'un isomorphisme de clones 
global diffère pour les clones terminaux, les clones polynomiaux et les clones 
centralisateurs des algèbres universelles finitaires. Dans chacun de ces trois cas, 
la réponse est étroitement liée au type de similarité des algèbres considérées. 

1 Introduction 

When do local isomorphisms of two clones imply their isomorphism? 
Recall that an abstract clone with a base object a is a small category k whose 

object set obj k = {a0, a, a 2 , . . .} consists of ail finite powers of its base object a, 
in which for every n G a; = {0,1,2, . . .} a unique n-tuple of product projections 
7T- : an —> a is specified and enumerated by ail i G n = { 0 , 1 , . . . , n — 1}. 
F. W. Lawvere called the abstract clones algebraic théories, and employed them to 
présent his élégant categorical view of varieties of finitary algebras in [6, 7], 

For any clone k and n G u;, let kn dénote the full subcategory of k determined 
by the set {a0, a , . . . , a n _ 1 } . We call kn the n-segment of k. 

Let k and k' be clones with respective base objects a and a' and respective 
projections 7T,- G k(an<a) and (n] )f G k((a,)r\af) for ail i G n G u. A functor 
H : A: —> k' is a clone homomorphism if 

H(an) = {a)n and i/(7rjn)) = (TT^0) ' for ail i G n G u. 

An isomorphism of k onto k' is a clone homomorphism that is one-to-one and 
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surjective. If there is a clone isomorphism of k onto k' we write k = k'. Homomor-
phisms and isomorphisms of clone segments are defined analogously. We say that 
clones k and k' are locally isomorphic if kn = k'n for every n G u. 

P. Hall [5] originally introduced what we call hère a clone on a set X as a 
System C consisting of finitary opérations / : Xn —> X with n G UJ containing 
ail Cartesian projections p2- : Xn —> X given by p\n\xo,... , x n - i ) = X{ for 
i G n G CJ, and closed under the opérations S™ of superposition defined for any 
/ o , . . . , / m - i : Xn —• X and any g : X m —> X with m, n G a; by 

S™(#; /o, • • •, /m-i)(zo, • • •, ï n - l ) 
= P(/o(^o, • • •, ^n-i), • • •, /m-iO^o, • • •, arn-i)) 

for every (x 0 , . . . , x n - i ) G X n . 
Any clone C on a set X is isomorphic to an abstract clone with a base object X, 

by means of simply extending C by ail maps / : Xn —> Xm such that p\m' o f G C 
for z G m G u; and then forgetting the actual form of the maps forming the extended 
category. We dénote / = / 0 x • • • x / m _i the unique member of C satisfying pj o 
(/ox • • • x /m-i ) = fj for every j G m. 

Conversely, any abstract clone k with a base object a is isomorphic to a clone 
on the underlying set X of the algebra A = J7^) with u free generators in the 
variety determined by the abstract clone k. The collection of ail term functions of 
A is then a clone C on the set X that provides an alternative description of k. 

Any algebra A = (X, {oa | a G S}) whose basic opérations oCT are ail finitary 
détermines three natural clones on its underlying set X: 

• the clone L4 of ail its term functions, that is, the least clone on X containing 
ail basic opérations oa of the algebra A; 

• the clone pA of ail its polynomial functions, that is, the least clone on X 
containing ail basic opérations oG of A and ail constant maps Xn —> X for 
each n G CJ; 

• the centralizer clone cA, that is, the least clone on X containing ail homo-
morphisms An —» A for each n G u. 

Clones on a set or, equivalently, clones of ail term opérations of algebras hâve 
become central in algebraic investigations, cf. [3, 4, 11, 13, 14, 15], for instance. 
Centralizer clones of algebras and of algebraic Systems were recently characterized 
in [21]. 

In Section 2, we show that locally isomorphic polynomial clones of two alge­
bras of any bounded finitary similarity type must always be isomorphic, and also 
give an example of two algebras whose finitary type is unbounded and whose poly­
nomial clones are locally isomorphic but not isomorphic. Clones of term opérations 
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behave differently: Section 3 shows that locally isomorphic term clones of algebras 
with at least one binary opération and countably many unary opérations need not 
be isomorphic. And in Section 4 we show that algebras with just two unary opéra­
tions can hâve non-isomorphic but locally isomorphic centralizer clones. Aspects of 
representability of clones from a given class C as centralizer clones of algebras are 
considered in Section 5. The concluding Section 6 relates our results to elementary 
équivalence of clones and their segments. 

Ail category theory notions we use hère can be found in [1], of course. 

2 Clones of polynomial functions 

For any algebra A on a set X, the polynomial clone pA is a clone that includes 
ail constant maps between any two finite powers of X. More precisely, we hâve 
X° = {0} and for every n G uo the unique constant map rn : Xn —> X° = {0} 
with the value 0, and for every x = (xi, xn) G Xn with n G w the map £x 

given by £x(0) = x. The constant maps Xm —> Xn are then exactly the maps of 
the form £x o rm with x G Xn. We say that any such clone on the set X has ail 
constants. 

Ail isomorphisms of clones (or clone segments) with ail constants hâve a spé­
cifie form. 

Lemma 2.1. Let k and k' be clones with ail constants on the respective sets X and 
X1 (or clone segments with ail constants containing at least thefirst powers X and 
X' of thèse sets). Then K : k —> k' is a clone (segment) isomorphism ofk onto k' if 
and only ifthere is a bijection (3 : X —> Xf such that 

K(f) =0nofo (0-l)mfor every f G k{Xm, Xn), 

where /3l : X1 —> (Xf)1 dénotes the bijection given by /3/(x)(z) = 0(x.(i))for every 
2 = 1 , . . . , / . 

Proof Let K hâve the described form. If / G k(Xm,Xn) and g G k(Xn,XV), 

ihmK(f) = (3nofo{p-l)mandK(g) = (3ï>ogo(p-l)n,soth<it K{g)oK(f) = 

0p°9of°{l3~l)ri = K(gof). And for/ = lx™ weobviously hâve K(f) = l(x')™> 

so that K is a functor. For any projection p\m' : Xm —> X and any x G Xm we hâve 

L9oPim)o(i9"1)m(x)](0 = [ f l o p ^ ^ - i o x ) ] ^ ) = i9o i9-1(x(i)) = x ( i ) for every 

i = 1 , m, so that K{p™ ) : (X')m —> X' is the z-th projection. Therefore K 
préserves ail products. The functor K~l given by K-l{f) = (p~l)n o f o j3m for 
every / ' G k,((X,)m, {X')n) is the obvious inverse of K. As a resuit, the functor 
if is a clone (segment) isomorphism. 
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For the converse, let K : k —> k' be a clone (segment) isomorphism. Since k 
contains X and k' contains X\ we hâve K(ÇX) = Ç ^ ) for some bijection (3 : 
X —> X'. For any x = ( x i , . . . , x m ) G X m we hâve £x = ÇXlx • • • x Ç ^ , 
so that K(ÇX) = Ç^ujx • • • xÇ/3(arm) = £/?m(x) because K préserves products. 
If / G ifc(Xm,Xn) and x G Xm ,tfien / o £x = £ / ( x ) and hence £/?n(/(xu = 
^(Ç/(x)) = Kif)oK(U) = ^(/)°Ç/3">(X). Evaluatingthisequality at0 G X<\we 
get/?n(/(x)) = lC(/)(/3m(x)) for every x G Xm,from which/3no/ = K{f)of3m 

follows. Since (/J™)"1 = (/T1)"1, we conclude that A'(/) = (3n o f o (fi-1)™, as 
claimed. D 

Theorem 2.2. For any two algebras having a boundedfinitary similarity type, their 
clones of polynomial functions are isomorphic whenever they are locally isomor­
phic. 

Proofi Let A = (X, £) and B = (Y, £') be finitary algebras such that their re­
spective sets of fc-ary opérations satisfy £& = Hf

k = 0 for ail k > max{2,ra}, 
and let K : (pA)m —> (pB)m be an isomorphism of the respective segments 
of their polynomial opérations. Thèse segments thus contain ail basic opérations 
of thèse algebras. By Lemma 2.1, there is a bijection /3 of X onto Y such that 
K(p) = /3 o p o (p~l)k for every fc-ary polynomial function of A with k < m. 

Define, for any r-ary polynomial function p G pA, 

K\p){yl,...,yr) = (3op{(3-\yx),...,(3-\yT)). 

Then AT* is one-to-one, and hence the image of pA under AT* is a clone on the 
set Y. Since K* extends the segment isomorphism A : (pA)m —> (pB)m of the 
segment (pA)m containing ail basic term opérations of A and because K* préserves 
the composition and assigns constants via the bijection /3 of X onto Y, ail of the 
image of pA under K* is contained in pB. 

Let H : (pB)m —• (pA)m be the inverse of A". Then /7 is associated with the 
inverse /3 _ 1 of /3, see Lemma 2.1. Let H* : pB —> pA be given by 

H*(q)(xu ...,xr) = (3-lo q(0{xi),..., 0(xr)) for any g G pB(Br, B). 

The clone morphism i/* thus extends i / and, by the symmetry of the hypothesis, 
it maps pB into pA. Since i/* and if* are each other's inverses, the clone pA is 
isomorphic to the clone pB. • 

Observation 2.3. If A is a finite algebra and if pA is locally isomorphic to pA', 
then A' is finite and pA is isomorphic to pA'. 

Proofi The underlying set X' of A' is clearly bijective to the underlying set X of 
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A, so that the set of ail bijections of X onto X' is finite. One of the bijections pn 

with n G u) associated with the segment isomorphism Kn : (pA)n —• (pj4')n must 
therefore occur infinitely many times. Let p = pn be such a bijection. Then the 
infinité set S = {ra G UJ \ pm = p} is cofinal in u;, and we write S = {rao < 
rai < . . . } . Since the segment isomorphisms Kmi+l and A m . share their defining 
bijection p, the isomorphism Am .+ 1 extends Am . for every i G u;. Setting 

K = \J{Kmi \ieuj} 

thus gives rise to a product preserving isofunctor of k onto fc'. • 

The example below shows that, for infinité algebras, it is essential that the sim-
ilarity type of at least one of them be bounded. 

Example 2.4. There exist algebras ofthe same unbounded countable finitary simi-
larity type whose polynomial clones are locally isomorphic but not isomorphic. 

This example is presented in 2.4.1-2.4.7 below. 

2.4.1. We define two algebras A and A' with the respective underlying sets 

X = {0} U {am,bm | m = 1,2,...} and X' = X U {aih b0}. 

For any m = 1,2,... and fc G { 1 , . . . ra}, the basic fc-ary opérations am^ of A are 
defined by 

a r r î , f c(xo,.. . ,x,_1) = | Q o t h e r w . s e 

The algebra A' on the set X' will hâve the opérations am^ defined as above (that 
is, the opérations am^ of A are extended by 0 to the appropriate powers of the 
underlying set X' of A') and, in addition, for any fc > 1, a single fc-ary opération 
a0,jt given by 

, v ( b0 \f(xQ,...,Xk-i) = (aQ,...,ao), 

ao^.-.^-iH j Q otherwise< 
It is obvious that any of thèse opérations am^ are totally symmetric in the sensé 

that am ,fc(x0 , . . . , xk-i) = amjfe(zp(o)> • • • >x
P(k-i)) for any permutation p of the 

set fc, and that Im(am,fc) = {0, bm} for every ra G u; and every appropriate fc. 

2.4.2. The k-ary opérations am,]t with 1 < fc < ra and the opérations ao,A: with 
fc > 1 dépend on ail their k variables. 

Proofi Replacing any single entry of ( a m , . . . , am) by 0 changes the value of am^ 
from bm to 0. • 

•213-
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2.4.3. The polynomial clone pA of the algebra A is the set S consisting of ail 
projections, ail constants, and of ail composites am^ o iM\ where 0 : fc —> p is an 
arbitrary mapping (recall that n^ (a) = a o 0for every a G Xp) and 1 < fc < ra. 

Proofi We show that the collection S is closed under the superposition opérations 

S?(g;/o,• • •, fp-i) =go ( /0x • • • x / P - i ) . 

If g is a constant then g o ( /0x • • • x / p _i ) is constant, while if g = 7r- is a projec­
tion then # o (/0x • • • x / p _i ) = fj. 

So let us assume that g = am,fc°7r'^ for some 0 : fc —> p. Let /o , . • •, / p - i be r-
ary membersof5, and let us dénote/i? = f^ forz G fc. ThenS^g; /o, • • • ?/P-i) = 
ttm,fc o (h0x ••• Xhfc-l). 

If /ii = a m / r o 7r^l for some z and ^, and if ht is not constant, then the 
only non-zero value of h{ is bm> ^ am and hence the only value of F = am^ o 
(/zox • • • xhk-i) is 0. If /¾¾ is constant, then its value must be am for otherwise 
the only value of F is 0. In the remaining case, every ht is either a projection or a 
constant with the value am and at least one hi is a projection, for otherwise F would 
be constant. 

(r) 

Since a m ^ is totally symmetric, we may assume that h{ = 7r,/.^ for i G / and 
that / i / , . . . , /ifc-i are the constants with the value am. Thus if âm dénotes the r-ary 
constant with the value am then 
F ( x 0 , . . . , x r _ i ) = amjt o (TT^J X ••• X T T ^ ^ ^ x â m x ••• xâ m ) (x 0 , - . . , x r _i ) . 

The only possible non-zero value of F is bm and this value occurs exactly when 
x*l>(t) = am for ail t e l . Therefore F = amj o 71-M for some 1 < l < r and 
ip : / —> r. 

Altogether, the System 5 is closed under ail the opérations S?. Since 5 contains 
ail constants, ail projections and ail basic opérations of A, we hâve S = pA, as 
claimed. • 

The proof of 2.4.4 below is a simple extension of the proof of 2.4.3. 

2.4.4. The polynomial clone pAf of the algebra A' is the set Sf consisting of ail 
projections, ail constants, and of ail composites am^ o 7 ^ with 1 < fc < ra and 
ail ao,it ° TT'^ with fc > 1, where 0 : fc —• p is an arbitrary mapping. • 

For any fc > 1 and appropriate ra, any composite 8 = c*m,fc07r̂ ] is a two-valued 
function, and this is because fi(am,..., am) = bm and 0(0,..., 0) = 0. 

2.4.5. Any p-ary two-valued polynomial function 0 of A depending on ail its vari­
ables has the form 0 = OLm^vfior some 1 < p < m. In addition to thèse, the only 
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p-ary two-valued polynomial functions 0 of A! depending on ail their variables hâve 
the form 0 = ao,p with p > 1. 

Proof. Let 0 be a p-ary two-valued polynomial function of A. Then 0 has the 
form 0 = am,k o TT^ for some 0 : fc —* p, by 2.4.3, that is, 0(o) = am^(o o 
0) for every o G Xv. If 0 : fc —> p is not surjective, then 0(xo,... , £ P - i ) = 
am,jfc(£</>(o)ï • • •, #0(fc-i)) does not dépend on any variable Xi with i ¢ lm(0). Thus 
0 is surjective. 

Suppose that the surjective map 0 is not injective, and let 7 : p —» fc be such 
that 0 o 7 = l p is the identity map. For any séquence a G Xv define a séquence 
a* G Xfc by setting 

a*u\ = / ^W i f * = 7(j) for some j G p, 
\ a m if i ¢101(7). 

Thusa*o7 = crandhence/3(cr) = am^(cro0) = am^(c r*°7°0)- Since o* G Xfc is 
the constant séquence with the value am exactly when cr*o7o0 G X P is the constant 
with the value am , it follows that am^(cr* 0 7 0 0 ) = am^(o*). Furthermore, since 
<r* G Xfc is the constant with the value am exactly when a G Xp is the constant 
with the value am , we also hâve am^(cr*) = amiP(cr). Altogether, 0(a) = am,p(cr) 
for every o G Xp, so that 0 = am,p. 

If the surjective map 0 is also injective, then 0 = am^ ° fl"^ is obtained from 
am,fc by a permutation of its variables. But am^ is totally symmetric and hence 
0 = am,fc in this case. This proves the claim about the algebra A. The proof for Af 

is similar. • 

Now we strengthen the previous claim a little. 

(A) Any two-valued polynomial function 0 : Ap —> A of A has the form 0 = 
otm,k o7T^ for some injective ip : k —> p and some 1 < fc < ra. In addition to 
thèse, the algebra A7 has two-valued p-ary polynomial functions of the form 
0f = o<o,fc ° 7rM with fc > 1 and an injective ÎJJ : fc —* p. 

Proof of (A). If /3(xo,.. . , x p - i ) dépends on its variables x o , . . . , xjt-i and no oth-
ers, then 0(XQ, • • •, xp-\) = /3(#o».. •,£jfc-i) for some fc-ary 0 depending on ail 
its variables and having the same two values as 0. This gives rise to an injective 
z/> : fc —> p such that 0 — 0o 71^. But any fc-ary two-valued polynomial function /3 
depending on ail its variables has the form 0 = am^ for some ra > fc, by 2.4.5, so 
that 0 = am,k o 71-M as claimed. The proof for the algebra A' is similar. • 

2.4.6. The clone pA! is not isomorphic to pA. 
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Proofi For any two-valued polynomial functions 0 and 0f of respective arities fc and 
k' depending on ail their variables we define 

0' <0 =df fc' < fc and 1111(/37) = Im(/3). 

Thus am£' < &m,k exactly when k' < k < ra and, according to 2.4.5, no other 
comparable pairs of two-valued polynomial functions of A depending on ail their 
variables exist. For the algebra A! we hâve the additional comparable pairs Q0^ < 
a0,£ with 1 < fc' < fc, see 2.4.5. Therefore ail <-chains in pA are finite while pA' 
has an infinité such chain. And the relation < must be preserved by any polynomial 
clone isomorphism. • 

2.4.7. For every N > 1, the (N + l)-segments of the clones pA and pA' are 
isomorphic. 

Proof. In view of Lemma 2.1, we only need to exhibit a bijection 7 : X' —> X such 
that 

7 _ 1 ogo^k G (pA')N+i for every fc-ary g G (p^)yv+i, 

and such that for the inverse 7 _ 1 of 7 we hâve 

7 o h o (7 - 1 )^ G (pA)/v+i for every fc-ary h G (pA')yv+i. 

This is clear for any bijection 7 in case when g or h is a constant or a projection. In 
fact, (7 - 1 )^ o 7r̂ 'l o / = 71-M for any generalized projection n^ determined by 
the map 0 : fc —> p with fc,p > 1. In gênerai, we dénote K(g) = (7_1)A* o g o 7^. 

For the bijection ¢ : uu —+ uj\{0} given by 

N + l ifn = 0, 
(n) = { n if 1 < n < A, 

•n + 1 if n > A, 

we define our particular bijection 7 : X' —> X by setting 7(0) = 0, and 7(0») = 
a0(fl) and 7(6n) = 60(n) for every n G u;. 

Next we show that 

(e) 7 - 1 ° ^ ^ ° ^ = Q0-i(m),it whenever 1 < fc < ra. 

For ra = A/" + 1 and every fc G {1 A" + 1} we hâve 

7 _ 1 oayv+i,A-°7A'(ao ao) = l~l oayV+u-(a/v+i a,v+i) 
= 7_1(6yv+i) = b0 
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and 7 - 1 0 0 ^ + ^ 0 ^ ( ( 7 ) = 0 for any G ^ (ao , . . . , an). Therefore7_1
 O Q J V + ^ O 

7A: = ao,A: in the case of 1 < fc < m = N + 1. 
Next suppose that 1 < ra < N. For every fc G {1 ,ra}we hâve 

7 _ 1 o a m j t o 7 * ( a m , . . . , a m ) = 7 _ 1 ° ûm,ifc(am, • • • , a m ) = 7 _ 1 ( b m ) = &m 

a n d 7 _ 1 o a m A,o7A'(cr) = 0 for any cr ^ ( a m , . . . , a m ) . Therefore 7 - 1 0 0 ^ / . 0 7 ^ = 
am,k if 1 < fc < ra < AT. 

Finally, suppose that ra > N + 1. Then ra - 1 > Ar, and because 7(am_i) = 
a0(m-i) — flm for any such ra, for every fc G { 1 , . . . , ra} we hâve 

O"1 ° V f c 0 ^ ( û / n - l - - M Û m - l ) = 7 " 1 °®m.Aam,'.-,am) 
= l'~l(bm) = bm-\ 

and7_1oam./e07A'(o-) = Oforanycr ^ ( a m _ i , . . . , a m _ i ) , sothat7~1oam^o7 / c = 
a$-l(m),k a^S0 ^n tn*s c a s e - This complètes the proof of (e). 

Now let 0 : Ap —> A be a two-valued function from the segment (pA)yv+i, that 
is, let 1 < p < A/". Then 0 = amj%. o 7r '̂' for some 1 < fc < ra and some injective 
map 0 : fc —> p, by 2.4.5(A). But then 1 < fc < A, so that am,*. G (pA)w+i and 
7rM G (pA)y\+i. Since K is a functor preserving ail generalized projections n^\ 
using (e) we conclude that 

K(0) = K(am,k) o TT^] = a 0 - i ( m ) ï i t o TT^ G {pA')N+l. 

Since K - 1(a7 l j t ) = 7 0 a , ^ o (*)~l)k = a$(n),k for every basic opération an^ 
of A', a similar argument shows that K~l(0') G (p^4)^+i for every two-valued 
polynomial function 0f : (A1 Y -> A' of .4'. • 

Remark 2.5. We do not know whether or not the polynomial clone of an algebra 
with finitary unbounded similarity type can be locally isomorphic, but not isomor­
phic to the polynomial clone of an algebra whose finitary type is bounded. 

3 Clones of term functions 

For algebras of bounded finitary similarity type, their clones of term functions be-
have unlike clones of polynomial functions: non-isomorphic clones of term func­
tions can be locally isomorphic. The first example of algebras of unbounded finitary 
similarity type confirming this fact was constructed in [20]. Example 3.2 below of-
fers algebras with one binary and countably many unary opérations. In view of the 
remark below, the binary opération is needed. 
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Remark 3.1. If fc is a unary abstract clone with a base object a, that is, if fc is the 
clone generated by the monoid fc(a, a), and if k' is a clone locally isomorphic to fc, 
then k' must be isomorphic to fc. This is because every / G k(an, a) has the form 
f = g o 7r2- for some g G fc(a, a), and the existence of a segment isomorphisms 
implies that the clone k' has the same property. This of course applies to term 
clones of any unary algebras, and hence shows that the use of a binary opération in 
Example 3.2 below is necessary. 

Example 3.2. There exist two finitary algebras with one binary and countably many 
unary opérations whose clones of term functions are locally isomorphic but not 
isomorphic. 

Proof. For an algebra A = (X, E) on the set X with the set E of basic opérations, 
we dénote S n Ç E the set of ail its n-ary basic opérations. 

In our example, algebras A and A' hâve sets of opérations 

E0 = E'0 = {0}, Ei = {ak | fc = 1,2,...} U { a ^ } , 
E2 = E'2 = {/?}, E ' ^ E A K c } , 

and are thus of the same similarity type. 
The actual algebras A and A' will be the free algebras on LJ generators in two 

distinct varieties we now describe. To write the defining identities of thèse varieties, 
we define some particular terms first. In what follows, we write every (n + l)-ary 
term t as t(xo,..., xn) with exactly this séquence of variables. 

First we inductively set 

0l(xo,xi) = /3(x0,xi), 
/J*(X0, • • • , Xn) = 0(0n-l(x^ . . . , X n- i ) , Xn). 

Then, for any séquence p = (po,..., pn) with p?; G {1} U {ak | fc > 1} for every 
i = 0 , . . . , n, we dénote 

p£(x 0 , . . . ,x n ) = 0n(po(xo),pi(x1),...,pn(xn)). 

Ail our defining identities are of the form t ~ 0 for every term t having a subterm p 
satisfying one of the following conditions: 

(1) pisO; 

(2) p = (Tj0(...) or p = OjOk(...) for any j , fc > 1 (hère oo > fc for every 
integer fc > 1); 

(3) p = 0(...,/?(...)); 
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(4) p = pn with some pi G {cri, . . . , an} or with at least one repeating variable. 

We call any such term t a zéro term. 

Observation 3.2.1. It is clear that any term with a zéro subterm is a zéro term itself, 
and that substituting any term into a zéro term produces a zéro term. 

Thus, for instance, 

/34(cr5(x0), xi, cr6(x2), cr5(x3), cr00(x4)) 

is a term of A but not of A', while 

04(eb(xo),xi,cr6(x2),x0,05(^4)) and 
/ 3 4 ( ^ 5 ( ^ 0 ) , Xi , CT6(X2), X3 , ( 7 i (x 4 ) ) 

are zéro terms of both algebras because the first one has a repeating variable xo and 
the second one has the subterm a\ with an index that is too small. 

Lemma 3.2.2. The deductive closure ofthe set of ail defining identities consists of 
ail identities t « t! such that either t and i! are both zéro terms or else t (xo , . . . , xn) 
= £'(xo,.. . , xn) is the same non-zero term. 

Proof. Let « be the least équivalence on the set of ail terms t containing ail defining 
identities t ~ 0. Then t « t' exactly when both t and t' are zéro terms or t = t'. We 
need only show that « is preserved under the subterm replacement and under the 
substitution. 

For the subterm replacement property, let s be a subterm of t and let t' be ob-
tained from t by the replacement of s by a term s' such that s' « s. Then either s is 
a zéro term and hence s'is a zéro term and therefore both t and t' are zéro terms (by 
Observation 3.2.1), or else s' — s and hence t' = t. Hence « is preserved under the 
subterm replacement. 

For the substitution property, let s » s' and let x be a variable in s ^ s'. Let r 
be any term, and let t and t' resuit from the substitution of r for every occurrence of 
the variable x in s « sf. Then either s and s' are zéro terms and hence t and t1 are 
zéro terms (by Observation 3.2.1), or else s = sf, and then t = t'. Thus t « t' in 
either case, so that « is preserved under the substitution. • 

Observation 3.2.3. For any n > 1, the (n + l)-ary term 

7 n ( x o , • • • , Xn) = /3 n ( t foo(£ 0 ) , • • • * ^ o o ( x „ ) ) 

of A is a non-zero term. Indeed, noting that every subterm of 7^ = pn with p = 
(<7oo,..., 0-30) has pairwise distinct variables and is ofthe form 7 m with 1 < m < n 
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or else it is a^xt) or a variable x^ one can readily see that it fails to satisfy any of 
the conditions (1)-(4). 

Lemma 3.2.2 ensures that the term functions of either free algebra are in one-
to-one correspondence with the éléments of the respective sets consisting of ail 
non-zero terms and one zéro term 0 of each arity. We thus retain the notation 
t(xo, • • •, xn) also for the term functions. 

3.2.4. We show that tA is not isomorphic to tA'. Suppose that H : tA —• tA' 
is an isomorphism. For any non-zero unary term opération ok of A, the non-zero 
term opération H(ak) is also unary, and hence H(aoc) = om for some m e LU. 
For any n > 1, the clone tA contains the (n + l)-ary non-zero term function 
7„(x 0 , . . . ,x n ) = /3n(<7oo(x0), • • -^oc(xn))- Therefore H(0n) is (n + l)-ary and 

#(7n)(2/o, - • •, 2/n) = H(0n)(am(yo), • • •, (Tm(yn)) 

is the zéro term function in tA' for every n > m, see (4). Thus H is not injective, 
and hence the clone tA' cannot be isomorphic to tA. 

3.2.5. Next we show why, for every m > 1, the (m + 1)-segments of tA and of tA' 
are isomorphic. 

Any non-zero term function beginning with 0n must hâve ail its n + 1 variables 
pairwise distinct. The highest power in (ra + l)-segments is the ra-th, so that it is 
enough to consider non-unary term functions that begin with 0n with n < m - 1. 
We make the assignment 0 »-> 0, 0n i-> /3n, 1 ^ 1, and for every ok G T,[ 

{ ok if fc < 2m. 
(Toc if fc = 2m. 

ok-\ if fc > 2m. 

In particular, the unary terms of A' are bijectively assigned to the unary terms of 
A. We use composition to extend this assignment to the (m + l)-segment (tA)m+i. 
Thus, for instance, the assignments for three similar term functions from the 6-
segment of A' (Le., m = 5 and hence 2m = 10) are 

^(^5(^0),^1,^5(^2),^7(^3),^11(^4)) 
i-> /?4(a-5(x0), xi , cr5(x2), 0-7(x3), <Jio(x4)), 

/34(cr5(*o), xi , a5(x2), cr7(x3), o-i0(x4)) 
H-+ /34(a5(x0), xi , cr5(x2), a7(x3), <7oo((x4)), 

/34(cr5(x0), xi , cr5(x2), t77(x3), ^9(^4)) 
H^ /34(cr5(x0), xi , cr5(x2), a7(x3), a9(x4)); 

and /34(^io(^o), • • •, ^10(^4)) *-+ /34(^DO(^O), • • •, ^00(^4)) - where the first term 
function is non-zero because 4 < 10. 
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It is now apparent that this assignment is an (ra + l)-segment isomorphism of 
(L4')m+i onto (tA)m+i. This establishes the validity of Example 3.2. • 

The question of whether or not a similar example exists of algebras with finitely 
many finitary opérations remains unresolved. 

4 Centralizer clones 

In this section we prove Theorems 4.1 and 4.3 below. 

Theorem 4.1. There exist algebras C, C G Alg(\, 1) whose centralizer clones cC 
and cC are locally isomorphic but not isomorphic. 

Définition. For a clone fc and a category /C, any full embedding $ : fc —> /C 
preserving ail finite products is called a représentation of the clone fc in /C. If such 
a functor <3> exists, we say that fc is representable in /C. If for every n G UJ there is a 
full embedding $ n : kn —* /C preserving ail finite products, we say that fc is locally 
representable in /C. 

As shown in [16], the centralizer clone cB of any algebra S of a countable 
similarity type is representable in Alg(l, 1). Using [20, 21], we also easily obtain 
Theorem 4.3 below. 

Recall that a category S is strongly connected if ail its hom-sets S (a, b) are non-
void. An S-object t is called terminal if the hom-set S(a, t) is a singleton for every 
5-object a. We also recall the following resuit of [20]. 

Theorem 4.2 [20]. For any abstract clone k with a base object a, thèse two condi­
tions are équivalent: 

(i) ifk is locally representable in a category /C then k is representable in tC; 

(ii) for some n < m, there is a split epi in k(an, am). 

If the condition (ii) of Theorem 4.2 fails, that is, if any k(an,am) contains a 
split epi only when n > ra, we say that the clone fc is loose. 

Theorem 4.3. For any strongly connected countable loose clone fc, there exists a 
full subcategory C ofAlg(\, 1) closed under ail finite products such that fc is locally 
representable in C but not representable in C. 

Theorems 4.1 and 4.3 use the following resuit of [21]. 

Theorem 4.4 [21]. For any countable strongly connected category S with a terminal 
object there is a full embedding 3>s : <S —• Alg(\, 1) preserving ail finite products 
existing in fc. 
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Proofi of 4.1 and 4.3. To prove Theorem 4.1, we recall that algebras A and A' de­
fined in Example 3.2 hâve respective clones tA and tA' of term functions which are 
countable, strongly connected and hâve a terminal object. As abstract catégories 
fc = tA and k' = tA', thèse clones with base objects a and a' hâve respective full 
embeddings $k : k —• Alg(l , l) and $k* : k' —> Alg(l , l) that préserve finite 
products. Setting C = ®ka and C" = $/-/a' thus gives algebras whose central­
izer clones are locally isomorphic but not isomorphic. This complètes the proof of 
Theorem 4.1. 

The proof of Theorem 4.3 is also very simple. According to [20], for any count­
able strongly connected loose clone fc, there is a countable strongly connected cat­
egory «S closed under ail finite products in which fc is locally representable but not 
representable. The full subcategory C = &s(S) of Alg(l, 1) isomorphic to S be­
cause of Theorem 4.4 then satisfies the conclusion of Theorem 4.3. The countable 
strongly connected clone fc has a représentation elsewhere in Alg(l, 1), of course, 
by Theorem 4.4. • 

5 On C-universality 

Définition 5.1. Let C be a class of clones. We say that a category /C is C-universal 
(or C-u for short), if every clone fc G C is representable in /C. If every full subcate­
gory of /C closed under finite products other than the one-object subcategory on the 
terminal object of /C is C-universal, we say that /C is hereditarily C-universal (or 
hC-u). 

A category /C is conditionally C-universal (or cC-u) if every clone fc G C locally 
representable in /C is representable in /C. And /C is hereditarily conditionally C-
universal (or hcC-u) if every full subcategory of /C with more than one object that 
is closed under finite products is conditionally C-universal. 

For a given class C of clones, the trivial implications between thèse four prop-
erties of a category /C are as follows. 

(a) hC-u ^ (0) C-u 

(7)hcC-u >(5)cC-u 

In what follows, we prove thèse three results: 

(A) a characterization of classes C such that every category /C with finite products 
satisfies (S) cC-u, that is, every /C is conditionally C-universal; 
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(B) a characterization of the classes C for which there is a category /C which 
satisfies (a) hC-u; 

(C) for the class C of ail strongly connected countable clones, we show that the 
category Alg(l, 1) satisfies (0) C-u but not (7) hcC-u, and that the category 
Bool of ail Boolean algebras satisfies (7) but not (0). 

We begin with (A), which is fully answered using the resuit of [20] quoted above 
as Theorem 4.2. Indeed, a class C has the property that every category /C with finite 
products is cC-u iff C does not contain any loose clone. 

Now we turn to (B). 

Définition. For a clone fc with a base object a and a natural number M > 1, let Mk 
dénote the clone which is the full subcategory of fc with 

objil/fc = { a ° , a M , a 2 M , a 3 M , . . . } 

and product projections specified as the powers 

[n\n)]M :anM ^aMfori£nSu. 

Proposition 5.2. For a class C of clones, thèse properties are équivalent: 

(i) there exists a hereditarily C-universal category /C; 

(ii) for any two clones fc, fc' G C and every natural number M, the clone k can 
be represented in Mk'. 

Proofi If C satisfies (ii), then every fc' G C is a hereditarily C-universal category, 
and hence (i) holds. 

If C does not satisfy (ii), then there exist fc, fc' G C such that fc is not repre­
sentable in fc'. If /C is a hereditarily C-universal category, then fc' G C can be 
represented in /C. If $ : fc' —• /C is such a représentation, then $(fc') is a full subcat­
egory of /C which is not C-universal because fc is not representable in it. Therefore 
/C is not hereditarily C-universal. • 

Proposition 5.2 thus establishes our answer to (B). 

Remark 5.3. Ail classes known to satisfy (ii) of Proposition 5.2 are very small. 
Examples are singleton classes consisting of the clone of ail continuous maps of the 
Cantor discontinuum, or of the clone of a Hilbert cube, or of any clone whose base 
object a is isomorphic to its square a2. 
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Question. Are there non-singleton classes C of clones satisfying (ii) of Proposi­
tion 5.2? 

We now turn to (C). 
Observe that a clone fc with a base object a is a strongly connected category 

exactly when k(a°,a) ^ 0, and that a0 is the terminal object of fc. According to 
Theorem 4.3 from [21], the category Alg(l, 1) is C-universal for the class C of ail 
countable strongly connected clones, and hence it satisfies (0) for this class. 

To see that Alg(l, 1) fails to satisfy (7) for this class C, we begin by choosing 
any countable strongly connected loose clone fc G C (see 4.2). According to [20], 
there is a category /C closed under finite products such that fc is locally representable 
but not representable in /C. Inspection ofthe construction of/C in [20] shows that, for 
our given clone fc, the category /C satisfies the hypothesis ofthe above Theorem from 
[21]. Thus /C has a représentation K! in Alg(l, 1). Since K! is a full subcategory of 
Alg(l, 1) closed under finite products and because fc is locally representable but not 
representable in /C = /C', we conclude that Alg(l, 1) is not hereditarily conditionally 
C-universal, and hence fails to satisfy (7). 

The remainder of (C), that is, the fact that (7) does not imply (0) is supported 
also by catégories other than the category Bool of Boolean algebras. In [20], the 
following catégories were considered and the références quoted used: 

(1) the category Set of sets and mappings and, for any infinité cardinal a, its full 
subcategory whose objects are sets X with cardX < a, see [9]; 

(2) the category OTop of ail 0-dimensional spaces and ail their continuous maps, 
and its full subcategory BTop of ail Boolean spaces, see [9]; 

(3) the category of ail Tychonoff spaces containing an arc, see [9]; 

(4) the category Bool of Boolean algebras, see [8, 10, 15]; 

(5) the category Poset of ail partially ordered sets, see [12]; 

(6) the category DLo,i of ail distributive (0, l)-lattices, see [12]. 

Using the quoted results, in [20] it is shown that ail thèse catégories are con­
ditionally C-universal for the class C of ail clones. The proof uses the following 
notions. 

Définition 5.4. Let /C be a category. We say that /C is monoid determined if for 
any b,c e obj /C and any isomorphism $ of the monoid /C(6, b) onto the monoid 
/C(c, c) there exists an isomorphism 0 G /C(6, c) such that $ / = 0 o / o 0 - 1 for 
every / G /C(fr, b). Another property of /C is that /C is weakly monoid determined, 
meaning that for any séquence {bn. | n G u} Ç obj /C such that there is a monoid 
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isomorphism ^ n : K,(bnJ>Ti) —> IC(bn+i,bn+\), there is a cofinal subset J Ç UJ 
and for any /? < m in J there is an isomorphism 0„.m G IC(bn,bm) such that 

*rî ,m/ = <t>n,m ° / ° 0 ^ m , where $,? ,m = ^m-\ o . . . o $ „ . 

Finally, a category /C with finite products is guileless if every b G obj /C is a genera-
tor of the full subcategory of /C determined by {bn \ n G UJ} C obj /C. 

It is easily seen that thèse notions are hereditary with respect to full subcate-
gories closed under finite products. Thus each of the catégories under (1)-(6) is 
hereditarily conditionally C-universal for the class C of ail clones. On the other 
hand, none of them is C-universal for many singleton classes C. This is because 
no nontrivial group G is isomorphic to the monoid IC(a, a) of any a G obj/C, so 
that thèse catégories are not C-universal for any singleton class C = {k} such that 
k(a, a) = G (where a is the base object of the clone k). 

6 A note on elementary équivalence 

Any abstract clone k with a base object a can be viewed as an u;-sorted algebra 
whose carrier Xn of the n-th sort is the set k(an,a) of ail fc-morphisms a71 —» a, 
and which has 

(c) n distinct nullary opérations 7TQ , • . . , 71-^ G Xn of each sort n G u, and 

(s) for any m, n G u;, a heterogeneous opération given by 

S£(A;/o /1,-1) = / 1 0 ( / 0 ^ . . . ) ^ 0 , 

where / 0 fn-\ e Xm and h G Xn. 

Hence every abstract clone k détermines a unique u;-sorted algebra whose opéra­
tions are described in (c) and (s), and any such algebra satisfies the équations 

(El) Sï{h;irl
0

n\ ... , 7 ¾ = h for every r? G u;, 

(E2) S£(7rjn); / 0 , . . . , / n - 0 = fi for ail m,n G ̂  and / G n, 

(E3) Sp
m(h;Sln(go;fo fn-i) ^ ( < 7 p _ i ; / 0 fn-i)) 

= Sr
rn(S^(h;g0 </P-i);/o / n - 0 f o r a11 m*n<P € ^-

Conversely, any such u>sorted algebra détermines, up to an isomorphism, an 
abstract clone k. To see this, we simply name a base object a for k, and formally 
require that k(an\an) consist of ail /vtuples of members of the carrier Xm of the 
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sort m [along with the unique 'void' 0-tuple in case of n = 0]. Once the composite 
go f of f = ( / 0 , . . . , / n _ 0 e fc(am,an) and g = ( # 0 , . . . , £ P - 0 € k(an,ap) is 
defined as 

g o / = (S™ (#05 /o , • • • , / n - 0 » • • • i ̂ mtep- l î /o , • • • , / n - 0 ) » 

an abstract clone arises because of (E1)-(E3). 
The first order language of abstract clones (see [2] or [18], for instance) is then 

the first order language ofthe cj-sorted algebras just described. Let k be an abstract 
clone. For each m G o;, the symbols of the language are, first, countably many 
variables f(m\g(m\... of the ra-th sort (interpreted as members of fc(am,a)), 
secondly, constants 7r- with j G m of the m-th sort (interpreted as the named 
projections in fc(am, a)) and, finally, opération symbols S„\ (interpreted as the com­
position in k in the manner already described). Terms of the m-th sort are then 
described in the usual way: ail variables and constants ofthe m-th sort are terms of 
the m-th sort, and so is any expression 5 ^ ( ^ ; £Q , . . . , ^ _ i ) in which t^ is a 
term of the n-th sort and v™',..., r^jl are terms of the m-th sort, and every term 
of the m-th sort is created through thèse rules. Equalities t^ = u^ of terms of 
the same sort are the atomic formulas of the language. As is usual, any formula is 
obtained by means of logical connectives and quantifiers, and a sentence is a closed 
formula. 

Informally, for any abstract clone fc, this first order language recognizes ail its 
named product projections, and allows only equalities of composites falling into the 
same fc(am, a) as its atomic formulas. 

Clone or clone segments are elementarily équivalent if their corresponding u-
sorted algebras satisfy the same sentences of the first order language. It is clear 
that isomorphic clones are elementarily équivalent. In fact, since each first order 
sentence refers only to finitely many variables and hence to finitely many sorts, 

(e) locally isomorphic clones are elementarily équivalent. 

Examples 2.4 and 3.2 thus respectively exhibit pairs of algebras of the same sim­
ilarity type whose polynomial or term clones are elementarily équivalent but not 
isomorphic. Algebras in Alg(l, 1) whose centralizer clones are elementarily équiv­
alent but their n-segments are isomorphic exactly when n < N for some given finite 
N were constructed already in [17]. 
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