Equational properties of recursive program scheme solutions
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009) no. 1, article no. 2, 44 p.
@article{CTGDC_2009__50_1_23_0,
     author = {Milius, Stefan and Moss, Lawrence S.},
     title = {Equational properties of recursive program scheme solutions},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     eid = {2},
     pages = {23--66},
     publisher = {Andr\'ee CHARLES EHRESMANN},
     volume = {50},
     number = {1},
     year = {2009},
     mrnumber = {2512521},
     zbl = {1170.68009},
     language = {en},
     url = {http://archive.numdam.org/item/CTGDC_2009__50_1_23_0/}
}
TY  - JOUR
AU  - Milius, Stefan
AU  - Moss, Lawrence S.
TI  - Equational properties of recursive program scheme solutions
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2009
SP  - 23
EP  - 66
VL  - 50
IS  - 1
PB  - Andrée CHARLES EHRESMANN
UR  - http://archive.numdam.org/item/CTGDC_2009__50_1_23_0/
LA  - en
ID  - CTGDC_2009__50_1_23_0
ER  - 
%0 Journal Article
%A Milius, Stefan
%A Moss, Lawrence S.
%T Equational properties of recursive program scheme solutions
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2009
%P 23-66
%V 50
%N 1
%I Andrée CHARLES EHRESMANN
%U http://archive.numdam.org/item/CTGDC_2009__50_1_23_0/
%G en
%F CTGDC_2009__50_1_23_0
Milius, Stefan; Moss, Lawrence S. Equational properties of recursive program scheme solutions. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009) no. 1, article  no. 2, 44 p. http://archive.numdam.org/item/CTGDC_2009__50_1_23_0/

[1] P. Aczel, J. Adámek, S. Milius and J. Velebil, Infinite trees and completely iterative theories: A coalgebraic view, Theoret. Comput. Sci. 300 (2003), 1-45. | MR | Zbl

[2] J. Adámek, S. Milius and J. Velebil, Elgot Algebras, Log. Methods Comput. Sci., Vol. 2 (5:4), 31 pp. | MR | Zbl

[3] J. Adámek, S. Milius and J. Velebil, Equational Properties of Iterative Monads, submitted. | MR | Zbl

[4] M. F. Barnsley, Fractals Everywhere, Academic Press 1988. | MR | Zbl

[5] S. L. Bloom and Z. Ésik, Iteration Theories: The Equational Logic of Iterative Processes, EATCS Monographs on Theoretical Computer Science, Springer Verlag, 1993. | MR | Zbl

[6] F. Borceux, Handbook of Categorical Algebra 2: Categories and Structures, Vol. 51 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1994. | MR | Zbl

[7] R. M. Burstall and J. Darlington, A Transformation System for Developing Recursive Programs, J. ACM, 24:1 (1977), 44-67. | MR | Zbl

[8] B. Courcelle, Fundamental Properties of Infinite Trees, Theoret. Comput. Sci. 25 (1983), no. 2, 95-169. | MR | Zbl

[9] B. Courcelle, Recursive Applicative Program Schemes. In J. van Leeuwen, ed., Handbook of Theoretical Computer Science, Vol. B, 459-492, Elsevier, Amsterdam, 1990. | MR | Zbl

[10] I. Guessarian, Algebraic Semantics. Lecture Notes in Comput. Sci., Vol. 99, Springer Verlag, 1981. | MR | Zbl

[11] A. J. C. Hurkens, M. Mcarthur, Y. N. Moschovakis, L. S. Moss and G. Whitney, The Logic of Recursive Equations, J. Symbolic Logic 63 (1998), no. 2, 451-478. | MR | Zbl

[12] J. Lambek, A Fixpoint Theorem for Complete Categories, Math. Z. 103 (1968), 151-161. | EuDML | MR | Zbl

[13] S. Mac Lane, Categories for the Working Mathematician, 2nd edition, Springer Verlag, 1998. | MR | Zbl

[14] J. G. Mersch, Equational Logic of Recursive Program Schemes, PhD thesis, Indiana University, Bloomington, 2004. | MR | Zbl

[15] J. G. Mersch, Equational Logic of Recursive Program Schemes, in J. Fiadeiro et al (eds.): Algebra and Coalgebra in Computer Science: First International Conference (CALCO 2005), Proceedings, Lecture Notes in Comput. Sci., Vol. 3629, 278-292, Springer Verlag, 2005. | MR | Zbl

[16] S. Milius, Completely Iterative Algebras and Completely Iterative Monads, Inform. and Comput. 196 (2005), 1-41. | MR | Zbl

[17] S. Milius and L. S. Moss, The Category Theoretic Solution of Recursive Program Schemes, Theoret. Comput. Sci. 366 (2006), 3-59. | MR | Zbl

[18] S. Milius and L. S. Moss, The Category Theoretic Solution of Recursive Program Schemes, full version, available at the URL http://www.stefan-milius.eu. | Zbl

[19] S. Milius and L. S. Moss, Corrigendum to [17], Theoret. Comput. Sci. 403 (2008), 409-415. | MR

[20] L. S. Moss, Parametric Corecursion, Theoret. Comput. Sci. 260 (2001), no. 1-2, 139-163. | MR | Zbl

[21] L. S. Moss, Recursion and Corecursion Have the Same Equational Logic, Theoret. Comput. Sci. 294 (2003), no. 1-2, 233-267. | MR | Zbl

[22] Y. Moschovakis, The Logic of Functional Recursion. In M. L. Dalla Chiara et al (eds.) Logic and scientific methods, Synthese Lib., 259, Kluwer Acad. Publ., Dordrecht, 1997, 179-207. | MR | Zbl

[23] M. Nivat, On the Interpretation of Recursive Polyadic Program Schemes, Symposia Mathematica XV (1975), 255-281. | MR