On boundedness and small-orthogonality classes
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009) no. 1, article no. 3, 13 p.
@article{CTGDC_2009__50_1_67_0,
     author = {Sousa, Lurdes},
     title = {On boundedness and small-orthogonality classes},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     eid = {3},
     pages = {67--79},
     publisher = {Andr\'ee CHARLES EHRESMANN},
     volume = {50},
     number = {1},
     year = {2009},
     mrnumber = {2512522},
     zbl = {1171.18003},
     language = {en},
     url = {http://archive.numdam.org/item/CTGDC_2009__50_1_67_0/}
}
TY  - JOUR
AU  - Sousa, Lurdes
TI  - On boundedness and small-orthogonality classes
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2009
SP  - 67
EP  - 79
VL  - 50
IS  - 1
PB  - Andrée CHARLES EHRESMANN
UR  - http://archive.numdam.org/item/CTGDC_2009__50_1_67_0/
LA  - en
ID  - CTGDC_2009__50_1_67_0
ER  - 
%0 Journal Article
%A Sousa, Lurdes
%T On boundedness and small-orthogonality classes
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2009
%P 67-79
%V 50
%N 1
%I Andrée CHARLES EHRESMANN
%U http://archive.numdam.org/item/CTGDC_2009__50_1_67_0/
%G en
%F CTGDC_2009__50_1_67_0
Sousa, Lurdes. On boundedness and small-orthogonality classes. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 50 (2009) no. 1, article  no. 3, 13 p. http://archive.numdam.org/item/CTGDC_2009__50_1_67_0/

[1] J. Adámek, M. Hébert and L. Sousa, A Logic of Orthogonality, Arch.Math.(Brno) 42 (2006), 309-334. | EuDML | MR | Zbl

[2] J. Adámek, M. Hébert and L. Sousa, The Orthogonal Subcategory Problem and the Small Object Argument, to appear in Appl. Categorical Structures. | MR | Zbl

[3] J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, John Wiley and Sons, New York 1990. Freely available at www.math.uni-bremen.de/~dmb/acc.pdf | MR | Zbl

[4] J. Adámek and J. Rosický : Locally presentable and accessible categories, Cambridge University Press, 1994. | MR | Zbl

[5] J. Adámek and L. Sousa, On reflective subcategories of varieties, J. Algebra 276 (2004) 685-705. | MR | Zbl

[6] J. Adámek and W. Tholen, Total categories with generators, J. Algebra 133 (1990), 63-78. | MR | Zbl

[7] R. Börger, W. Tholen, Total categories and solid functors, Canad. J. Math. 42-1 (1990), 213-229. | MR | Zbl

[8] R. Börger, W. Tholen, M.B. Wischnewsky and H. Wolff, Compact and hypercomplete categories, J. Pure Appl. Algebra 21 (1981), 120-144. | MR | Zbl

[9] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators, Kluwer Academic Publishers (1995). | MR | Zbl

[10] P. J. Freyd and G.M. Kelly, Categories of continuous functors I, J. Pure Appl. Algebra 2 (1972), 169-191. | MR | Zbl

[11] P. Gabriel and F. Ulmer, Local präsentierbare Kategorien, Lect. Notes in Math. 221, Springer-Verlag, Berlin 1971. | MR | Zbl

[12] M. Hébert, J. Adámek, J. Rosický, More on orthogonality in locally prsentable categories, Cahiers Topologie Géom. Différentielle Catég. 42 (2001) 51-80. | EuDML | Numdam | MR | Zbl

[13] M. Hébert, J. Rosický, Uncountable orthogonality is a closure property, Bull. London Math. Soc. 33 (2001) 685-688. | MR | Zbl

[14] G. Janelidze and G. M. Kelly, The reflectiveness of covering morphisms in Algebra and Geometry, Theory and Applications of Categories, 3 (1997) 132-159. | EuDML | MR | Zbl

[15] M. Kelly, A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on, Bull. Austral. Math. Soc. 22 (1980), 1-84. | MR | Zbl

[16] M. Kelly, A survey of totality for enriched and ordinary categories, Cahiers Topologie Géom. Différentielle Catég. 27 (1986). | EuDML | Numdam | MR | Zbl

[17] M. Kelly, Basic concepts of enriched category theory, Reprints in Theory and Applications of Categories, No. 10, 2005. | MR | Zbl

[18] C.M. Ringel, Monofunctors as reflectors, Trans. Am. Math. Soc. 161 (1971) 293-306. | MR | Zbl

[19] L. Sousa, α -sober spaces via the orthogonal closure operator, Appl. Categ. Structures 4(1996) 87-95. | MR | Zbl

[20] H. Volger, Preservation theorems for limits of structures and global section of sheaves of structures, Math. Z. 166 (1979) 27-53. | EuDML | MR | Zbl