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CAHIERS DE TOPOLOGIE ET 
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Vol. L-3 (2009)

CENTRAUZERS IN ACTION ACCESSIBLE CATEGORIES

by Dominique BOURN and George JANELJDZE*

Dedicated to Francis Borceux on the occasion of his sixtieth birthday

Abstract

Nous introduisons la notion de catégorie accessible qui com
prend une grande partie des catégories protomodulaires, dont les 
catégories des groupes, des anneaux, des algèbres associatives 
et des algèbres de Lie. Cette notion a l’avantage de permettre 
de calculer intrinsèquement les centralisateurs des sous-objets et 
des relations d’équivalence. Nous montrons que dans de telles 
catégories les notions de commutateurs pour les sous-objets et 
pour les relations d’équivalence coïncident.

We introduce and study action accessible categories. They 
provide a wide class of protomodular categories, including all 
varieties of groups, rings, associative and Lie algebras, in which 
it is possible to calculate centralizers of equivalence relations and 
subobjects. We show that, in those categories, the equivalence 
relation and subobject commutators agree with each other.

Key words : Protomodular and semi-abelian categories; centralizers; 
commutators; split exact sequences.
[2000]primary: 20J05,18G50, 18C15; secondary: 18G30, 18G35. 

I n t r o d u c t i o n .

When X  is a subset of a group A, the centralizer Z (X )  of X  in A  is 
defined as

Z (X )  =  {a G A /x  axa~l — x}

When X  is a normal subgroup in A, sending a € A  to the automor
phism c(a) of X  defined by c(a)(x) =  axa-1 determines a group homo
morphism c : A  —► Aut(X),  and the centralizer Z (X )  can equivalently 
be defined as: Z (X )  =  Ker(c).

* The second author acknowledges partial support from South African NRF and 
Université du Littoral.
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When X  is a normal subobject in an object A in a semi-abelian cat
egory C, the centralizer Z ( X ) is to be defined as the largest subobject 
K  of A  with [X, K \  =  0 (here and below we write [, J for the “clas
sical” subobject commutator in order to distinguish it from the equiva
lence relation commutator [,]). The existence of such a Z (X )  can then 
be proved in the case of a semi-abelian variety, but not in general: a 
counter-example was constructed by S. A. Huq [12].

Since the group Aut(X )  is a particular example of the split extension 
classifier (introduced in [3], and denoted there by [X]; see also [2]), it 
is natural to ask if the equality Z (X ) =  K er(c ) still holds for the ap
propriate c : A —► [X] whenever the protomodular category C is action 
representable, i.e. whenever the split extension classifier [X] exists.

Among others, there are two main results in this paper:

(a) We not just answer positively the question above, but prove a 
stronger result applicable to a much wider class of categories, 
which we call action accessible. They include e.g. all varieties 
of groups, rings, associative and Lie algebras.

(b) As an application, we prove that in any action accessible category 
the equivalence relation and subobject commutators agree in the 
sense that [i2, 5] =0 if and only if [/# , Is ] =  0, where Ir is the 
normal subobject associated with R; as we know from [6], this is 
also true in any strongly protomodular category, but for a very 
different reason.

The paper is divided into six sections as follows:
Section 1 introduces faithful split extensions and studies their simple 

properties, especially in the case of rings - which is the most important 
non-action-representable case. For familiar algebraic categories faithful 
split extensions

0 — - X ^ + A - ^ . B — ^0
S

correspond to faithful actions of B  on X ,  which is the reason of choosing 
the term “faithful” . Note also that all generic split extensions

0 — k [XIy— .IYI— ^0
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(in the sense of [3], with the concept of semidirect product introduced 
in [9]) are faithful by very definition.

Section 2 defines the action accessible categories as those “with ac
cess to faithful split extensions”, i.e. as those where every split extension 
admits a morphism into a faithful one. It is shown that the following 
categories are action accessible:

•  any action representable category (trivially);

•  the category of rings;

•  any Birkhoff subcategory of a homological action accessible cate
gory;

•  the category of split epimorphisms into any object in an action 
accessible category.

Section 3 essentially shows that working with split extensions is the 
same as working with internal groupoids, and therefore allows to apply 
the constructions with split extensions to (internal) equivalent relations.

Section 4 shows, using the results of Section 3, how to calculate 
centralizers of equivalence relation as kernel pairs of morphisms into 
split extensions, and in particular concludes that all action representable 
and all action accessible (homological) categories admit centralizers.

Section 5 studies centralizers of normal subobjects, compares them 
with centralizers of equivalence relations and concludes that the equiva
lence relation and subobject commutators agree in any action accessible 
category.

Section 6 provides a new characterization of antiadditivity (=the 
property for an object of having trivial centres) via faithfulness of a 
particular split extension, extending a simple property of groups. 
Remark: (a) The authors did their best to adjust the terminology and 
notation they use with those of the papers they refer to -  even though 
in some cases it almost created disagreements They hope, however, that 
the choices they made will be most convenient for the readers, especially 
those who studied the book [1].
(b) The action accessibility defined in this paper has nothing to do 
with the concept of accessible category -  it is only a coincidence of 
terminology.
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1 Faithful split extensions

Let C be a finitely complete pointed category. Recall it is protomodular 
when for any diagram with ps =  1b and k the kernel of p:

0 — — - 0
S

the pair (k, s) is jointly strongly epic.
Now let C be a fixed pointed protomodular category, and

Ix ( l . i )

a diagram in C, which has the following properties:
•  it reasonably commutes, i.e. has I =  f k , q f  =  gp, and f s  =  tg ;
•  it has ps — 1b and qt =  1D;
•  k and I are kernels of p  and q respectively.

We will consider such a diagram as a morphism (g, f )  of split exten
sions (with fixed X ), write

(g , f )  : (B , A , p , s , k ) - ►  (D , C , q , t , l ) (1.2)

and denote the category of such split extensions by

SplExt(X)  =  SplExtc (X)

The functor
SplExt(X)  - ►  C (1.3)

sending (B , A,p, s, k) to B  is a faithful fibration in which every vertical 
morphism is an isomorphism (since g =  Id =*> /  is an isomorphism) and 
therefore every morphism is cartesian. This follows from the protomod
ularity of C, and, moreover, when C is just required to be pointed and 
to have finite limits, this is equivalent to protomodularity.
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O bservation  1.1. Using protomodularity we observe:
(a) to say that the functor (1.3) is faithful is of course the same as 
to say that the morphism f  in (1.1) (provided it exists) is determined 
by other morphisms, which follows from the fact that the pair (k , s ) is 
jointly (strongly) epic;
(b) to say that every morphism in Sp lE xt(X ) is cartesian (with respect 
to the functor (1.3)) is the same as to say that in every diagram in C 
of the form (1.1) the square q f  =  gp is a pullback;
(c) the category S p lE xt(X ) obviously has connected finite limits pre
served by the functor (1.3), and, since this functor (1.3) is faithful, it 
not only preserves, but also reflects monomorphisms.

D efin ition  1.2. An object in Sp lE xt(X ) is said to be faithful, if any 
object in S p lE xt(X ) admits at most one morphism into it.

O bservation  1.3. For arbitrary two objects X  and Y  in C, consider 
the split extension (Y ,Y  x X , p y , i y , i x ) ,  in which py  : Y  x X  —> Y  
is the product projection, and iy  =  (1,0) : Y  —> Y  x X  and ix  =  
(0,1) : X  —► Y  x X  are the “product injections”. This split extension 
belongs to Sp lE xt(X ), and it becomes its initial object if and only if
Y  =  0. Furthermore, it always admits a (unique) morphism into the 
initial object, and therefore it is faithful if and only if it is initial. In 
particular this implies that whenever the category C has at least one 
object X  for which every object in S p lE xt(X ) is faithful, the category 
C has no non-zero objects, in other words C is indiscrete.

Using Observation 1.1(c) we obtain:

P rop o sitio n  1.4. For a morphism (g, f )  : (B , A,p, s, k) —> (D, C, q, t, I) 
with faithful codomain (D ,C ,q , t , l ), the following conditions are equiv
alent:
(a) (B ,A ,p ,s ,k )  is faithful;
(b) (g , f )  is a monomorphism in Sp lE xt(X );
(c) g is a monomorphism in C.

In particular, the category S plE xt(X )  might have a terminal object, 
which is to be called the generic split extension with kernel X  (accord
ing to [3]), or the universal split extension of X  (according to [2]); this
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is the case when C has representable object actions in the sense of [3] 
or is action representative in the sense of [2] (these two concepts co
incide, except that the categories considered in [3] were required to be 
semi-abelian). The image of the generic split extension with kernel X  
under the functor (1.3) was called the split extension classifier for X  
and denoted by [X] in [3], and by D ( X ) in [2]. From Proposition 1.4 
we obtain:

C orollary 1.5. When C is action representative, the following condi
tions on an object (B ,A ,p , s , k ) in S p lE xt(X ) are equivalent:
(a) (B, A, p, s, k) is faithful;
(b) the corresponding classifying morphism B  —> [X] is a monomor
phism.

Note that in the case of groups the morphism B  —> [X] becomes 
B —> Aut(X),  which justifies the term faithful. However there are 
other justification results beyond the action representative cases, such as 
Proposition 1.6 below or a similar result for commutative rings. When 
C is semi-abelian [13], the category SplE xt(X )  is equivalent to the cat
egory of pairs (£?,£), where £ is an action of B  on X  in the sense of
[9] (see [3] and [4] for details). Therefore Definition 1.2 in fact gives a 
definition of a faithful object action.

P rop osition  1.6. Let C be the variety R g  of (not-necessarily-unitary) 
rings, and X  an object in Sp lE xt(X ). Then the following conditions 
on an object (D ,C ,q , t , l ) in S p lE xt(X ) are equivalent:
(a) (D ,C ,q , t , l ) is faithful;
(b) if d and d' are elements in D with t(d)l(x) =  t{d')l(x) and l(x)t(d) — 
l(x)t(d') for all x in X ,  then d =  d';
(c) if d is an element in D with t(d)l(x) — 0 =  l(x)t(d) for all x in X ,  
then d =  0.

Proof. (b) (c) is obvious.

(a) =>• (b): for an object (D , C ,q , t , l ) in S p lE x t(X ) and an element 
d in D  we can construct an object (B ,A ,p ,s ,k )  in S plE xt(X )  and a 
morphism (g , / )  : (B , A,p, s, k ) —> (D , C, q, t , I) as follows:
•  we take B  to be the free algebra in C on a one-element set {z } \
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•  we define g : B  —> D  as the unique ring homomorphism from B  to D  
with g(z) =  d;
•  A is B  x X  as an abelian group, with the multiplication defined by

(ib, x)(b', x') =  (bb', bx' +  xb' +  xx'), (1.4)

where bb' and xx' are defined as in B  and in X  respectively, and bx' and 
xb' are defined by

l(bx') =  tg(b)l(x') and l{xb') =  l{x)tg{b') (1.5)

respectively (using the fact that I is injective);
•  we define p, s, k, and /  by

p(b ,x) =  b, s(b) — (b, 0), k(x) =  (0, x), and f ( b ,x ) =  tg(b) +  l(x )
(1.6)

respectively.
Checking that this determines a morphism in S plE xt(X )  requires 

a long but straightforward calculation, which we omit. Let us now 
compare the morphism (g , / )  : (B ,A ,p ,s ,k )  —► (D ,C ,q , t , l )  with the 
morphism (g ' , f ) : (B ',A ',p ' ,s ' ,k ') —► (D , C ,q , t , l ) constructed in ex
actly the same way but with an element d' instead of d. We claim that 
if

t(d)l(x) =  t(d')l(x) and l(x)t(d) =  l(x)t{d!)

for all x in X ,  then (B ', A',p', s', k') =  (B, A,p, s, k ). Indeed, we observe:
•  B' =  B, A' =  A  as abelian groups, and p', s', k' are the same maps as 
p, s, k respectively in any case. Therefore we only need to show that for 
all b, b' in B  and x, x' in X , (b, x)(b', x') in A' is the same as (6, x)(b', x') 
in A.
•  According to (1.4) and (1.5), to show that (b,x)(b',x') in A' is the 
same as (b, x)(b', x') in A for all 6, b' in B  and x, x' in X , it suffices to 
show that:

tg(b)l(x) =  tg'(b)l(x) and l(x)tg(b) =  l(x)tg'(b) (1.7) 

for all b in B  and x  in X .
•  Since, by the assumption on d and d', the equalities (1.7) hold for
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b =  z, it suffices to show that the set of elements b in B  for which the 
equalities (1.7) hold form a subring in B. Moreover, since that set is 
obviously a subgroup of the additive group of B, we only need to show 
that it is closed under the multiplication in B. This, however, easily 
follows from the fact that tg and tg' are ring homomorphisms and the 
multiplication in D  is associative.

Next, since (D ,C ,q , t , l ) is faithful, (B ’, A!,p', s',k') =  (B ,A ,p , s , k ) 
implies g — g', and so d — d!.

(b) => (a): let (g , f ) and (g ' , f ) be morphisms from ( B ,A ,p ,s ,k )  to 
(D , C, q, t, I) and b and x be elements in B  and X  respectively. Since 
p(s(b)k(x)) — ps(b)pk(x) =  0, there exists y  in X  with k{y) =  s(b)k(x), 
and we have:

tg(b)l(x) =  f s (b ) fk (x ) =  f(s(b )k(x )) =  fk (y )  =  l(y ) =  f'k(y)

=  f (s (b )k (x ))  =  f s ( b ) f k ( x )  =  tg'(b)l(x)

and similarly l(x)tg(b) =  l(x)tg'(b). Condition (b) then tells us that 
g(b) =  g'(b) for all b in B. That is, g =  g', and since k and s are jointly 
epic this also gives /  =  / ' ,  as desired. □

2 Action accessibility

D efin ition  2.1. Let C be a pointed protomodular category. An object 
in S p lE xt(X ) is said to be accessible, if it admits a morphism into a 
faithful object. If every object in S p lE xt(X ) is accessible, we will say 
that C is action accessible.

As immediately follows from this definition, every action represen
tative category is action accessible. So this is in particular the case for 
the categories G p of groups and R-Lie of Lie /2-algebras. The following 
example of action accessible category will show that the converse is not 
true:

P rop o sitio n  2.2. The variety R g  of (not-necessarily-unitary) rings is 
action accessible.
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Proof. For an object (B , A ,p , s , k ) in S plE xt(X )  we construct the de
sired morphism (g , f ) : (B ,A ,p , s , k ) —► (D , C ,q , t , l ) into a faithful 
object as follows:
•  The set I  =  {b G B  | Vx€x  s(b)k(x) =  0 =  k(x)s(b)} is an ideal in 
B. Indeed, for b in I  and b' in B  we have s(b'b)k(x) — s(b')s(b)k(x) =  
0 =  s(b)s(b')k(x) =  s(bb')k(x), where the third equality follows from 
the fact that s(b')k(x) =  k(y ) for some y in X;  similarly k(x)s(b'b) =  
0 =  k(x)s(bb'). We take D  =  B /I .
•  The image s(I)  of I  under s is an ideal in A. In order to prove this, 
it suffices to show that for b in / ,  b' in B, and x in X , the elements 
s(b')s(b), s(b)s(b'), k(x)s(b), and s(b)k(x) are in s(I). For the elements 
s(b')s(b) =  s(b'b) and s(b)s(b') =  s(bb') this follows from the fact that I  
is an ideal in B. The elements k(x)s(b) and s(b)k(x) are simply equal 
to 0 by definition of I. We take C  =  A /s(I) .
•  We define q, t, and I as the morphisms induced by p, s, and k 
respectively, and take /  and g to be the canonical morphisms A  —> 
A /s(I )  and B  —> B /I .  This obviously determines a morphism (g , f )  : 
(B ,A ,p ,s ,k )  —► (D ,C ,q , t , l ), since all the maps involved are ring ho- 
momorphisms and the resulting diagram considered as a diagram in the 
category of abelian groups becomes isomorphic to the diagram

0 — -----* . B ----- - 0

0 — *X>— » X Q B / I - ^ . B / I — ^  0

of canonical morphisms.
It remains to prove that (D, C, q, t, I) is faithful. According to Propo

sition 1.6 it suffices to prove that if d is an element in D  with t(d)l(x) =  
0 =  l(x)t(d) for all x in X ,  then d — 0. We have d =  b + 1 for some b 
in B, and then t(d)l(x) =  0 =  l(x)t(d) in D  means that the elements 
s(b)k(x) and k(x)s(b) are in s(I). On the other hand, d =  0 in D  means 
that b is in I, i.e. that s(b)k(x) =  0 =  k(x)s(b) for all x in X .  That is, 
we have to prove the implication

Vxex  s(b)k(x),k(x)s(b) £ s(I) => Vl6x  s(b)k(x) =  0 =  k(x)s(b) 

However, it follows from the much stronger and obvious implication 

s(b)k(x), k(x)s(b) G s (B ) => s(b)k(x) =  0 =  k(x)s(b)
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□

Many other examples of action accessible categories can be obtained 
from

P rop osition  2.3. If C is an action accessible homological (i.e. pointed 
protomodular regular) category and D is a Birkhoff subcategory in C, 
then O also is action accessible.

Proof. For X  in D and a morphism (g , f )  : (B , A, p , s, k) —> (D , C, q, t, I) 
with (B, A , p , s , k )  in SplExt®(X) and a faithful object (D , C , q , t , l ) 
in SplE xtc(X )  just take (C being regular) ( g ' , f )  : ( B , A , p , s , k )  -*• 
(D ', C ', q', t', I'), where (D1, C', q', t', I') is the suitably constructed image 
of (g, / ) ,  and (g', / ' )  is induced by (g , / ) .  □

Now let P tc (Y )  denote the category whose objects are the split epi- 
morphisms above Y  and morphims are the commutative triangles be
tween those split epimorphims. When C is protomodular, then P tc ( Y ) 
is pointed protomodular.

P rop osition  2.4. Let C be a pointed protomodular category.
(a) Given a morphism (g , f ) : (B , A , p , s , k ) —> (D , C , q , t , l ) in the cat
egory S p lE xt(X ), the diagram

A=- H b x C - 5 3 .

p b

Bx t
.B x D

PB

BT

(1,9 )
(2.1)

is a split extension in Ptc(B) that is faithful whenever so is (D , C, q, t, I),
(b) If C is action accessible, then, for any object B, the category Ptc(B)  
is action accessible.

Proof, (a): Omitting straightforward verification of the first assertion, 
consider another split extension

(2 .2)
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with the same A , p, and s, and two morphisms (m, n) and (m n ') from it 
to the split extension (2.1). We have to prove that n =  n!. Since p sn  =  
v =  Pbti1 , it suffices to prove that the composites and pDn' of n and 
n' with the projection p£> : B x D  —> D  are equal to each other. This, 
however, follows from the fact that (pcm ,pD n ) and {pcm> ,Pd ^ )  can be 
presented as two parallel morphisms into (D ,C ,q , t , l ) in S plE xtc(X )  
and (D, C , q, t, I) is faithful.

(b): Let us now begin with an arbitrary split extension (2.2) in Ptc(B ),  
and let (X , k1) be the kernel of p'. Since C is action accessible, there is 
a faithful split extension (D , C ,q , t , l ) and a morphism

{9\  f )  '• (B', A', p', s', k') —► (D, C ,q ,t ,  I)

in SplE xtc(X ).  After that all we need is to observe that the morphism 
(g\  / ' )  induces a morphism from the split extension (2.2) to the split 
extension

A>-
ipJ)

B x C
Bxq

R x D

Pb

B x t
<1 ,tg) PB

ET=

( 1,9 )

B

constructed as follows:
•  putting g =  g'y makes B x q  a morphism (B  x C ,p s ,  (1, tg)) —> 
(B x D , p b ,  (1, g)) in the category Ptc(B ) ,  and we define k : (A ,p , s) —> 
(B  x C , p b ,  (1 ,tg))  as the kernel of that morphism;
•  we then define /  : A  —> C  as the composite of k with the product 
projection B  x C  —> C, which makes k =  {p, / ) ;
- and that this split extension is faithful by (a). □

3 The fibration of X-groupoids

In this section we extend the previous observations to internal reflex
ive graphs and groupoids, which we shall need to introduce centraliz- 
ers. For an object X  in C, by a reflexive graph structure on an object 
(B , A,p, s, k) in S plE xt(X )  we will mean a morphism u : A  —> B  with 
us =  1b; we will then also say that (B, A,p, s,u)  is the underlying re
flexive graph of ((B, A ,p , s, fc),«). Conversely, given any reflexive graph
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(B ,A ,do ,so ,d i) ,  the morphism d\ gives a reflexive graph structure on 
the object (B, A, d0, So, k) in SplE xt(X ),  where (X ,k )  is any kernel of
do-

Since every protomodular category is a Maltsev category, being an 
internal groupoid in C is the same as being an internal reflexive graph 
in C satisfying certain property (not having an additional structure). 
Specifically, a reflexive graph (B ,A ,do,So,di)  is a groupoid if and only 
if the commutator

[ / ¡ H U N ]  (3.1)

is trivial, where R[f] denotes (as in [1]) the equivalence relation deter
mined by the kernel pairs of any morphism /:

PO

R l f V ^ X - ^ Y
~Pl *”

and where, given any pair (R , S) of equivalence relations on an object 
X , we say that the commutator [i?, S] is trivial and write [R, 5] =  0 
when the pair (R, S ) has a connector [7], i.e. it admits a morphism:

p : R Xx S  —► X ,

which, written with generalized elements as (x R y S z ) i—► p(x ,y , z ), sat
isfies the identities p (x , y, y) — x and p(y, y, z) =  z.

Accordingly, by a groupoid structure on an object (B , A ,p , s , k ) in 
S plE xt(X )  we will mean a morphism u : A —> B  for which us — I s  
and [R\p], #[«]] =  0; the system ( B ,A ,p ,s ,k ,u )  will then be called an 
X-groupoid. X-groupoids form a category Grpd(X) — Grpdc(X),  in 
which a morphism

(g, / )  : (B, A, p, s, k, u) -»• (D, C, q , t , l ,  v) (3.2)

is a morphism (g , f ) : (B ,A ,p , s , k ) —> (D ,C ,q , t , l )  in S plE xt(X )  with 
v f  =  gu. Similarly to the functor (1.3), the functor

Grpd(X)  - ►  C (3.3)
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sending (B , A,p, s , k, u) to B  is a faithful fibration in which every verti
cal morphism is an isomorphism and therefore every morphism is carte
sian. This last point means that every morphism in Grpd(X)  determines 
a discrete fibration of (internal) groupoids.

Similarly to Definitions 1.2 and 2.1, we introduce

D efin ition  3.1. (a) An X-groupoid is said to be faithful, if  any X -  
groupoid admits at most one morphism into it.
(b) An X-groupoid is said to be accessible, if it admits a morphism, into 
a faithful X  -groupoid. If every X  -groupoid is accessible, we will say that 
C is groupoid accessible.

L em m a 3.2. An X-groupoid is faithful if and only if its underlying 
object of Sp lE xt(X ) is faithful.

Proof. Let (D , C , q, t, Z, v) be a faithful X-groupoid, and 

(£ ,/ ) , ( # ' , / ' )  '• (B , A ,p , s , k ) (D ,C ,q , t , l )  

a pair of morphisms in SplE xt(X).  Consider the diagram

R(f)
R\p] I R[q\ —^  C

R(f)
PI PO Pi 9 V

f
A , c

/' 1
p t q
>' 9
B  T D

9'

where the top parts of the first two columns the kernel equivalence rela
tions of p and q, the top morphisms between them are induced by (g, f )  
and (g ' , f ), and w  is the “division map” (with generalized elements it 
would be written as =  ixp-1) of the kernel equivalence relation
of q considered as a groupoid. Since the X-groupoid (D , C , q, t, /, v) is 
faithful, we get v f  =  v f . Thus we have g =  vtg - v f s  =  vf's' - g'.

Conversely, let (D , C , q , t , l , v ) be a X-groupoid with a faithful un
derlying action. Then any pair

(.9 , f ) , ( s f , f ') : (B , A , p , s , k , u ) =$ (D, C,q, t ,  I, v)
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of morphisms in G rpd(X) determines an underlying pair of morphisms 
in SplE xt(X ), and consequently g =  g'. □

By this lemma and Proposition 5.1 in [2] which shows that any split 
extension classifier underlies an internal groupoid, any action represen
tative category C is groupoid accessible. We then get the following:

P rop osition  3.3. Suppose the category C is pointed protomodular and 
groupoid accessible; then it is action accessible.

Proof. Just observe that any object (B , A,p, s , k) in SplE xt(X )  admits 
a morphism into the underlying object of an X-groupoid, e.g. of the 
kernel equivalence relation of p, and use the previous lemma. □

On the other hand we have:

P rop o sitio n  3.4. Suppose C is homological. Let

(g , f )  : (B , A , p , s , k ) (D , C , q , t , l )

be a morphism in Sp lE xt(X ) in which g (and therefore also f )  is a 
normal epimorphism. When ( B , A , p , s , k )  has a reflexive graph struc
ture or a groupoid structure u, the object (D , C, q, t, I) also has such a 
structure v with v f  — gu.

Proof. Consider the diagram

0 — X

l x v

O ^ X

(3.4)

in which (I , i ) and ( I , j )  are the kernels of /  and g respectively, and 
we can assume that they involve the same object I  and have j  =  pi  
(and i =  s j ) since the square formed by q f  =  gp is a pullback. Given a 
morphism u : A —> B  with us =  1B, we observe:
•  Since /  being a normal epimorphism is a cokernel of i, and since
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gui =  gusj — gj -  0, there exists a morphism v : C  —► D  with v f  -- gu. 
Moreover, for such a morphism v, we have vtg  =  v f s  =  gus =  g, and 
since g is an epimorphism, we obtain vt =  l/>
•  After this it remains to prove that if u is a groupoid structure on 
(B, A,p,  s , k), and v is a reflexive graph structure on (D, C , q, t, I) with 
v f  =  gu, it is also a groupoid structure. But this is the case by Theorem 
3.1 in [10], since any homological category is Malt’sev and regular, and 
g, f  are both normal (and thus regular) epimorphisms. □

¿From this proposition, using also Proposition 1.4 and the obvious 
(normal epi, mono)-factorization system in SplE xt(X ),  we obtain:

C orollary 3.5. Suppose C is homological. Then C is action accessible 
if and only if it is is groupoid accessible.

4 The centralizer of an accessible equiva
lence relation

Here is our main result:

T heorem  4.1 . Let R be an equivalence relation on an object B in a pro- 
tomodular category C, X  an object in C, and (g, f )  : (B , A,p,  s, k, u) —> 
(D , C, q, t, I, v ) a morphism in Grpd(X), in which (B , A,p,  s, k , u) is the 
equivalence relation R considered as a groupoid in C, and (D , C, q, t, I, v) 
is faithful. Then the kernel pair R[g] of g is the centralizer of R, i.e. 
the largest equivalence relation on B with [R, /?[<?]] =  0.

Proof. The fact the commutator [R, i?[g]] is trivial follows from the fact 
that the morphism R[f] —> R[g] of equivalence relations induced by 
(p, q) is a discrete fibration of groupoids (see [7] for details).
It remains to prove that if an equivalence relation R! =  (B , A' ,p ', s', u') 
has [R, /?'] =  0, then R' is less or equal to the kernel pair of g. That is,
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we have to prove that gp' — gu' whenever there exists a diagram

E

e2 ei

A B

(4.1)

U

in which each pair of parallel arrows determines an equivalence relation, 
and the pairs (e i,p') and (e2, u') determine discrete fibrations. Since 
the relevant squares are pullbacks, the two horizontal top arrows in
(4.1) determine an object Grpd(X), and both pairs (e i,p') and (e2,u') 
determine a morphism from that object to (B, A,p,  s, k, u). Composing 
these morphisms with (g , / )  and using the fact that (D , C , q, t, I, v) is 
faithful, we obtain the desired equality. □

C orollary 4 .2 . All equivalence relations in a groupoid accessible cate
gory C have centralizers. This is the case in particular for any action 
representative category and any homological action accessible category.

5 Centralizer of subobjects and centra- 
lizer of equivalence relations

As soon as the category C is pointed protomodular, there is an intrinsic 
notion of commutation for subobjects; see [5]. Indeed, given any pair 
(X , Y ) of objects, the following downward square is a pullback:

X  x Y

PY lY

Y

and consequently the pair (ix,  iy  ) is jointly strongly epic. Accordingly 
given any pair of subobject x : X  >—> Z, y : Y  ^  Z,  there is at most 
one map <f>: X  x Y  —> Z  such that <pix  =  x and (fiiy =  y. When this is 
the case, we say that the subojects commute, call 0 the cooperator of 
these two subobjects, and write [X, FJ =  0 as in [6].
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On the other hand, since C is pointed, any equivalence relation R  
on Z  determines a subobject, namely the “equivalence class” ir =  d\k : 
Ir >—» Z  of the initial map given by the following pullback:

The following lemma is an obvious consequence of protomodularity:

L em m a 5.1. The normalization function which associates with any 
equivalence relation on Z  its normal subobject

Rel(Z) —y Subzi R ^  I r

preserves and reflects the order.

It is also clear that [R, 5] =  0 implies [/# , is ]  =  0. The converse is 
true for strongly protomodular categories, but not in general, as shown 
in [6]. We are now going to show that groupoid accessible categories 
share this converse property with the strongly protomodular ones.

For, let us begin with the following observation. Let R  be an equiv
alence relation on an object B , whose normalization is X  and the cor
responding X-groupoid is ( B , A , p , s , k , u ) .  When C is groupoid acces
sible, there is a morphism (g, f )  : ( B , A , p , s , k , u )  —> (D , C , q , t , l , v ) 
in G rpd(X)  with the groupoid (D , C , q , t , l , v ) being faithful. We have 
shown that the kernel pair R[g] of g is the centralizer of R,  i.e. the 
largest equivalence relation on B  that commutes with R.

P ro p o sitio n  5.2. Suppose C is groupoid accessible. For R and g as 
above, the kernel morphism kg : K g >—> B of g (which is the normaliza
tion of R[g] as well) is the largest subobject of B commuting with the 
normalization uk : X  >-> B of R.

Proof. Of course [R, #[<?]] =  0 implies [X, K g\ =  0; see [1] for in
stance. Suppose now we have any momomorphism j  : J  >—> B  such 
that [X , J] =  0; we have to check that J  is less or equal to K g, which is 
nothing but gj  =  0. For, we will construct various morphisms of split
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extensions and then use Observation 1.3 as follows:
•  Let 4>: J  x X  —► B  be the cooperator of j  : J  >—► B  and uk : X  
First we construct the diagram

B.

PO Pi J x p o

X >-

J x p i

J x X B
uk

where: (a) the left-hand square is a discrete fibration of equivalence 
relations; (b) since every such discrete fibration ( = “fibrant morphism”) 
in a protomodular category is cocartesian with respect to the forgetful 
functor into the ground category (see Lemma 5.1 in [8] or Lemma 6.1.6 
in [1]), the new morphism (pi can be defined as the morphism making 
the right-hand side of the diagram an internal functor.
•  Note that (fii ixxxh =  k, since p(j)\ixxxi\ — ukpoi\ — 0 =  pk, 
u<j>iixxxH =  ukp\i\ =  uk, and p  and u are jointly monic.
•  Next, using the morphism (pi above, we construct the diagram

p j ij

J

J  x X ^ - + J  x X  x X
1.7 X X 4> i

J  xpo Jxso

J x X B D

(in obvious notation), which reasonably commutes, i.e.: (a) its top part 
commutes; (b) its bottom part formed by solid arrows represent mor- 
phisms between split epimorphisms (with specified splittings). Accord
ingly we have a morphism in SplExt(X):

(fl,i> /^i(*J x X ))  : ( J , J  x X , p j , i j , i x )  —► (D , C , q , t , l )

•  Since (D , C , q , t , l ) is faithful, Observation 1.3 then tell us that gj  =  
0. □
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O bservation  5.3. If (g , / )  is the unique morphism from the indiscrete 
relation V *  =  (X, X  xX, po , so , p i )  into a faithful groupoid, then R[g] is 
the largest equivalence relation commuting with V *  and K g is nothing 
but the largest subobject commuting with lx ,  namely the centre Z X  of 
X .

Rem ark: When the category C in question is the category R g  of rings, 
this centre Z X  is nothing but the annihilator of the ring X .

T heorem  5.4. Suppose C is groupoid accessible. Let R and S  be two 
equivalence relations on an object X .  Then [i?, 5] =  0 if and only if

[ /« ,/« ]  =  o.

Proof. We have already noticed that [R, S] =  0 implies [/r , is ]  =  0, 
which is a very general fact. Conversely suppose {/#, Is] =  0. So, by 
Proposition 5.2, we have Is C K g, and according to Lemma 5.1, we 
have also S  C R[g]- Whence, according to Theorem 4.1, [R, S] =  0. □

6 A characterization of antiadditivity

Recall that a morphism k : X  —► A  is said to be central, if there is 
a (necessarily unique) cooperator (j> : X  x A  —> A  such that (jrix =  k 
and <pia =  1 a', we use here the terminology of [5] again, although this 
concept of centrality (and of commutator) was originally studied by 
S. A. Huq [11] (in a slightly different context). In accordance with 
the terminology of [5], let us call an object A antiadditive if there are 
no nonzero central morphisms into it; that is, a pointed protomodular 
category is antiadditive in the sense of [5], see also [1], if and only if 
every object in it is antiadditive in our sense. If C is antiadditive, any 
abelian object is trivial. When the ground category C is homological, 
an object A is antiadditive if and only if A has a trivial centre, and C 
is antiadditive if and only if C has no non trivial abelian objects.

T heorem  6.1. An object A in a pointed protomodular category C is 
antiadditive if and only if the split extension

0 — » A > - ^ A  (6.1)
«0

-229 -



BOURN & JANELIDZE - CENTRALIZERS IN ACTION ACCESSIBLE CATEGORIES

is faithful.

Proof. Suppose the split extension (6.1) is faithful and consider any 
central morphism k : X  —> A  with cooperator </>. Since both

0 A

1A

^ X x A p±

(kpx,<t>>

■A x A

IX

PO

and

■A

1a

0

<o,i)

-%-X x A P̂

L.A-

0

,X -
0x1̂ 4 IX

A>-
(0 ,1)

A x  A
PO

0
«0

are morphisms in SplExt(A), we obtain k =  0.
Conversely, suppose A antiadditive and suppose we have a morphism 

(k, f )  in SplExt(A)  whose codomain is the split extension (6.1). Then, 
since the square formed by / ,  k, and the appropriate arrows between 
them is a pullback, the domain of (k , / )  must be isomorphic to the split 
extension

n  t ÌA v  A PX , r  _
0 — ►  A >— ►  X  x A X  — ►  0

(1 x,k)
(6.2)

Therefore two parallel morphisms (k , f ) and (l,g) into the split ex
tension (6.1) will create an isomorphism h : X x A —+ X x A  with 
Pxh =  p x , h( l x ,k) =  { IxJ} ,  and Ma =  i a- Composing h with the 
projection pA '■ X  x A ^  A  we then obtain a morphism 4>: X  x A —► A 
with <f>{lx, k) — I and <piA =  1a- The second identity makes <pix central, 
and so <frix =  0. Together with (pia =  1 a this implies (j) =  pa , and then
I =  <j)(lx,k) — p a (Ix , k) =  k. Therefore the split extension (6.1) as 
faithful, as desired. □

C orollary 6.2. A pointed protomodular category C is antiadditive if 
and only if the split extension (6.1) is faithful for each object A in C.

Let us now assume that the category C is action representable and 
call the morphism A  —* [A] corresponding to the split extension (6.1) 
canonical. From the previous results and Corollary 1.5 we obtain:
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C orollary 6.3. Let C be a (pointed protomodular) action representative 
category. Then:
(a) an object A in C is antiadditive if and only if the canonical morphism 
A  —> [A] is a monomorphism;
(b) the category C is antiadditive if and only if the canonical morphism 
A  —> [A] is a monomorphism for each object A in C.

Note that:
•  Corollary 6.3(a) applied to the category of groups becomes the fol
lowing obvious and yet nice observation: a group A has trivial centre if 
and only if the canonical homomorphism A —> Aut(A) is injective.
•  In several action representative categories, such as the dual Set°p 
of the category of pointed sets, or the categories B o o R g  and v N R g  
of Boolean rings and von Neumann regular rings, the canonical mor- 
phisms A —► [A] have been independently shown to be monomorphisms 
for all object A. As we see now, this can be used as a proof of their 
antiadditivity -  even though direct proofs are also easy.
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