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ARE ALL COFIBRANTLY GENERATED 
MODEL CATEGORIES COMBINATORIAL?

by J. ROSICKY*

Abstract. G. Raptis has recently proved that, assuming Vopënka’s principle, 
every cofibrantly generated model category is Quillen equivalent to a combina
torial one. His result remains true for a slightly more general concept of a cofi
brantly generated model category. We show that Vopënka’s principle is equiva
lent to this claim. The set-theoretical status of the original Raptis’ result is open.

Résumé. G. Raptis a récemment démontré que, sous le principe de Vopënka, 
chaque catégorie de modèles à engendrement cofïbrant est Quillen équivalente à 
une catégorie de modèles combinatoire. Son résultat est valable pour un concept 
un peu plus général de catégorie de modèles à engendrement cofibrant. On va 
démontrer que le principe de Vopënka est équivalent à cette assertion. Le statut 
ensembliste du résultat de Raptis est ouvert.

Combinatorial model categories were introduced by J. H. Smith as model 
categories which are locally presentable and cofibrantly generated. There are 
of course cofibrantly generated model categories which are not combinato
rial -  the first example is the standard model category of topological spaces. 
This model category is Quillen equivalent to the combinatorial model cate
gory of simplicial sets. G. Raptis [6] has recently proved a somewhat sur
prising result saying that, assuming Vopenka’s principle, every cofibrantly 
generated model category is Quillen equivalent to a combinatorial model cat
egory. Vopenka’s principle is a set-theoretical axiom implying the existence 
of very large cardinals (see [2]). A natural question is whether Vopenka’s 
principle (or other set theory) is needed for Raptis’ result.

‘Supported by the Ministry of Education of the Czech Republic under the Project MSM 
0021622409.
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A model category is a complete and cocomplete category A4 together with 
three classes of morphisms T, C and W called fibrations, cofibrations and 
weak equivalences such that

(1) W has the 2-out-of-3 property and is closed under retracts in the arrow 
category and by Jin R OSICKY

(2) (C, T  H W) and (C H VV, J- ) are weak factorization systems.

Morphisms from T  fl W  are called trivial fibrations while morphisms from 
C fl W trivial cofibrations.

A weak factorization system (£, TZ) in a category A4 consists of two 
classes C and TZ of morphisms of A4 such that

(1) TZ = Ca, C = UTZ, and
(2) any morphism h of A4 has a factorization h — g f  with /  G C and g G

n .

Here, Cu consists of morphisms having the right lifting property w.r.t. each 
morphism from C and D7Z consists of morphisms having the left lifting prop
erty w.r.t. each morphism from TZ.

The standard definition of a cofibrantly generated model category (see [5]) 
is that the both weak factorization systems from its definition are cofibrantly 
generated in the following sense. A weak factorization system (£, TZ) is 
cofibrantly generated if there exists a set X  of morphisms such that

(1) the domains of X  are small relative to A’-cellular morphisms, and
(2) = TZ.

Here, X  -cellular morphisms are transfinite compositions of pushouts of mor
phisms of X. The consequence of this definition is that £ is the smallest 
cofibrantly closed class containing X. A cofibrantly closed class is defined 
as a class of morphisms closed under transfinite compositions, pushouts and 
retracts in A4~*. Moreover, one does not need to assume that (C,TZ) is a 
weak factorization system because it follows from (1) and (2). This obser
vation led to the following more general definition of a cofibrantly generated 
weak factorization system (see [1]).

A weak factorization system (C, TZ) is cofibrantly generated if there ex
ists a set X  of morphisms such that C is the smallest cofibrantly closed class 
containing X. The consequence is that X D = TZ. A model category is cofi
brantly generated if the both weak factorization systems from its definition 
are cofibrantly generated in the new sense. It does not affect the definition 
of a combinatorial model category because all objects are small in a locally
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presentable category. Moreover, the proof of Raptis [6] works for cofibrantly 
generated model categories in this sense as well.

We will show that Vopënka’s principle follows from the fact that every 
cofibrantly generated model category (in the new sense) is Quillen equivalent 
to a combinatorial model category. We do not know whether this is true for 
standardly defined cofibrantly generated model categories as well. Our proof 
uses the trivial model structure on a category M  where all morphisms are 
cofibrations and weak equivalences are isomorphisms.

Given a small full subcategory A  of a category JC, the canonical functor

Ea : £ -»  SetA°P

assigns to each object K  the restriction

EAK = hom (-,K )/A op

of its hom-functor hom(—, K) : JCop —► Set to *4op (see [2], 1.25).
A small full subcategory A  of a category JC is called dense provided that 

every object of JC is a canonical colimit of objects from A. It is equivalent 
to the fact that the canonical functor

Ea : J C ^ S e tA°P

is a full embedding (see [2], 1.26). A category JC is called bounded if it has 
a (small) dense subcategory (see [2]).

Dense subcategories were introduced by J. R. Isbell [4] and called left 
adequate subcategories. The following result is easy to prove and can be 
found in [4].

Lemma 1. Let A  be dense subcategory of JC and J3 a small full subcategory 
of JC containing A. Then B is dense.

Proposition 2. Let JC be a cocomplete bounded category. Then {JC, Iso) is a 
cofibrantly generated weaJc factorization system.

Proof. Clearly, (JC, Iso) is a weak factorization system. The canonical func
tor

Ea : JC —> Set’4°P 
has a left adjoint F (see [2], 1.27). The weak factorization system

(Set*4°P, Iso)

in Set‘4°P is cofibrantly generated (see [9], 4.6). Thus there is a small full 
subcategory X  of Set'401’ such that each morphism in Set-401” is a retract of
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a ^-cellular morphism. Hence each morphism in JC is a retract of a F(X)- 
cellular morphism. Thus (JC, Iso) is cofibrantly generated. □

Given a complete and cocomplete category JC, the choice C = JC and W = 
Iso yields a model category structure on JC. The corresponding two weak 
factorization systems are (JC, Iso) and (Iso, JC) and the homotopy category 
Ho(/C) = JC. We will call this model category structure trivial.

Corollary 3. Let JC be a complete, cocomplete and bounded category. Then 
the trivial model category structure on JC is cofibrantly generated.

Proof. Following Proposition 2, it suffices to add that the weak factorization 
system (Iso, JC) is cofibrantly generated by X  = {ido} where O is an initial 
object of JC. □

Theorem 4. Vopenka ’s principle is equivalent to the fact that every cofi
brantly generated model category is Quillen equivalent to a combinatorial 
model category.

Proof. Necessity follows from [6]. Under the negation of Vopenka’s prin
ciple, [2], 6.12 presents a complete bounded category A  with the following 
properties

(1) For each regular cardinal A, there is a A-filtered diagram Dx: V \ —> JC 
whose only compatible cocones 5a are trivial ones with the codomain 
1 (= a terminal object),

(2) For each A, idi does not factorize through any component of S\.
Since, following (1), 6\ is a colimit cocone for each A, (2) implies that 1 
is not A-presentable for any regular A. Condition (2) is not stated explicitly 
in [2] but it follows from the fact that there is no morphism from 1 to a 
non-terminal object of A. In fact, A  is the full subcategory of the category 
Gra consisting of graphs A without any morphism Bi —> A where Bi is the 
rigid class of graphs indexed by ordinals (whose existence is guaranteed by 
the negation of Vopenka’s principle). The existence of a morphism 1 —► A 
means the presence of a loop in A and, consequently, the existence of a 
constant morphism Bi —► A (having a loop as its value).

Assume that the trivial model category A  is Quillen equivalent to a com
binatorial model category M . Since YioM is equivalent to A, it shares 
properties (1) and (2). Moreover, since Ho/C = JC, the diagrams D\ are 
diagrams in JC. It follows from the definition of Quillen equivalence that the 
corresponding diagrams in Ho M. (we will denote them by D\ as well) can
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be rectified. It means that there are diagrams D\ in M  such that D\ = PD\\ 
here, P: M  —► Ho M  is the canonical functor. Following [3] and [8], there 
is a regular cardinal A0 such that the replacement functor R : M  —► M  
preserves Ao-filtered colimits. R sends each object M  to a fibrant and cofi- 
brant object and the canonical functor P can be taken as the composition QR 
where Q is the quotient functor identifying homotopy equivalent morphisms. 

Let
(S\d- D\d —► M\)devx

be colimit cocones. Then

(.RS\d'- RD\d —*• RM\)det>x

are colimit cocones for each A > A0. Following (1), RM\ = 1 for each A > 
A0. The object RM\0 is /¿-presentable in M  for some regular cardinal A0 < 
/i. Since RM\0 and RM  ̂ are homotopy equivalent, there is a morphism 
/  : RM\0 —> RMp. Since /  factorizes through some RS^d, idi factorizes 
through some component of which contradicts (2). □

While the weak factorization system (Iso, /C) is cofibrantly generated in 
the sense of [5], it is not true for (K., Iso) because the complete, cocomplete 
and bounded category in [2], 6.12 is not locally presentable just because it 
contains a non-presentable object. Thus we do not know whether Vopënka’s 
principle follows from the original result from [6].

The proof above does not exclude that A has a combinatorial model, i.e., 
that there is a combinatorial model category A4 such that A  is equivalent to 
Ho A4.

Proposition 5. Assume the existence of a proper class of compact cardinals 
and let lCbe a complete, cocomplete and bounded category. Then the trivial 
model category 1C has a combinatorial model if and only if K. is locally 
presentable.

Proof. If K is locally presentable the trivial model category K, is combinato
rial. Assume that the trivial model category K is equivalent to Ho M  where 
M. is a combinatorial model category. Let A' be a dense subcategory of 1C. 
Following [8], 4.1, there is a regular cardinal A such that

(1) X  Ç P(M \) where M \  denotes the full subcategory of M  consisting 
of A-presentable objects,

(2) The composition H = Ep m̂ x) ' P preserves A-filtered colimits.
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Since P(M \) is dense in AC (see Lemma 1), EP(Mx) is a full embedding. 
Hence K. is the full image of the functor H, i.e., the full subcategory on 
objects H(M) with M in M . Following [7], Corollary of Theorem 2, fC is 
locally presentable. □

Vopenka’s principle is stronger than the existence of a proper class of 
compact cardinals. Thus, assuming the negation of VopSnka’s principle but 
the existence of a proper class of compact cardinals, there is a cofibrantly 
generated model category without a combinatorial model.
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