Limits in symmetric cubical categories (On weak cubical categories, II)
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Volume 50 (2009) no. 4, article no. 1, 31 p.
@article{CTGDC_2009__50_4_242_0,
     author = {Grandis, Marco},
     title = {Limits in symmetric cubical categories (On weak cubical categories, II)},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     publisher = {Andr\'ee CHARLES EHRESMANN},
     volume = {50},
     number = {4},
     year = {2009},
     zbl = {1191.18001},
     mrnumber = {2589618},
     language = {en},
     url = {http://www.numdam.org/item/CTGDC_2009__50_4_242_0}
}
Grandis, Marco. Limits in symmetric cubical categories (On weak cubical categories, II). Cahiers de Topologie et Géométrie Différentielle Catégoriques, Volume 50 (2009) no. 4, article  no. 1, 31 p. http://www.numdam.org/item/CTGDC_2009__50_4_242_0/

[ABS] F.A.A. Al-Agl, R. Brown and R. Steiner, Multiple categories : the equivalence of a globular and a cubical approach, Adv. Math. 170 (2002), 71-118. | MR 1929304 | Zbl 1013.18003

[Ba] J. Baez, This Week's Finds in Mathematical Physics (Week 242). https//math.ucr.edu/home/baez/week242.html

[Bt] M. Batanin, Monoidal globular categories as a natural environment for the theory of weak n-categories, Adv. Math. 136 (1998), 39-103. | MR 1623672 | Zbl 0912.18006

[CL] E. Cheng and A. Lauda, Higher-dimensional categories : an illustrated guide book, draft version, revised 2004. http://cheng.staff.shef.ac.uk/guidebook/index.html

[G1] M. Grandis, Higher cospans and weak cubical categories (Cospans in Algebraic Topology, I), Theory Appl. Categ. 18 (2007), No. 12, 321-347. | MR 2326435 | Zbl 1127.18003

[G2] M. Grandis, Collared cospans, cohomotopy and TQFT (Cospans in Algebraic Topology, II), Theory Appl. Categ. 18 (2007), No. 19, 602-630. | MR 2369111 | Zbl 1136.18004

[G3] M. Grandis, Cubical cospans and higher cobordisms (Cospans in Algebraic Topology, III), J. Homotopy Relat. Struct. 3 (2008), 273-308. | MR 2426182 | Zbl 1185.18005

[G4] M. Grandis, The role of symmetries in cubical sets and cubical categories (On weak cubical categories, I), Cah. Topol. Géom. Différ. Catég. 50 (2009), 102-143., Preprint : Dip. Mat. Univ. Genova, Preprint 565 (2008). Available at : http://www.dima.unige.it/~grandis/CCat.pdf (ps) | Numdam | Zbl 1188.18003

[GM] M. Grandis and L. Mauri, Cubical sets and their site, Theory Appl. Categ. 11 (2003), No. 8, 185-211. | MR 1988396 | Zbl 1022.18009

[GP1] M. Grandis and R. Paré, Limits in double categories, Cah. Topol. Géom. Différ. Catég. 40 (1999), 162-220. | Numdam | MR 1716779 | Zbl 0939.18007

[GP2] M. Grandis and R. Paré, Adjoints for double categories, Cah. Topol. Géom. Différ. Catég. 45 (2004), 193-240. | Numdam | MR 2090335 | Zbl 1063.18002

[GP3] M. Grandis and R. Paré, Kan extensions in double categories (On weak double categories, III), Theory Appl. Categ. 20 (2008), No. 8, 152-185. | MR 2395245 | Zbl 1141.18006

[GP4] M. Grandis and R. Paré, Lax Kan extensions for double categories (On weak double categories, IV), Cah. Topol. Géom. Différ. Catég. 48 (2007), 163-199. | Numdam | MR 2351267 | Zbl 1131.18004

[Ka] D.M. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 (1958), 294-329. | MR 131451 | Zbl 0090.38906

[Le] T. Leinster, Higher operads, higher categories, Cambridge University Press, Cambridge 2004. | MR 2094071 | Zbl 1160.18001

[Ma] S. Mac Lane, Categories for the working mathematician, Springer, Berlin 1971. | MR 1712872 | Zbl 0232.18001

[Mo] J. Morton, Double bicategories and double cospans, Preprint. Available at : arXiv: math.CT/0611930. | MR 2591970 | Zbl 1185.18006

[Ve] D. Verity, Enriched categories, internal categories and change of base, Ph.D. Dissertation, University of Cambridge, 1992. | MR 2844536 | Zbl 1254.18001