"Hausdorff distance" via conical cocompletion
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 1, article no. 3, 26 p.
@article{CTGDC_2010__51_1_51_0,
     author = {Stubbe, Isar},
     title = {"Hausdorff distance" via conical cocompletion},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     eid = {3},
     pages = {51--76},
     publisher = {Andr\'ee CHARLES EHRESMANN},
     volume = {51},
     number = {1},
     year = {2010},
     mrnumber = {2650579},
     zbl = {1260.18009},
     language = {en},
     url = {http://archive.numdam.org/item/CTGDC_2010__51_1_51_0/}
}
TY  - JOUR
AU  - Stubbe, Isar
TI  - "Hausdorff distance" via conical cocompletion
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2010
SP  - 51
EP  - 76
VL  - 51
IS  - 1
PB  - Andrée CHARLES EHRESMANN
UR  - http://archive.numdam.org/item/CTGDC_2010__51_1_51_0/
LA  - en
ID  - CTGDC_2010__51_1_51_0
ER  - 
%0 Journal Article
%A Stubbe, Isar
%T "Hausdorff distance" via conical cocompletion
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2010
%P 51-76
%V 51
%N 1
%I Andrée CHARLES EHRESMANN
%U http://archive.numdam.org/item/CTGDC_2010__51_1_51_0/
%G en
%F CTGDC_2010__51_1_51_0
Stubbe, Isar. "Hausdorff distance" via conical cocompletion. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 1, article  no. 3, 26 p. http://archive.numdam.org/item/CTGDC_2010__51_1_51_0/

[1] [A. Akhvlediani, M. M. Clementino and W. Tholen, 2009] On the categorical meaning of Hausdorff and Gromov distances I, arxiv:0901.0618v1. | MR | Zbl

[2] [J. Bénabou, 1967] Introduction to bicategories, Lecture Notes in Math. 47, pp. 1-77. | MR

[3] [M. H. Albert and G. M. Kelly, 1988] The closure of a class of colimits, J. Pure Appl. Algebra 51, pp. 1-17. | MR | Zbl

[4] [G.M. Kelly and V. Schmitt, 2005] Notes on enriched categories with colimits of some class, Theory Appl. Categ. 14, pp. 399-423. | EuDML | MR | Zbl

[5] [A. Kock, 1972] Monads for which structures are adjoint to units (Version 1), Aarhus Preprint Series 35.

[6] [A. Kock, 1995] Monads for which structures are adjoint to units, J. Pure Appl. Algebra 104, pp. 41-59. | MR | Zbl

[7] [F. W. Lawvere, 1973] Metric spaces, generalized logic, and closed categories, Rend. Sem. Mat. Fis. Milano 43, pp. 135-166. Also in: Reprints in Theory Appl. of Categ. 1, 2002. | MR | Zbl

[8] [J. Paseka and J. Rosický, 2000] Quantales, pp. 245-262 in: Current research in operational quantum logic, Fund. Theories Phys. 111, Kluwer, Dordrecht. | MR | Zbl

[9] [K. I. Rosenthal, 1996] The theory of quantaloids, Pitman Research Notes in Mathematics Series 348, Longman, Harlow. | MR | Zbl

[10] [R. Street, 1981] Cauchy characterization of enriched categories Rend. Sem. Mat. Fis. Milano 51, pp. 217-233. Also in: Reprints Theory Appl. Categ. 4, 2004. | MR | Zbl

[11] [R. Street, 1983] Enriched categories and cohomology, Questiones Math. 6, pp. 265-283. | MR | Zbl

[12] [R. Street, 1983] Absolute colimits in enriched categories, Cahiers Topologie Géom. Différentielle 24, pp. 377-379. | EuDML | Numdam | MR | Zbl

[13] [I. Stubbe, 2005] Categorical structures enriched in a quantaloid: categories, distributors and functors, Theory Appl. Categ. 14, pp. 1-45. | EuDML | MR | Zbl

[14] [I. Stubbe, 2006] Categorical structures enriched in a quantaloid: tensored and cotensored categories, Theory Appl. Categ. 16, pp. 283-306. | EuDML | MR | Zbl

[15] [V. Schmitt, 2006] Flatness, preorders and general metric spaces, to appear in Georgain Math. Journal. See also: arxiv:math/0602463vl.

[16] [V. Zöberlein, 1976] Doctrines on 2-categories, Math. Z. 148, pp. 267-279. | EuDML | MR | Zbl

[17] [R. F. C. Walters, 1981] Sheaves and Cauchy-complete categories, Cahiers Topol. Géom. Différ. Catég. 22, pp. 283-286. | EuDML | Numdam | MR | Zbl