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Résumé
En ayant remarqué que la propriété d’hérédité faible des 

opérateurs réguliers de fermeture dans Top et des opérateurs de 
fermeture homologiques dans les catégories homologiques permet 
d’identifier les théories de torsion, nous étudions ces opérateurs de 
fermeture en parallèle, en montrant que les opérateurs réguliers de 
fermeture jouent en topologie le même rôle que les opérateurs de 
fermeture homologiques jouent en algèbre.

A bstract
Observing that weak heredity of regular closure operators in Top 

and of homological closure operators in homological categories iden
tifies torsion theories, we study these closure operators in parallel, 
showing that regular closure operators play the same role in topology 
as homological closure operators do algebraically.
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Introduction

Homological categories were introduced by Borceux and Bourn [2], 
and have since then been studied by several authors, as the right non- 
abelian setting to study homology. As shown by Bourn and Gran [6], 
these categories provide also a suitable setting to study torsion theo
ries. In [6] the authors introduce torsion theories in homological cat
egories and show that they are identifiable by weak heredity of their 
homological closure operators. This result resembles the characteriza
tion of disconnectednesses of topological spaces via weak heredity of 
their regular closure operators, and encompasses the characterization 
of torsion-free subcategories of abelian categories via weak heredity of 
their regular closure operators obtained in [7] (see also [12]). Having as 
starting point this common property, we establish parallel properties of 
regular and homological closure operators, in topological spaces and in 
homological categories, respectively. Since in abelian categories regu
lar closure operators are exactly the homological ones, this study raises 
the question of finding in which cases these closure operators coincide 
in homological categories. We show that it is necessary that they are 
induced by a subcategory of abelian objects. Moreover, in semi-abelian 
categories regular and homological closures coincide exactly when they 
are induced by a regular-epireflective subcategory of abelian objects.

In Section 1 we describe briefly disconnectednesses of topological 
spaces and torsion theories in homological categories. In Section 2 we 
introduce regular and homological closure operators, showing that the 
latter ones can be described as maximal closure operators. In Section 3 
we establish parallel results for regular and homological closures, based 
on the results obtained in [6]. In Theorem 3.1.4 we show the validity of 
the corresponding topological version of the characterization of heredi
tary torsion theories via hereditary homological closure operators. Next 
we investigate openness and closedness of regular epimorphisms, with 
respect to the regular closure, showing that these properties are unlikely 
topological; see Propositions 3.2.2 and 3.3.2. Finally, in Corollary 3.4.2, 
we characterise the regular-epireflective subcategories of semi-abelian 
categories for which the regular and the homological closures coincide, 
generalising the result obtained in [13] for abelian categories.
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1 (Dis) connectednesses and Torsion Theories

1.1 (D is) connectednesses in Topology
Given a subcategory A of the category Top of topological spaces 

and continuous maps, we define the full subcategories

IA  := { X  e  Top | if /  : X  —► A  and A  € A, then /  is constant},

rA  := {X  G Top | if /  : A —► X  and A  £ A, then /  is constant}.

A subcategory of the form IA  for some A  is said to be a connectedness, 
while a subcategory of the form rA  is said to be a disconnectedness. 
Connectednesses and disconnectednesses of Top were thoroughly stud
ied by Arhangel’skii and Wiegandt in [1]. We list here some properties 
of these subcategories we will need throughout.

1.1.1 P ro p o s itio n

(1) Every disconnectedness is a regular- epireflective subcategory of Top.

(2) Top, the subcategory of To-spaces T op0, the subcategory of T\- 
spaces Top, and the subcategory Sgl consisting of the empty and 
the singleton spaces are disconnectednesses.

(3) Let A  be a disconnectedness. I f  A  is different from  Top and from  
T op0, then A  C T o p j. I f  A  is different from  Sgl, then A  contains 
the subcategory TD isc of totally disconnected spaces.

(4) Sgl, the subcategory In d  of indiscrete spaces, and Top are con
nectednesses. These are the only connectednesses closed under 
subspaces.

1.2 T orsion th eo ries  in  hom ological categories
A pointed category C is homological if it is

(1) (Barr-)regular, that is if it is finitely complete and (regular epimor- 
phisms, monomorphisms) is a pullback-stable factorization system 
in C, and
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(2) protomodular, that is given a commutative diagram

where the dotted vertical arrow is a regular epimorphism, if |T] 
and the whole rectangle are pullbacks, then \ 2_ is a pullback as 
well.

C is said to be semi-abelian if it is pointed, exact and protomodular. 
That is, in addition to (1) and (2) the pointed category C also satisfies

(3) every equivalence relation is effective, i.e. a kernel pair relation.

A torsion theory in a homological category is a pair (T, F) of full 
and replete subcategories of C such that:

1. If T  € T  and F  € F, then the only morphism T  —* F  is the zero 
morphism.

2. For each X e C  there is a short exact sequence

0--*~T--^ X - ^ F ---0

with T  € T  and F  G F.

If (T, F) is a torsion theory, the subcategory T  is called the torsion 
subcategory, and F  is called the torsion-free subcategory. Every torsion- 
free subcategory F  is regular-epireflective, with the F-reflection of X  
given by px  as above.

Torsion theories in homological categories were introduced by Bourn 
and Gran in [6], encompassing the properties of Dickson’s torsion theo
ries in abelian categories [10].

The notion of abelian object has been studied in non-abelian settings 
(see [2]). In homological categories they can be defined as those objects 
which have an internal abelian group structure. As shown by Bourn in
[5]:
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1.2.1 P ro p o s itio n

(1) In a homological category, the following conditions are equivalent 
for an object X :

(i) X  has an internal abelian group structure;

(ii) the diagonal S \ : X  X  x X  is an equaliser.

(2) In a semi-abelian category, the following conditions are equivalent 
for an object X :

(i) X  has an internal abelian group structure;

(ii) the diagonal Sx ■ X  —■► X  x X  is a kernel.

2 Regular and homological closure operators

2.1 C losure  o p e ra to rs
Throughout C is a finitely complete category with cokernel pairs 

and M  is a pullback-stable class of monomorphisms of C. This means 
that C has inverse Jvt-images, that is for each morphism /  : X  —► Y  
there is a change-of-base functor

/ - 1 ( )  : M /Y  ^ M / X

where JA /X  is the (preordered) category of 'M-subobjects of X ,  that 
is of morphisms in M with codomain X .  When, for each morphism 
/  : X  —*■ Y , the functor / -1 ( ) : M / Y  —► M /X  has a left adjoint 
/ (  ) : 3vl/X  —► M /Y ”, we say that C has direct JVi-images.

A  closure operator c on C with respect to M assigns to each m  : 
M  X  in M a morphism C x (m )  : cx(M )  —*• X  in M such that, for 
every object X ,

(Cl) cx  is extensive: m  < cx(m ) for every rn \ M  X  in M;

(C2) cx  is monotone: m  < m! cx{m) < cx(m '), for every m  :
M  -» X, m! : M ' -> X  in M;

(C3) morphisms are c-continuous: c x ( f~ l (n)) < / _1(cy(n)) for every 
morphism /  : X  —>■ Y  and every n : N  —► Y  in JVC.
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When C has direct M-images, condition (C3) can be equivalently 
expressed by

(C3') f(cx (m )) < c y ifim )) ,  for every M-subobject m  of X . 

Extensivity of c says that every m : M  —*• X  G M factors as

M ---------=---------X

cx (M )

The morphism m  : M  —> X  is c-closed if cx(m ) =  m, and c-dense if 
cx (m ) =  l x -

A closure operator c is said to be

• idem/potent if cx (m) is c-closed for every m : M  —> X  G M;

• weakly hereditary if j,„ is c-dense for every rn G M;

• hereditary if, for m  : M  X , I : X  —> Y  and I ■ m  in M,

cx (m ) =  l~l (cY {l ■ m)).

It is immediate that hereditary closure operators are in particular weakly 
hereditary.

Closure operators with respect to M can be preordered by 

c < d :<=>■ Vm : M —* X  G M cx (m) < dx (m).

2.2 R eg u la r versus hom ological closure o p e ra to rs
For any such class M of monomorphisms containing the regular 

monomorphisms, every reflective subcategory A of C induces a regu
lar closure operator regA on C with respect to M, assigning to each 
m  : M  —» X  in M the equaliser of the following diagram

U p-y

X -----? Y  R Y  ,
V
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where (u , v) is the cokernel pair of m  and py is the A-reflection of Y ; 
that is,

regx(m ) = eq(py ■ u, pY ■ v).

Regular closure operators are idempotent but not weakly hereditary in 
general.

When the category C is pointed, replacing equalisers by kernels in 
the construction above gives rise to another interesting closure opera
tor. Let M be a pullback-stable class of monomorphisms containing the 
kernels, and let A be a reflective subcategory of C. The homological 
closure operator hA induced by A in M assigns to each rn : M  —> X  the 
kernel of the following composition of morphisms

X  Y  R Y  , 

where ttm is the cokernel of m  and py is the A-reflection of Y ; that is,

hx (m ) =  ker(pY ■ 7tm).

Homological closure operators are idempotent but not weakly hered
itary in general.

If C has direct M-images, then regA is completely determined by its 
restriction to A, via the formula

reg£ (m) “  p^1 (reg£* (px  (rn))), (*)

for any m  : M  —> X  in 3Vt, with px  • X  R X  the A-refiection of X .
There is an alternative way of replacing equalisers by kernels in 

the definition of regular closure operator. Indeed, regA is the maximal 
closure such that every equaliser in A is closed. In particular:

2.2.1 L em m a I f  A  is a reflective subcategory of Top and X  is an 
object of A , then:

(1) the diagonal Sx • X  —► X  x X  is regA -closed;

(2) For every x £ X , the inclusion {#} —» X  is regA-closed.

-  133 -



CLEMENTINO & GUTIERRES - REGULAR AND HOMOLOGICAL CLOSURE OPERATORS

In a pointed finitely-complete category C, given a pullback-stable class 
of monomorphisms M containing the zero-subobjects and a reflective 
subcategory A, one calls maximal closure operator induced by A, the 
maximal closure operator maxA with 0^ : 0 —* A  closed, for every 
A  G A  (or, equivalently, with kernels of A-morphisms closed). It is 
easily verified that:

2.2.2 P ro p o s itio n  I f  A  is a reflective subcategory of a pointed and 
finitely-complete category C with cokemels, then hA =  maxA.

While regular closure operators were introduced by Salbany [15] 
more than 30 years ago, and widely studied since then, homological 
closure operators were introduced more recently by Bourn and Gran [6] 
in the context of homological categories.

For comprehensive accounts on closure operators and homological 
categories we refer the reader to [12] and [2, 14] respectively.

3 How close are regular and homological closure 
operators

3.1 (W eak) h e red ity
The study of weak heredity of regular closure operators presented in

[7] encompasses the following topological and algebraic results.

3.1.1 T h eo rem

(1) For a regular-epireflective subcategory A  of Top, the following 
assertions are equivalent:

(i) regA is weakly hereditary;

(ii) A  is a disconnectedness.

(2) For a (regular-Jepireflective subcategory A  of an abelian category 
C, the following conditions are equivalent:

(i) regA is weakly hereditary;

(ii) A  is a torsion-free subcategory.
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Disconnectedness in topological spaces and torsion-free subcategories 
in abelian categories are particular cases of right-constant subcategories 
(see [9] for details), hence the two theorems above are instances of a 
more general result. Moreover, as shown in [13], if C is an abelian 
category, then the regular closure operator induced by an epireflective 
subcategory A  coincides with the maximal closure operator induced by 
A. This shows, moreover, that Theorem 3.1.1.2 is a particular case of 
the following result, due to Bourn and Gran [6].

3.1.2 T h eo rem  For a regular-epireflective subcategory A  of a homo- 
logical category C, the following conditions are equivalent:

(i) maxA is weakly hereditary;

(ii) A  is a torsion-free subcategory.

In [6] Bourn and Gran show also that heredity of maxA identifies hered
itary torsion theories, that is those torsion theories with hereditary tor
sion part.

3.1.3 T h eo rem  For a regular-epireflective subcategory A  of a homo- 
logical category C, the following conditions are equivalent:

(i) maxA is hereditary;

(ii) A  is a hereditary torsion-free subcategory.

As for weak heredity there is a corresponding result in topology.

3.1.4 T h eo rem  For a regular-epireflective subcategory A  of Top, the 
following conditions are equivalent:

(i) regA is hereditary;

(ii) A  is an hereditary disconnectedness (that is, its connectedness 
counterpart 1(A) is hereditary);

(iii) A  is either Top or the category Top0 of To-spaces or the category 
Sgl consisting of singletons and the empty set.
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Proof. First we remark that (ii)^(iii) follows from Proposition 1.1.1(4).
(iii)^(i): If A =  Top, then regA is the discrete closure, which is 

trivially hereditary. If A =  Top0, then regA is the b-closure, with, for 
AC. X ,

bx(^4) =  {x G X  | for every neighbourhood U of x, {x} fl U fl A  ^  0},

which is known to be hereditary (see for instance [12]). If A  =  Sgl, 
then regA is the indiscrete closure, that is

reg®gl(̂ 4) =  X  for every 0 ^  A  C X  and reg^gl(0) =  0,

which is hereditary. Conversely, assume that A  is none of these three 
subcategories. By Proposition 1.1.1(3), T D isc C A C T opx. Con
sider the Sierpinski space S  = {0,1}, with {0} the only non-trivial 
open subset, and its product S x S. The two-point discrete space D  =  
{(0,1), (1,0)} is a subspace of S  x S'; the A-reflection of S  x S  is a single
ton, while D  G A. Hence regA(0 ,1) =  (0,1) while regAx5(0 ,1) =  5  x S', 
and therefore regA is not hereditary.

□

3.2 O penness o f reg u la r ep im orph ism s
Another interesting feature of homological closure operators pointed 

out by Bourn and Gran [6] is to make regular epimorphisms open. Recall 
that, given a closure operator c, a morphism /  : X  —>• Y  is c-open if, for 
every n : N  —> y  G M,

c x { r \ n ) ) ^ r \ c Y {n)y,

th a t is, the inequality in the c-continuity condition (C3) becomes an 
isomorphism. It was shown in [8] that:

3.2.1 P ro p o s itio n  For an idempotent closure operator c in a homo- 
logical category C the following conditions are equivalent:

(i) c =  maxA for some regular-epireflective subcategory A ;

(ii) regular epimorphisms in C are c-open.
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It is easy to check that in general this is not a common property of 
regular closure operators in Top.

3.2.2 P ro p o s itio n  For a closure operator c in Top the following con
ditions are equivalent:

(i) c is regular, and every regular epimorphism is c-open;

(ii) c is either the discrete or the indiscrete closure operator.

Proof. (ii)=^(i) is trivial.
(i)=^(ii): Let c be a regular closure operator induced by a regular- 

epireflective subcategory A different from Top. Then either A =  Top0 
or A C  T op^ If A  =  Top0, then regA is the b-closure, which does 
not satisfy (i): take X  = {0,1,2,3} —► Y  = {0,1,2} with f ( i)  — i if
i < 2 and /(3 ) =  2, where the only non-trivial open subset of X  is 
{1,2}, hence the quotient topology is indiscrete; then / -1 (b(0)) — X  
and b ( / -1 (0)) =  {0,3}. If A  C  T op^ then regA is indiscrete in the 
Sierpinski space. Hence, for every closed, non-open, subset C  of a space 
Z, since x c  '■ Z  —> S  \s &, quotient map, hence regA-open, one has 
regA((7) =  x ^ 1(regA(l)) =  Z. Therefore, if Z  is T\ and non-discrete, it 
has a non-open point z, and so regA(z) =  Z, which implies that Z  A. 
This means then that A has only discrete spaces, and then A C  TD isc, 
which implies A =  Sgl by Proposition 1.1.1. □

3.3 C losedness of reg u la r ep im orph ism s
Closed morphisms with respect to a closure operator are defined 

analogously to open morphisms, replacing inverse images by direct im
ages. When C has direct M-images, a morphism /  : X  —► Y  is said to 
be c-closed if, for every m  € JVf/  A",

f ( c x (m )) =  cy (/(m )).

(As said before, the inequality f( c x (m )) < cy(/(m )) is equivalent to 
c-continuity of / .)

We recall that an epireflective subcategory is said to be Birkhoff if 
it is closed under regular epimorphisms.

Next we analyse the topological counterpart of the following result.
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3.3.1 P ro p o s itio n  [6] I f  A is a regular-epireflective subcategory of a 
semi-abelian category C, the following assertions are equivalent:

(i) regular epimorphisms are maxA - closed;

(ii) A is a Birkhoff subcategory.

3.3.2 P ro p o s itio n  For a regular-epireflective subcategory A of Top 
the following conditions are equivalent:

(i) regular epimorphisms are regA -closed;

(ii) A is a Birkhoff subcategory;

(iii) A =  Top or A = Sgl.

Proof. Trivially (iii) =i>(ii). To show that (ii) =>(iii), first note that T op0 
is not closed under quotients, hence it is not a Birkhoff subcategory. 
Now, if A  C Topj and A  contains a non-discrete space Z, hence with a 
closed non-open subset C , then \ c  '■ Z  —■► S  is a quotient map although 
the Sierpinski space S  does not belong to A. Hence every object of A 
is discrete, which implies that A  =  Sgl.

(iii)=^(i) is clear, since regTop is the discrete closure and regSgl is the 
indiscrete closure, both making regular epimorphisms c-closed.

(i)=>(iii): If A  =  Top0, regA is the b-closure. The quotient map 
X  —> Y  used in the proof of Proposition 3.2.2 is not b-closed since

/(b(0)) =  /({0,3}) =  {0,2} and b(/(0)) =  b(0) =  {0,1,2}.

If A C T opt and C  is a closed, non-open, subset of Z  € A, then 
Xc ■ Z  —i► S  is a quotient map. Moreover, regA is indiscrete in S, since 
the A-reflection of S' is a singleton, and every point in Z  is regA-closed, 
because Z  E A  (see Lemma 2.2.1). For any z 6 C  one has

Xc(regz(z)) = xc(z) = M  reg£(xc(*)) = reg£(l) = S.

Therefore every object of A  is discrete, and so A =  Sgl. □
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3.4 W h en  reg u la r an d  hom ological closures coincide
Finally, it is natural to ask in which pointed regular categories regu

lar and maximal closure operators coincide. Until the end of this section, 
we will assume that these closure operators are defined in the class of 
monomorphisms of C.

3.4.1 T h eo rem  Let A b e  a regular-epireflective subcategory of a pointed 
regular category with cokemels. The following assertions are equivalent:

(i) when restricted to A, regA and maxA coincide;

(ii) regA =  maxA;

(iii) in A  every equaliser is a kernel;

(iv) for every object A  of A , the diagonal 8a is a kernel in A.

Proof. (i)=i>(ii): On one hand, since the maximal closure maxA is the 
largest closure c with 0/t : 0 —► A  c-closed for any A  G A and regA and 
maxA coincide in A, regA < maxA.

On the other hand, denoting by p the A-reflection, by (*) of Section
2 we have that regA(m) =  p^1 (reg^x (px(m ))) is maxA-closed since, by 
0). ^ R x (p x ( m ) )  = maxAx (px(m)), hence reg£ >  max£.

(ii)=^(iii): Since every equaliser m  : M  —> A  in A  is regA-closed, 
hence maxA-closed by (ii), and the maxA-closure of m in A is the kernel 
of

A -----— — Y -----——►  R Y  G A ,

m  =  maxA(m) =  ker(py • ttm) is a kernel in A  as claimed.
(iii)^>(iv) is obvious, while (iv)=>(iii) follows from the fact that the 

equaliser of / ,  g : A  —► B  is the pullback of Sb : B  ^  B  x  B  along 
< f ,g  >: A ^  B  x B.

(iii)=^(i): A monomorphism in A  is regA-closed (resp. maxA-closed) 
if, and only if, it is an equaliser in A  (resp. a kernel in A). If equalisers 
are kernels, then, as idempotent closure operators, necessarily regA and 
maxA coincide in A. □

If A  is a regular-epireflective subcategory of a homological category, 
then A  is homological as well (see [4]), and so in A  every coequaliser is
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a cokernel. In the theorem above the dual property is required for A  so 
th a t its homological and regular closure operators coincide. Indeed this 
condition leads us again to an abelian-like condition, as we show next.

3.4.2 C oro llary

(1) I f  A  is a regular-epireflective subcategory of a homological category 
C with regA =  maxA, then A  consists of abelian objects.

(2) I f  A  is a regular-epireflective subcategory of a semi-abelian cate
gory C, then the following conditions are equivalent:

(i) regA =  maxA;

(ii) every object in A  is abelian.

Proof. First we remark th a t both C and A  are homological (semi- 
abelian resp.), and so the result follows from Proposition 1.2.1 since:

X  is abelian X  has an internal abelian group structure

If regA =  maxA, then 5a : A —+ A x A  is a kernel, for every A  E A. 
Hence, A  is abelian. Conversely, if A  is abelian then it has an internal 
abelian group structure in C, hence also in A, and so 8a must be a 
kernel in A  in case A  is semi-abelian. □

We point out th a t there are non (semi-)abelian homological cate
gories where every equaliser is a kernel. In fact such categories are 
necessarily additive but may fail to be exact. (We recall th a t an exact 
and additive category is abelian: see [14].) This is the case, for in
stance, for the category of topological abelian groups, which is regular 
and protom odular but not exact (see [3] for details.)

Acknowledgments. We thank Marino Gran for valuable comments on 
the subject of this paper.

- 140 -



CLEMENTINO & GUTIERRES - REGULAR AND HOMOLOGICAL CLOSURE OPERATORS

References

[1] A. Arhangel’ski$$ and R. Wiegandt, Connectednesses and disconnected
nesses in Topology, Gen. Topology and Appl. 5 (1975), 9-33.

[2] F. Borceux and D. Bourn, Mal’cev, protomodular, homological and semi- 
abelian categories, Mathematics and its Applications, 566. Kluwer Aca
demic Publishers, Dordrecht, 2004.

[3] F. Borceux and M. M. dementino, Topological semi-abelian algebras, 
Adv. Math. 190 (2005), no. 2, 425-453.

[4] F. Borceux, M. M. dementino, M. Gran and L. Sousa, Protolocali
sations of homological categories, J. Pure Appl. Algebra 212 (2008), 
1898-1927.

[5] D. Bourn, Normal subobject6 and abelian objects in protomodular cat
egories, J. Algebra 228 (2000), 143-164.

[6] D. Bourn and M. Gran, Torsion theories and closure operators, J. Alge
bra 305 (2006), 18-47.

[7] M. M. dementino, Weakly hereditary regular closure operators, Topol
ogy Appl. 49 (1993), 129-139.

[8] M. M. dementino, D. Dikranjan and W. Tholen, Torsion theories and 
radicals in normal categories, J. Algebra 305 (2006), 98-129.

[9] M. M. dementino and W. Tholen, Separation versus connectedness, 
Topology Appl. 75 (1997), no. 2, 143-181.

[10] S. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. 
Soc. 121 (1966), 223-235.

[11] D. Dikranjan, E. Giuli and W. Tholen, Closure Operators II, in: Proc. 
Int. Conf. on Categorical Topology, Prague 1988 (World Scientific, Sin
gapore 1989), pp. 297-335.

[12] D. Dikranjan and W. Tholen, Categorical structure of closure opera
tors. With applications to topology, algebra and discrete mathematics, 
Mathematics and its Applications, 346 , Kluwer, Dordrecht, 1995.

- 141 -



CLEMENTINO & GUTIERRES - REGULAR AND HOMOLOGICAL CLOSURE OPERATORS

[13] G. Gutierres, On coregular closure operators, Preprint 99-21, Depart
ment of Mathematics, University of Coimbra (1999), http://www.mat. 
uc.pt/preprints/1999.html.

[14] G. Janelidze, L. Márki and W. Tholen, Semi-abelian categories, J. Pure 
Appl. Algebra 168 (2002), no. 2-3, 367-386.

[15] S. Salbany, Reflective subcategories and closure operators, in: Lecture 
Notes in Math. (Springer 1976), pp. 548-565.

- 142 -

http://www.mat

