A note on double central extensions in exact maltsev categories
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 2, article no. 4, 11 p.
@article{CTGDC_2010__51_2_143_0,
     author = {Everaert, Tomas and Van Der Linden, Tim},
     title = {A note on double central extensions in exact maltsev categories},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     eid = {4},
     pages = {143--153},
     publisher = {Andr\'ee CHARLES EHRESMANN},
     volume = {51},
     number = {2},
     year = {2010},
     mrnumber = {2667981},
     zbl = {1215.18013},
     language = {en},
     url = {http://archive.numdam.org/item/CTGDC_2010__51_2_143_0/}
}
TY  - JOUR
AU  - Everaert, Tomas
AU  - Van Der Linden, Tim
TI  - A note on double central extensions in exact maltsev categories
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2010
SP  - 143
EP  - 153
VL  - 51
IS  - 2
PB  - Andrée CHARLES EHRESMANN
UR  - http://archive.numdam.org/item/CTGDC_2010__51_2_143_0/
LA  - en
ID  - CTGDC_2010__51_2_143_0
ER  - 
%0 Journal Article
%A Everaert, Tomas
%A Van Der Linden, Tim
%T A note on double central extensions in exact maltsev categories
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2010
%P 143-153
%V 51
%N 2
%I Andrée CHARLES EHRESMANN
%U http://archive.numdam.org/item/CTGDC_2010__51_2_143_0/
%G en
%F CTGDC_2010__51_2_143_0
Everaert, Tomas; Van Der Linden, Tim. A note on double central extensions in exact maltsev categories. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 2, article  no. 4, 11 p. http://archive.numdam.org/item/CTGDC_2010__51_2_143_0/

[1] D. Bourn, The denormalized 3 x 3 lemma, J. Pure Appl. Algebra 177 (2003), 113-129. | MR | Zbl

[2] D. Bourn and M. Gran, Central extensions in semi-abelian categories, J. Pure Appl. Algebra 175 (2002), 31-44. | MR | Zbl

[3] A. Carboni, G. M. Kelly, and M. C. Pedicchio, Some remarks on Maltsev and Goursat categories, Appl. Categ. Struct. 1 (1993), 385-421. | MR | Zbl

[4] A. Carboni, M. C. Pedicchio, and N. Pirovano, Internal graphs and internal groupoids in Mal'cev categories, Proceedings of Conf. Category Theory 1991, Montreal, Am. Math. Soc. for the Canad. Math. Soc., Providence, 1992, pp. 97-109. | MR | Zbl

[5] T. Everaert, Higher central extensions and Hopf formulae, J. Algebra, to appear, 2008. | MR

[6] T. Everaert, M. Gran, and T. Van Der Linden, Higher Hopf formulae for homology via Galois Theory, Adv. Math. 217 (2008), 2231-2267. | MR | Zbl

[7] M. Gran, Central extensions and internal groupoids in Maltsev categories, J. Pure Appl. Algebra 155 (2001), 139-166. | MR | Zbl

[8] M. Gran, Applications of categorical Galois theory in universal algebra, Galois Theory, Hopf Algebras, and Semiabelian Categories (G. Janelidze, B. Pareigis, and W. Tholen, eds.), Fields Institute Communications Series, vol. 43, American Mathematical Society, 2004, pp. 243-280. | MR | Zbl

[9] M. Gran and V. Rossi, Galois theory and double central extensions, Homology, Homotopy and Appl. 6 (2004), no. 1, 283-298. | EuDML | MR | Zbl

[10] G. Janelidze, What is a double central extension? (The question was asked by Ronald Brown), Cah. Top. Géom. Diff. Catég. XXXII (1991), no. 3, 191-201. | EuDML | Numdam | MR | Zbl

[11] G. Janelidze, Galois groups, abstract commutators and Hopf formula, Appl. Categ. Struct. 16 (2008), 653-668. | MR | Zbl

[12] G. Janelidze and G. M. Kelly, Galois theory and a general notion of central extension, J. Pure Appl. Algebra 97 (1994), 135-161. | MR | Zbl

[13] G. Janelidze and G. M. Kelly, Central extensions in Mal'tsev varieties, Theory Appl. Categ. 7 (2000), no. 10, 219-226. | EuDML | MR | Zbl

[14] G. Janelidze and M. C. Pedicchio, Pseudogroupoids and commutators, Theory Appl. Categ. 8 (2001), no. 15, 408-456. | EuDML | MR | Zbl

[15] M. C. Pedicchio, A categorical approach to commutator theory, J. Algebra 177 (1995), 647-657. | MR | Zbl

[16] D. Rodelo and T. Van Der Linden, The third cohomology group classifies double central extensions, Theory Appl. Categ. 23 (2010), no. 8, 150-169. | MR | Zbl

[17] J. D. H. Smith, Mal'cev varieties, Lecture notes in mathematics, vol. 554, Springer, 1976. | MR | Zbl