@article{CTGDC_2010__51_3_205_0, author = {Cheng, Eugenia and Makkai, Michael}, title = {A note on the penon definition of n-category}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, eid = {3}, pages = {205--223}, publisher = {Andr\'ee CHARLES EHRESMANN}, volume = {51}, number = {3}, year = {2010}, mrnumber = {2731718}, zbl = {1235.18005}, language = {en}, url = {http://archive.numdam.org/item/CTGDC_2010__51_3_205_0/} }
TY - JOUR AU - Cheng, Eugenia AU - Makkai, Michael TI - A note on the penon definition of n-category JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 2010 SP - 205 EP - 223 VL - 51 IS - 3 PB - Andrée CHARLES EHRESMANN UR - http://archive.numdam.org/item/CTGDC_2010__51_3_205_0/ LA - en ID - CTGDC_2010__51_3_205_0 ER -
%0 Journal Article %A Cheng, Eugenia %A Makkai, Michael %T A note on the penon definition of n-category %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 2010 %P 205-223 %V 51 %N 3 %I Andrée CHARLES EHRESMANN %U http://archive.numdam.org/item/CTGDC_2010__51_3_205_0/ %G en %F CTGDC_2010__51_3_205_0
Cheng, Eugenia; Makkai, Michael. A note on the penon definition of n-category. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 3, article no. 3, 19 p. http://archive.numdam.org/item/CTGDC_2010__51_3_205_0/
[1] Introduction to bicategories. Lecture notes in mathematics, 47, 1967. | MR
.[2] Monad interleaving: a construction of the operad for Leinster's weak -categories, 2005. To appear in Journal of Pure and Applied Algebra; also available via http://www.math.uchicago.edu/~eugenia/interleaving.pdf. | Zbl
.[3] The periodic table of n-categories for low dimensions II: degenerate tricategories. E-print 0705.2307, 2007. | Zbl
and .[4] Higher dimensional categories : an illustrated guide book, 2004. Available via http://www.math.uchicago.edu/~eugenia/guidebook.
and .[5] Coherence for tricategories. Memoirs of the American Mathematical Society, 117(558), 1995. | MR | Zbl
, , and .[6] Nerves of bicategories as stratified simplicial sets. Preprint (submitted), 2005. | MR | Zbl
.[7] An algebraic theory of tricategories. PhD thesis, University of Chicago, June 2006. Available via http://www.math.yale.edu/~mg622/tricats.pdf. | MR
.[8] A survey of definitions of n-category. Theory and Applications of Categories, 10:1-70, 2002. | EuDML | MR | Zbl
.[9] 3-computads do not form a presheaf category, 2001. Personal letter to Michael Batanin; also available via http://duch.mimuw.edu.pl/~zawado/Cex.pdf.
and .[10] Approche polygraphique des -catégories non strictes. Cahiers de Topologie et Géométrie Différentielle Catégoriques, XL-1:31-80, 1999. | EuDML | Numdam | MR | Zbl
.