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CAHIERS DE TOPOLOG1E ET Vol Ll-4 (2010)
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

ON CONNECTIVITY SPACES

by Stéphane DUGOWSON

Résumé. Cet article présente les bases d’une théorie des 
espaces connectifs. Il étudie notamment l’engendrement des 
structures, l’existence des (co)limites dans les catégories con
cernées, le produit tensoriel et la structure de catégorie 
monoïdale fermée associée. On y définit une notion d’homotopie 
ainsi que le smash product des espaces connectifs intègres 
pointés et la structure de catégorie monoïdale fermée associée. 
On étudie ensuite les espaces connectifs finis et l’on introduit 
un nouvel invariant numérique pour les entrelacs : l’ordre con- 
nectif. On présente enfin le théorème peu connu de Brunn- 
Debrunner-Kanenobu, qui affirme que tout espace connectif fini 
intègre peut être représenté par un entrelacs.

A bstract. This paper presents some basic facts about connec
tivity spaces. In particular, it explains how to generate con
nectivity structures, the existence of limits and colimits in the 
main categories of connectivity spaces, the closed monoidal cat
egory structure given by the tensor product of integral connec
tivity spaces; it defines homotopy for connectivity spaces and 
mentions briefly some related difficulties; it defines the smash 
product of pointed integral connectivity spaces and shows that 
this operation results in a closed monoidal category with such 
spaces as objects. Then, it studies finite connectivity spaces, as
sociating a directed acyclic graph with each such space and then 
defining a new numerical invariant for links: the connectivity 
order. Finally, it mentions the not very well-known Brunn- 
Debrunner-Kanenobu theorem which asserts that every finite 
integral connectivity space can be represented by a link.
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Connectivity spaces are topological objects which have not yet re
ceived much attention. This paper presents results we have recently 
obtained relating to them. In the first section we recall their definition. 
The second section explains how to generate a connectivity structure 
from a given family of subsets to be regarded as connected. The third 
section is about categorical constructions in the main categories of con
nectivity spaces, by seeing them as particular cases of “categories with 
lattices of structures”. The fourth section studies the closed monoidal 
category structure given by the tensor product of integral connectivity 
spaces. The fifth section defines homotopy for connectivity spaces and 
briefly mentions some difficulties related to this notion. The sixth sec
tion is devoted to pointed integral connectivity spaces and to the smash 
product of such spaces. In the last section we study finite connectiv
ity spaces, associating a directed acyclic graph with each such space, 
and then defining a new numerical invariant for links: the connectivity 
index. Finally, we discuss the not very well-known Brunn-Debrunner- 
Kanenobu theorem, which asserts that every finite integral connectivity 
space can be represented by a link in the space R 3 (or in S3).

Notations

If X  is a set, the set of subsets of X  is denoted by V(X) or Vx, and 
the set V(Vx) by Qx- For any A  G Qx, A* denotes the set {A € 
A, card(^4) > 2}. If ~  is an equivalence relation on X , the equivalence 
class of x G X  is denoted by x. If Y  is a subset of X, denotes the 
equivalence relation defined on I  by a b if and only if a = b or 
(a, b) € Y 2, and X /Y  denotes the quotient X /  ~y.
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1 Definitions, Examples

Let us recall the definition of connectivity spaces and connectivity mor- 
phisms [2, 7].

Definition 1 (Connectivity spaces). A connectivity space is a pair 
(X, K) where X  is a set and K, is a set of subsets of X  such that 0 G 1C 
and

VJ 6 V{K), K  e K.
K e i  K e i

The set X  is called the carrier of the space (X , K), the set K is its con
nectivity structure. The elements of K. are called the connected sub
sets of the space. The morphisms between two connectivity spaces are 
the functions which transform connected subsets into connected subsets. 
They are called the connectivity morphisms, or the connecting maps1. 
A connectivity space is called integral if every singleton subset is con
nected. The connected subsets with cardinality greater than one will be 
called the non-trivial connected subsets. A connectivity space is called 
finite if its carrier is a finite set.

If X  is a connectivity space, |X| will denote its carrier, and k(X) its 
connectivity structure, so X  = (|X |,k(X)).

Remark 1. Instead of supposing that the empty set is always a member 
of connectivity structures, we could suppose without any substantial 
change that it is never such a member. But it seems preferable to 
choose one or the other of those two assumptions, to avoid “doubling” 
the involved categories.

Remark 2. Each point of an integral connectivity space belongs to a 
maximal connected subset. Those subsets are the connected compo
nents of the space; they constitute a partition of it.

In [2], Borger denotes Zus the category of integral connectivity 
spaces, because of the German word Zusammenhangsraume. We pro
pose here to use rather Cnc to denote the category of connectivity 
spaces, Cnct to denote the category of integral connectivity spaces and 
fCnct to denote the category of finite integral connectivity spaces.

1 Though non-disconnecting maps would be more accurate.
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Example 1. Let Ut ■ Top —* Cnct be the functor whose value is defined 
on each topological space (X, r) as the connectivity space (X, K) with 
K, the set of connected subsets (in ordinary topological sense) of (X , r). 
Then Ut is not full and not surjective (up to isomorphism) on objects ; it 
is faithful but is neither strictly injective nor injective up to isomorphism 
on objects : for example, if X  — {a, 6}, T\ — {0,{a},X} and 72 = 
{0, X}, then (X, t\) and (X, 72) are not isomorphic but U t(X ,ti) = 
Ut ( X , t2).

Example 2 . Let G rf be the topological construct2 whose objects are the 
simple undirected graphs and whose morphisms are the functions which 
send edges to edges or singletons. More precisely, such a graph can be 
defined as a pair (X, Q) with Q € Qx such that

{A € V x , card^4 = 1} C Q C  {A £ Vx,caidA = 2},

and morphisms /  : (X, Q) —> (Y, TC) are functions /  : X  —► Y  such 
that W1 € G, f(A ) £ H. A subset K  of such a graph (X, Q) is said to 
be connected if for every pair (x ,x ') of elements of K, there exists a 
finite path x = x0, xi, • • • , xn = x' such that each x% is in K  and each 
{x{, xi+i} is in Q. The forgetful functor Ug : G rf —> Cnct, whose value 
is defined for each simple undirected graph (X, Q) as (X, 1C) with 1C the 
set of connected subsets of X, is a full embedding.

Example 3. With each tame link3 L in R 3 or s 3, we associate an in
tegral connectivity space Sl taking the components of the link L as 
points of Sl, the connected subsets of it being defined by the nonsplit- 
table sublinks of L. The connectivity structure k(Sl) will be called the 
splittability structure of L.

2 Following [1], §5.1, p. 61, a category of structured sets and structure preserving 
functions between them is called a construct. More precisely, a construct is a concrete 
category over the category Set of sets, that is a pair (A, U) where A is a category 
and U : A —► Set is a faithful functor (forgetful functor). A topological construct is 
then a construct (A, U) such that the functor U is topological, i.e. such that every 
{/-structured source (fi : E  —► UAi)i has a unique [/-initial lift (/* : A —> A*)/(see 
[1], 10.57, p. 182 and §21.1, p. 359, and m/ra, the section 3.1 of the present article).

3A link is called tame if it is not wild, that is if it is (ambient) isotopic to a 
polygonal link (or to a smooth link, see [4]).
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Example 4. The simplest integral connectivity space which is neither 
in i/7’(Top) nor in Uq(Grf) is the Borromean space B3, defined by 
|B3| = 3 = {0 , 1, 2} and «(6 3 ) = Bz such that B% = {IB3I}. More 
generally, for each integer n € N, the n-points Brunnian space Bra is the 
integral connectivity space defined by |Bn| =  n and k(B„) = Bn such 
that B* = {|Bn|}. The names Borromean and Brunnian are justified 
by the fact that the corresponding spaces are the ones associated with 
the links with the same names.

Example 5. More generally, for each set X  and each cardinal v, there is 
a unique integral connectivity space whose non-trivial connected subsets 
are those with cardinal greater than v.

Example 6 . Let p be an integer. The hyperbrunnian space HBp is the 
integral connectivity space such that |HBP| = {0,1, • • • ,p — 1}N and 
with non-trivial connected subsets all the K  C  |HBP| for which there 
exist k E N and a € |HBP| such that K  be of the form

K = {x E |HBP|, Vn < k, xn = an}.

The space HB3 will be called the hyperborromean space. For each k £ 
N, the function fa : HBP —► Bp defined by / ( x) = Xk is a connectivity 
morphism. If p > 2, the function /  : HBP —* I defined by

n = 00

/<*> = E  = 1
71= 0 F
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is a surjective connectivity morphism onto I = [0,1], the connectivity 
space associated with the usual topological interval [0,1].

Example 7. More generally, if X  is a set and (T, <) is a totally ordered 
set, we define the integral connectivity space Bx(X) by |B t(X )| = X T 
and k(Bt (X)Y  = {Kfjt, (f , t ) E X T x T} where Ku  = {g £ X T,Vs E 
T,s < t =>• g(s) = /(s)}. Then Bp = B{,j(p), and HBP = Bn(p). If 
card(X) > 2, then B t (X) is a connected space iff T  has a least element.

Example 8. Let (X, <) be a totally ordered set. The set of all intervals 
(of any form) of X  constitutes an integral connectivity structure on X , 
called the order connectivity structure. In particular, ordinal numbers 
define connectivity spaces, called the ordinal connectivity spaces.
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2 Generating Connectivity Structures

2.1 The Theorem of Generation

Proposition 1 . Let X  be a set, and Cncx (resp. Cnctx) the set of 
connectivity structures on X  (resp. the set of integral connectivity struc
tures on X). For the order defined by

X\ fC X% X\ C X<2i

(Cncx,< ) and (Cnctx, <) are complete lattices.

Proof These ordered sets have Vx as a maximal element, and for 
each nonempty family of (integral) connectivity structures on
X, P|i Xi is again an (integral) connectivity structure on X.

□

If Xx < X2 . we say that X\ is finer than X2 , or that X2 is coarser 
than X\. Vx-, the coarsest structure on X , is called the indiscrete struc
ture on X . The finest connectivity structure contains only the empty 
set; it is called the discrete connectivity structure. The finest integral 
connectivity structure contains only the empty set and the singletons; 
it is called the discrete integral connectivity structure, or simply the 
discrete structure.

Remark 3. The lattices Cncx and Cnctx are not distributive, unless 
X  has no more than two points. For example, if X  — {1,2,3} and, 
for each i € X , Xi is the integral connectivity structure on X  with 
(X \  {«}) as the only non trivial connected set, then V j(^) = ^ x ,  so 

i(Xi)) = #3, while y^B^AXi) is the discrete integral connectivity 
structure on X.

Definition 2. Let X  be a set, and A  E Qx a set of subsets of X . The 
finest connectivity structure (resp. integral connectivity structure) on 
X  which contains A  is called the connectivity structure (resp. integral 
connectivity structure,) generated by A  and is denoted by [*4]o (resp.

m
Thus, [.4]o = A l*  e Cncx ,A  C X} and [.4] = / \ {X  G Cnctx, A  C 

X}.

DUGOWSON - ON CONNECTIVITY SPACES
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Proposition 2. Let X  be a set, A  a set of subsets of X , (Y , a 
connectivity space (resp. integral connectivity space) and f  : X  —> Y  
a function. Then f  is a connectivity morphism from (X, |y4]o) (resp. 
{X, [.4])) to (Y, 3>) if and only if f(A )  € y  for all A e A.

Proof. {A € Vx, f(A)  6 3 }̂ is a connectivity structure on X  containing 
A  and then containing [,4]o (resp. [4]).

□
The expression “generated structure” is justified by the next theo

rem, in which loq denotes the smallest infinite ordinal.

Theorem 3 (Generation of connectivity structures). Let X  be a set and 
A  € Qx & set of subsets of X . Then there exists an ordinal ao < wo + 1 
such that

[4]o = $ a(4) for all a > a 0,

where the (I)a are the operators Qx —► Qx defined by induction for every 
ordinal a by

• $° = idQx,

• if there is an ordinal ¡3 such that a — ¡3 + 1, then $ a =  $  o

• otherwise, for allU € Qx, ®a(U) = U/3< a ^ (^ 0 > 

and with <l> the operator defined for all U G Qx by

$(U) = {< b }U {ljA ,S £ £ u } ,
Ae£

where £u = {£ E V{U), f l ^  A ± 0}.
The integral connectivity structure [.A] generated by A  is obtained in 

the same way, adding the singletons of X  at any stage of the process.

Proof. We only have to prove the part of the theorem concerning the 
generation of connectivity structures, the last claim about integral con
nectivity structure being then obvious.

For every U and V in Qx, the following three properties are easy to 
check:

DUGOWSON - ON CONNECTIVITY SPACES
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•  U  C  $(W ),

• W C V 4  $(W) C $(V),

• U € Cncx <=>• $(¿0 = W.

The first two properties then imply by induction that for all ordinal 
numbers a and (3 with a < (3, one has <&a(lA) C and the last two
properties imply <&(U) C \U\Q and, by induction, C \U\Q for all
ordinal numbers a. Then, if for an ordinal number ao the set 3>Q°( 4̂) is a 
connectivity structure on X, it coincides with [̂ 4]o- So, to complete the 
proof, it suffices to verify that the set C =  <&ul0+l(A) is such a structure,
i.e. $(C) =  C. For this, let W be the set «I?“'0 (.4), so that C = 3>(W). 
Then W  is stable by union of finite families with nonempty intersections 
since $ Wo(̂ 4) = UneN >̂n(-4) so every such family is included in $ ra(.4) 
for some integer n, and its union is again in W. Now, let (Su)ueu be 
any family of subsets of X  belonging to C and such that C\ueu 7̂  0- 
We want to verify that (Ju6C/- Su G C. For each u G U, Su G C implies 
that there exists a family (Su<i)i^iu of subsets of X  belonging to W 
such that Hie/ 7̂  0 and (Jig/ = Su. Let x be an element 
of n »ro 5«. For each u € U, there exists an index iu € Iu such that 
x € SU)iu. For all u € U and i G Iu, let TUti be the set Sû  U SUju. We 
have SUti G W, Suju G W and SUyi D Su>iu ± 0 (since f | i€iu Su,i ± 0) so 
TUti G W by the property of W we emphasized. Then fluet/.ie/y ^ 0> 
S0 Uu€U,i€lu ^ ^*(^0, that UiiSl/ Su E C.

□

Remark 4. In the above proof, the existence of the families (Iu)ueu, 
((Su,i)ieiv)u€U and (iu)u€U depends on the axiom of choice.

Example 9. Let X  be the connectivity space such that |X| = R 2 ~  C 
and k(X) = [D]0, where V  is the set of open disks of the Euclidean 
plane R 2. For k G {1,2,3}, let rk = (—\ + ^ i ) k be the cubic roots of 
unity. For each (xo, yo) — zq G C, let (zn) be the sequence of complex 
numbers defined by the Newton’s method for the equation z3 — 1 = 0 
and with first term z0• If the sequence (zn)n€n converges to r*., we put 
f(zo) = k, otherwise — in particular if the sequence (zn) is defined only

DUGOWSON - ON CONNECTIVITY SPACES
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for a finite number of terms — we put f(zo) = 0. Then the function 
/  : X  —> B4 defined in this way is a connectivity epimorphism. Indeed, 
the three basins of attraction W k =  f~ 1(k), k G {1,2,3}, have the Wada 
property : their common boundary is the Julia set Wq = / - 1(0) (see
[9]). If K  is a nonempty element of the connectivity structure \D]0, it is 
open and connected for the usual topology of the plane and then either 
K  C  Wk for a k G {1,2,3} and f ( K ) =  {k} G /c(B4), or K  intersects 
Wo and then f{K ) = IB4I which is again in «(B4). Note that if we 
replace B4 by (IB4J, /c(B4) \  {{0}}), the function /  is still a connectivity 
morphism. Moreover, it is easy to use this function /  to define other 
surjective connectivity morphisms from the same connectivity plane X  
to the borromean space B3.

Example 10. There are several general ways to associate a connectivity 
space with each (partially) ordered set. We can for example define 
closed intervals of such a set exactly like in the totally ordered case, 
and then associate with each ordered set (5, <) the connectivity space 
(S , [J\) with J  the set of closed intervals of S'. In particular, for each 
topological construct and each set X, we obtain a connectivity space 
whose points are the structures on X.

2.2 Ir reductibility

Definition 3. Let X  be a connectivity space. A connected subset K  of 
\X\ is called reducible if it belongs to the connectivity structure generated 
by the others, that is

K  6 [k(X) \  {JOlo.

A nonempty connected subset of |X| is said to be irreducible if it is not 
reducible. The space X  is said to be irreducible if \X\ is an irreducible 
connected subset of itself. It is said to be distinguished if each of its 
nonempty connected subsets is irreducible.

Remark 5. With the notation of the theorem 3 we have either $(k(X) \  
{K}) = k{X) \  {if}, and then K  is irreducible, or <J>(«(X) \  {if}) = 
k(X). In any case, [/cpO \  {if}]o = $ (« P 0  \  {-K"})) and K  is reducible 
iff there is a family E of proper connected subsets A  ^  K  such that 
f W  A ^  0 and K  = \JAe£ A.

DUGOWSON - ON CONNECTIVITY SPACES
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Remark 6. A connected singleton is necessarily irreducible.
Example 11. If X  is a finite connectivity space, a subset K  of |X| is 
reducible iff there are two connected subsets A ^  k(X) and B  ^  k(X) 
such that

K  = A U B  and A D B ^  0.

Example 12. The only irreducible connected subsets of R  are the trivial 
ones.

Example 13. Brunnian spaces and hyperbrunnian spaces are connected 
and distinguished spaces. Nevertheless, note that B'r(X) is not a distin
guished space for every set X  and every totally ordered set T. For exam
ple, B[0 i]({a, b}) is not a distinguished space, since { / G {a, 6}'0,1!, Be G 

< e =>• f( t)  — a} is a connected subset which is reducible.

Definition 4. Let X  be a connectivity space. Its Brunnian closure is 
X  = (\X\ ,k(X)U{\X\)) .

Example 14. B„ is the Brunnian closure of the n-points discrete integral 
space. HBn is the Brunnian closure of the disjoint union (c/. infra, 
section 3.2) of n copies of itself.

The next proposition is obvious.

Proposition 4. If X  is a nonempty irreducible space, then (|X|, k(X) \  
{X}) is a connectivity space. If X  is a non-connected connectivity space, 
then X  is an irreducible connected space.

Because of the next proposition, the notion of irreducibility will play 
a fundamental role in the case of finite connectivity spaces.

Proposition 5. A connectivity structure on a given finite set is char
acterised by the set of the irreducible connected subsets, which is the 
minimal set of subsets which generates this structure.

Proof. For any connectivity space X , let t(X) denote the set of the 
irreducible connected subsets of X.  Then, for any A  G Qx such that 
jy4]o = k(X),  one has A  3  i(X) since, by construction, each set C G [v4]o 
which is not in A  is reducible. On the other hand, an easy induction 
shows that, for every integer k, every reducible connected subset of X  
with cardinal smaller than k is an element of [¿(X)]0. Thus, if X  is 
finite, k(X) = [¿(X)]o-

DUGOWSON - ON CONNECTIVITY SPACES
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□

2.3 Connectivity Spaces and Hypergraphs

A hypergraph is a set of vertices endowed with a set of nonempty sets of 
vertices, these sets of vertices being considered as generalized edges, the 
so-called hyperedges. There is some similarity between hypergraphs and 
connectivity spaces — for example it is possible to consider Borromean 
structures in both cases — but

• the union of two hyperedges with a nonempty intersection is not 
necessarily an hyperedge, so hyperedges are not the same as con
nected subsets,

• the union of two hyperedges with a nonempty intersection can 
be an hyperedge, so hyperedges are not the same as irreducible 
connected subsets.

To clarify the relation between the two concepts, let us consider the 
category HypG of hypergraphs, that is the category whose objects are 
the pairs (X , 7i) with X  a set and 7i £ Qx a set whose elements are 
called hyperedges, and whose morphisms /  : (X ,7 i) —> (X 1, W) are 
functions X  —► X ' which preserve hyperedges : H £ H => f(H ) £ H '. 
Then the proposition 2 implies

Corollary 6 . The category Cnc is concrete on HypG with a forgetful 
functor admiting as a left adjoint the functor HypG —► Cnc which as
sociates with each hypergraph (X , 7i) the space whose connectivity struc
ture is generated by Ti, i.e. (X, \H]o), and with each morphism itself as 
a connectivity morphism. Similarly, the generation of integral connec
tivity structures [H] from sets 7i £ Qx defines a left adjoint to the 
forgetful functor C nct —»• HypG, and the situation is the same between 
finite hypergraphs and finite connectivity spaces.

DUGOWSON - ON CONNECTIVITY SPACES
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3 Limits and Colimits

3.1 Categories with Lattices of Structures

Let JC Pos be the category of complete (small) lattices and join-preserving 
maps. If S' is a functor from a category X to JCPos, S(X) or Sx  will 
denote the lattice associated by S  with an object X , and (while it is 
unambigous) f\ the map between lattices associated by S  with a mor
phism / .  The elements of the lattice Sx  will be called the 5-structures 
on X.

Definition 5. Let X be a category and S : X —> JC Pos a functor. The 
category X,y, which we shall refer to as the category with lattices of 
structures associated with S or more briefly as the category structured 
by S, is defined as follows. Its objects are pairs (X ,X ) with X  an object 
ofX. and X  £ Sx an S-structure. A morphism f  : (X, X) —> (Y, ^ ) is 
an yi-morphism f  : X  —> Y  such that f\(X) < y  in the lattice Sy.

In the category X5 , spaces (X, lsx ) are called indiscrete spaces, and 
spaces (X, 0sx) are called discrete spaces. If, in the lattice Sx, we have 
X  < X', then the structure X  is said to be finer than X' and the latter 
is said to be coarser than the former.

Remark 7. An equivalent definition is given by considering contravariant 
functors from the basis category X to the category MCPos of complete 
(small) lattices and meet-preserving maps: an object of the category 
defined by such a functor T  is a pair (X ,X ) with X  € Tx , and a 
morphism /  : (X, X) —» (F, ̂ )  is a X-morphism f  : X  —> Y  such that 
X  < f*(y), where f* = T(f). Then for each covariant S : X —► JCPos, 
there is an associated contravariant functor T  defining the category Xs 
in this way. This functor T  is defined on objects X  by Tx = Sx  and on 
X-morphisms /  : X  —> Y  by T (f)  = f* with, for each y  ETy,

r y  = \ ] { X e T x , f r x < y } .

In the next proposition, we use the definition of a topological cat
egory given in [1] : a topological category on X is a concrete category 
U : A —> X (that is, a faithful functor U), such that every [/-source 
(X  —> UAi)iei in X has a unique {/-initial lift (A —> Ai)iej in A.
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Proposition 7. A category is a small-fibred topological one if and only 
if it is a category with lattices of structures. More precisely :

• For each functor S : X —► JCPos, the functor U : Xg —> X 
defined by U(X,X) = X  and U f  = /  is a small-fibred topological 
category.

• Each small-fibred topological category U : A —► X ¿5 isomorphic 
to the category X5 with S the functor defined for each object X  of 
X by the fibre Sx = {A G A, UA =  X }  with the usual order (i.e. 
A\ < A2 iff idx has a lift A\ —> A 2 ), and for each arrow f  : X  —>
Y  in X and each A G Sx by f (A )  = A {B  € SY, f  has lift A —►
B}-

Proof. Let S  : X —> JC Pos be any functor. The functor U : Xg —► X 
defined by U (f : (X, X) - ►  (Y, y)) = ( /  : X -» Y) is trivially faithful, 
its fibres are the sets Sx, and it is topological : each U-source (/, : 
X —► UAi)i£i has a unique t/-initial lift, that is (/t : (X, Xq) —> Ai)iei, 
where Xq is the coarsest 5-structure on X such that all /, be (have lifts 
as) Xg-morphisms, that is X0 = Ai//(3^) where ^  is the 5-structure 
of Ai and, for each /  : X —► Y  and each 3̂  G Sy ,f* (y ) is the coarsest 
5-structure X  on X  such that /  is an Xs-morphism (X, X) —* (Y ,y ), 
that is f*(y) = y {X  G Sx,fi(X ) < 3 }̂.

On the other hand, let now U : A —> X be a topological category 
with small fibres. One knows (see [1]) that such fibres Sx  are then 
complete lattices. We can remark also that, for a given /  : X —> Y  
in X and an object A G Sx, the set {B  G Sy, f  has a lift A —> B} is 
nonempty, because Y  has an indiscrete lift. Then f\ is well-defined as 
a function. Now, if (Aj)j€/ is any family in the fibre Sx, and B  G Sy 
is such that /  : X —► Y  has a lift VtAt —► B, then idx has a lift 
Ai —* ViAi for each i, so /  has a lift Ai —> B  for each i. On the other 
hand, if /  : X —► UB has a lift Ai —> B  for each i, then Vi G I, Ai < A, 
where the t/-initial lift of /  is A —> B\ but < A, so idx has a lift 
ViAi —> A and /  has a lift V{Ai —► B. Thus, for a given /  : X —► Y  and 
a given family (Ai)i€j in Sx, we have {B  G Sy, f  has a lift V* Ai —> 
B} = {B  G SY,Vi G I, f  has a lift Ai —► B}. Let ^  = /¡(A) = A{B G 
Sy, f  has a lift Ai —> B}. Then

f\(ViAi) = A{B  G Sy,Vi G I , f  has a lift Ai —* B}
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where /  is the lift of / ,  which exists since fi(X) < y .

□

By proposition 21.15, theorem 21.16 and corollary 21.17 of [1], we 
have then

Corollary 8. / /X  denotes the category Set of sets (resp. the category 
fSet of finite sets), S : X —► JCPos any functor, T  : X0** —► MCPos 
the contravariant functor associated with S and U : A = X^ —► X the 
constructJ4 (resp. “finite” construct) defined by S, then the following 
hold

1. A is (co)complete (resp. finitely (co)complete),

2. U has a left adjoint O (the discrete structure) and a right adjoint I  
(the indiscrete structure) : O H U H I, so U preserves (co)limits,

3. the limit (li : L —► Di)iei of a small (resp. finite) diagram D : 
I —► A is the initial lift of the underlying limit in X, that is: if 
(li : \L\ —* UDi)i€i is the limit ofUD, then L = (|L|, ^ i6l %(Xi)), 
where Di =  (Xj, Xi) and I* = T(li),

4- colimits are given in the same way, as final lifts: if (q : \C\ <— 
UDi)i<= i is the colimit of UD, then the colimit of D in A  is (q : 
C <— Di)iei with C = (|C|, \ZielCii(Xi)), where Di = (X^Xi) and 
cn =  S(ci),

4See supra the note 2.
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=  A{B € SY, Vi e I , B > p i }  = Vi0i,

so /¡(VjAj) = Vif\(Ai) : f\ is a JCPos-morphism, and the functor S  is 
well-defined. It is then easy to verify that the functor A —*• Xg defined 
by

(f : A —> B) (Uf : (UA, A) -  (UB , B)) 

is an isomorphism of categories, with inverse
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5. A  is wellpowered and cowellpowered,

6. A  is an (Epi, ExtremalMonoSource)-category,

7. A has regular factorizations, i.e. is an (RegEpi, MonoSource)- 
category (and thus is, in particular, a (RegEpi, Mono)-category),

8. in A, the classes of embeddings (i.e. initial monomorphisms), 
of extremal monomorphisms and of regular monomorphisms coin
cide,

9. in A , the classes of quotient morphisms (i.e. final epimorphisms), 
of extremal epimorphisms and of regular epimorphisms coincide,

10. A  has separators and coseparators.

Example 15. Let V  : Set —► JCPos be the (covariant) functor which 
associates with each set the complete lattice of its subsets. For any 
functor T  : X —► Set, the category X.px structured by the functor 
V o  T  : X —> JC Pos coincides with the topological category Spa(T) 
of T-spaces on X ([1], p. 76). Thus, the “functor-structured categories” 
Spa(T) are special cases of the categories structured by functors X —> 
JCPos. In particular, for T = V,we  obtain Spa('P) = Setg = HypG.

3.2 (Co)limits in the Categories of Connectivity 
spaces

In [2], Borger showed that

Proposition 9. Cnct is a topological category. It is not cartesian 
closed.

It is easy to check that, as a category with lattice of structures, 
Cnct is defined by the covariant functor Cnct : Set —► JCPos such 
that Cnctx is the lattice of all integral connectivity structures on X  
and, for every /  : X  —> X', Cnct(f) — f\ is the JCPos-morphism 
Cnctx Cnctx1 such that, for all fC € Cnctx,

m )  = [[ f{K ),K eK }} . (l)
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Equivalently, the contravariant definition of Cnct is given, for all 1C' G 
Cnctx', by

f*(IC’) = { K e P x J ( K ) e lC '} .  (2)

The same formulas hold on fSet, defining a functor fCnct such that 
fCnct = fSet/cnct, which is thus a topological category on fSet. For 
Cnc, it suffices to use [{f(K), K  G /C}]o instead of K  G £}] in
the expression of f\ to define a functor Cnc such that Cnc = Setcno 
which is thus a topological construct5.

From the formula (1) and the corollary 8 , we deduce that the connec
tivity structure n(C) of the colimit C of a small diagram D : I —> Cnct 
is given by n(C) = \JiGl[{ci{K),K G k(A)}] and then

K(C) = [{aiK )^ e l , K  e K(Di)}}, (3)

where the c* : \Di\ —> \C\ are the coprojections. The same formula holds 
for colimits of finite diagrams in fCnct, and, using [—]o instead of [—], 
for small diagrams in Cnc.

From the formula (2), one likewise deduces the connectivity structure 
k(L) of the limit L of a small diagram D : I —> Cnct,

k(L) = f ] { K  e v w M k ) e k(A)}, (4)
¿€1

where the : \L\ —> |Dt \ are the projections. The same formula holds 
for limits of small diagrams in Cnc and of finite diagrams in fCnct.

For example, the cartesian product C\ x C2 of two connectivity spaces 
is characterised by |Ci x C2I = |Ci| x |C721 and

k(Ci x C2) = {A G V(\C\\ x \C2\),TTi(A) G K(Ci) for i G {1,2}},

where the 7Tj are the projections, whereas the coproduct, or disjoint 
union, satisfies |Ci UC2\ = |Ci| U \C2\ and k(Ci IIC2) =  k(Ci)Uk(C2).

With those formulas, it is easy to check that none of the three cate
gories considered here is cartesian closed. It suffices to exhibit a colimit

5C nc is not well-fibred, so it is not a topological category according to the defi
nition given in 1983 by Herrlich [10], but, as we said, we use here the less restrictive 
definition finally retained by Herrlich, Adamek and Strecker in [1],
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which is not preserved by a product, and this can be done simultaneously 
in the three categories. For example, let {o, *, 6} be a set with three dis
tinct elements, Au be the indiscrete connectivity space defined for each 
u € {a,b} by its carrier \AU\ = {*,«}, and B  the space with carrier 
{1,2,3} and with structure [{{1,2}, {2,3}}]. Then, in each of the cat
egories concerned, the colimit C of the diagram Aa <—3 {*} A^ (with 
arrows the inclusions) is C = ({a, *,&}, [{{a, *},{*, &}}]), its product 
C x B  with B is the cartesian product {a, *, 6} x {1, 2,3} endowed with 
the integral connectivity structure including all subsets having their 
two projections connected. For example, the set {(a, 1), (*,3), (6,2)} is 
connected in C x B; but it is easy to verify that the same set is not 
connected in the colimit of the diagram Aa x B  {*} x B  <—»■ At, x B. 
Thus, in each of the categories considered, the endofunctor — x B  does 
not preserve colimits. We thus proved

Proposition 10. Cnc and fCnct are topological categories; they are 
not cartesian closed.

3.3 Quotients and Embeddings

This section gives trivial but useful consequences of the corollary 8 and 
of the formulas (1) and (2).

Proposition 11. In Cnct and fCnct (resp. Cnc), a morphism f  : 
A —* B is a regular epimorphism iff |/ |  is surjective and k(B ) = 
[f(n (A ))] (resp. k(B ) =  [/(k(j4))]0/  In fCnct, fCnct and Cnc, a 
morphism f  : A —* B is a regular monomorphism iff \ f\ is injective 
and k(A) = {K  e P\a\J(K) e «(£)}.

Now, in every topological construct, a regular epimorphism, i.e. a 
coequalizer, is the same as a quotient morphism, i.e. a final morphism 
which is surjective as a function, and can also be viewed as (the unique 
final lift of) the canonical map associated with an equivalence relation. 
This remark results in the definition of the quotient of a connectivity 
space by an equivalence relation.

Definition 6 (Quotient by an equivalence relation). If C is a connec
tivity space and ~  is an equivalence relation on \C\, the quotient space
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C/  ~  is defined by \C/  ~  | = \C\/ ~  and

K(C/ ~) = «¡(«(C)) = [s(/c(C))]0 (5)

where s is the canonical map s : \C\ -» \C\/ ~ . In particular, i fT  is a 
subset of\C\, C /T  denotes the space C/ ~ t-

Remark 8 . Note that if C is an integral connectivity space, then for any 
surjective map s : \C\ -» Y  we have [s(/c((7))]o = [s(/c(C))].

Likewise, in every topological construct, a regular monomorphism,
i.e. an equalizer, is the same as an embedding, i.e. an initial morphism 
which is injective as a function, and can also be viewed as (the unique 
initial lift of) the inclusion map of a subspace. This leads to the defini
tion of the connectivity structure induced by a connectivity space on a 
subset of its carrier.

Definition 7 (Structure induced on a subset). If C is a connectivity 
space and S is a subset of \C\, the connectivity space induced on S by 
C is the space C\s defined by |C|s| = S and

K(cls) = i*(K(C)) = v s nK(C) (6)

where i is the inclusion map i : S <—>■ \C\.

4 Tensor Product of Connectivity Spaces

The formula (4) suggests that the cartesian product of connectivity 
spaces is in some way “too coarse” to be really useful in algebra. For 
example, let N be the set of natural numbers with the integral connec
tivity structure generated by the subsets {n, n 4- 1}; it is easy to check 
that the addition -I- : N2 —> N is not a connectivity morphism (when 
N2 is endowed with the cartesian square structure of N). Likewise for 
the addition of real numbers. This section presents a more interesting 
connectivity product than the cartesian one for algebraic structures.

Let Xi (i = 1,2) and Y  be connectivity spaces. For each x\ G |Xi| 
(resp. X2 G |X2|), we denote by f ( x i , —) (resp. f ( —,x 2)) the partial 
function associated with a given function /  : |Xj| x \X2\ \Y\.
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Definition 8. A function f  : |Xi| x \X2\ —■► |Y| is said to be partially 
connecting from X\ x X 2 to Y  if f ( x  1, —) : X 2 —> Y  and f ( —,x  2) : 
X\ —> Y are connectivity morphisms for all x\ G |Xi| and all X2 G \X2\.

Definition 9. The connectivity tensor product X \M X 2 of two connec
tivity spaces Xi (i = 1,2) is the space with carrier = |Xi| x \X.2 \ 
and with connectivity structure n(X\ E3 X 2) = [{A”i x K2, (Ki, K2) G 

«(XO x k(X2)}]0.

For every connectivity space Xi, k(Xi E3 X 2) is a finer connectivity 
structure on the set |Xi| x \X2\ than the one given by the connectivity 
cartesian product, since K\ x  K2 G k(Xi x X 2) for each connected sub
sets Ki and K2. Thus, id : X ^ X 2 —*• X\ x X 2 is a bijective connectivity 
morphism (but it is of course not an isomorphism in general). If X\ and 
X 2 are integral connectivity spaces, then its inverse function, that is the 
function from Xi x X 2 to X\ KI X 2 defined by t ( x i ,x 2) = (x\,x2), is a 
partially connecting function.

Theorem 12. Let X\ and X 2 be integral connectivity spaces, Y  a con
nectivity space, and f  : |Xi| x \X2\ —> |Y| a function. Then f  is a 
partially connecting function from X\ x X 2 to Y  if and only if it is a 
connectivity morphism from X] S  X 2 to Y, i.e. there exists a unique 
connectivity morphism f  : X\ S  X 2 —* Y  such that f  o r  = / .

Proof. If /  is a connectivity morphism, then /  o r  = /  is a partially 
connecting function since r  is such a function. On the other hand, 
let /  be a partially connecting function from X\ x X 2 to Y . Unicity 
of /  being obvious, since necessarily f ( x \ ,x 2) = f ( x i ,x 2), it suffices 
to check that this function is a connectivity morphism on Xi Kl X 2. 
Then, according to the proposition 2, it suffices to check that for every 
Ki G /cpQ), f(K i  x K2) G k(Y). Let Ki x K2 be such nonempty subset 
of |Xx| x \X2\, and let x® G K\. f  being partially connecting, the sets
V = {f(x®,x2),x2 G K2} and HX2 = { f(x 1,x 2),x1 G K i)  are, for all 
x2 G K2l in k(Y). So are the sets V  U HX2 (as V fl HX2 ^  0), and 
U *2e K ,(V  u  th a t  is: f ( K  1 x  K 2) G k(Y).

□
Example 16. Let /  : R+ —► R  defined by
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• / ( 0,0) = 0,

• for all x and y, f ( x ,y ) = f(y,x),

• Vx > 0, Vy G [0, x], f(x, y) = y/x.

Then /  is a partially connecting map since it is “partially continuous”, 
but it is not continuous, and neither A = {(x,x),x  > 0} nor /(A ) = 
{0,1} are connected subsets of, respectively, R+ G3 R+ and R.

Note that for each integral connectivity space X ,  one has an endo- 
functor X  S  — : Cnct —» Cnct defined for each integral connectivity 
space Y  by X  S  Y  and for each connectivity morphism g : Yi —* Y2 
between integral connectivity spaces by (X ^  g)(x,yi) = (x, g{y\))- 

Now, let us define another endofunctor on Cnct. For every subset 
M  of the set Hom(X, Y) of connectivity morphisms from a connectivity 
space X  to a connectivity space Y, and for every subset A of the set 
|X|, let (M, A) denotes U/eM /(^ )- Then, for each integral connectivity 
space X , there is an endofunctor Cnct(X, —) : Cnct —► Cnct defined 
for every integral connectivity space Y  by

• |C n c t(X ,r) | = H om (X ,Y ),

• /e(CnctpT,y)) = {M  G V(Hom(X, Y)),\fK  G k(X),(M ,K)  G

and for every connectivity morphism g : Y\ —*■ Ŷ  by Cnct(X, g) = g* 
such that

VV> G C nct(X,Yi),g*((p) = g o ip.

Remark 9. A set M  of connectivity morphisms between two integral con
nectivity spaces X  and Y  is connected, that is belongs to /c(Cnct(X, F)), 
if (and only if) for all x G X, (M, {x}) G n(Y). Indeed, if this condition 
is satisfied, then for every nonempty connected subset K  of X  and any 
x e K ,  one has (M, K) = \JfeM(f{K) U (M, {*}» G k{Y).

Theorem 13. For every integral connectivity space X , the endofunctor 
X S  -  is left adjoint to the endofunctor Cnct(X, —). Thus, (Cnct,K) 
is a closed symmetric monoidal category.
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Proof. The product 13 is obviously symmetric. Let X , Y  and Z  be 
integral connectivity spaces. For every connectivity morphism
Y  —> Z, one has a morphism p(xjj) : Y  —> Cnct(X, Z) defined for all 
y € Y  by p(tp)(y) — ip(—} y). Then p is clearly a bijection between the 
sets Hom(XMY, Z) and Hom(Y, Cnct(X, Z)), and it is natural since for 
all integral connectivity spaces Y, Y', Z  and Z' and for all connectivity 
morphisms u : Y  —> Y \  v : Z —* Z' and ^  : X  E Y ' —> Z, one has 
p (vo ip o (X R  «)) =  p((x, y) v(ip(x, u(y)))) = ( j / h v  o u(y)) = 
Cnct(X, v) o p(-0) o u.

□

5 Homotopy

Let I  be a triple (1,0,1) with I  a nonempty integral connectivity space, 
and 0 and 1 some elements of |/|. In particular, let I be the con
nectivity space associated with the usual topological space [0,1], and
7  = (i,o,i).
Definition 10 (Homotopy). LetX  andY be integral connectivity spaces, 
and / ,  g : X  —> Y  some connectivity morphisms. The function g is said 
to be I  -homotopic to f  provided there exists a connectivity morphism

h : I  -+ Cnct(X, Y)

such that h(0) = /  and h(l) =  g. In particular, in the case of I  = I , 
g is simply said to be homotopic to f .

We denote by /  ~  g the homotopy relation between connectivity 
morphisms. Like in the topological case, it is obviously an equivalence 
relation. The adjoint situation ( I 0 - )  H Cnct(X, —) leads to an 
alternative definition of homotopy for connectivity morphisms.

Definition 11 (Alternative definition of homotopy). Let X  and Y  be 
integral connectivity spaces. A function g : X  —> Y  is I  -homotopic to 
f  : X  —* Y  provided there exists a connectivity morphism h : IM X  —> Y  
such that h(0, —) = /  and h( 1, —) = g, that is a function h : I  x X  —> Y  
such that
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• h(0 , - )  = /  and h( 1, - )  = g,

• Vi 6 J, V K e  k(X), h(t, K) e k{Y),

• VD € k(I),\/x E X ,h(D ,x)  € k(Y).

Definition 12 (Contractibility). An integral connectivity space X  is 
said to be contractible provided the identity map id : X  —> X  of the 
space be homotopic to a constant map c : X  —> X .

Examples. The connectivity space associated with the usual topological 
circle S 1 = {el6,0 € [0,2w]} C C is contractible. Indeed, the function 
h : I x S 1 —* S 1 defined by

• for t € [0 , 1[ and 2 6 5 1, h(t,z) = z.etJ^ ,

• V2 € S 1, h(l, z) = 1,

realizes an homotopy between the identity of the circle and the constant 
function z ■—*• 1 € S 1.

More generally, the same kind of argument shows that every n-sphere 
is contractible. On the other hand, there exist a connected connectivity 
space X  such that no two distinct connectivity endomorphisms X  —► X  
are homotopic. For example, if X  = 'P(R) is endowed with the inte
gral connectivity structure for which non trivial connected subsets are 
subsets with a cardinal greater than the one of R, then non-trivial con
nected subsets of Cnct(X, X) also have such a cardinal, and then every 
connectivity morphism from I to Cnct(A, X) is a constant function.

Those examples show that any theory of homotopy in the connec
tivity framework should be very different from the topological one. In 
particular, it could be interesting to use different kinds of discrete times 
instead of I.

6 Pointed Connectivity Spaces

6.1 Pointed Sets

The category pSet of pointed sets and based maps is a concrete category 
on Set. The forgetful functor pSet —> Set will be denoted by | — |, and 
the base-point of a pointed set P  by P(P), so P = (|P|, /3(P)).
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pSet has a zero object, ({*},*), it is complete and cocomplete. In 
particular, the cartesian product of two pointed sets P\ and P2 is defined 
by \Pi x P21 = |Pi| x |P2| and P(P1 x P2) =  (P(P1),P(P2)). The class of 
coequalizers coincides with the class of all epimorphisms, i.e. surjective 
based maps, and with the class of quotient morphisms (in pSet every 
morphism is final). If ~  is an equivalence relation on |P|, the quotient
pointed set P/ ~  is defined by \P/ ~  | = \P\/ ~  and f3(P/ ) = m -  
In particular, if T  is a subset of |P|, P /T  denotes the pointed set P /
The coproduct of Pi and P2 is denoted by P\ V P2. It can be defined 
either as the quotient of the set |Pi| IIIP2I by the equivalence relation 
which identifies ¡3{Pi) and /?(P2) or alternatively by the formulas

Ip, v P21 =  (|P,| x {/3(P2)}) U ({/?(/>!)} X \Pi\) (?)

and
/?(P1VP2) =  (/?(P1),/3(P2)).

The category pSet is not cartesian closed since, for example, if P  is 
a pointed set with two elements and Q is the zero object, then P  x (Q V 
Q) ~  P  whereas (P x Q) V (P x Q) has three elements. Nevertheless, 
the set of based maps from a pointed set P  to a pointed set Q has a 
“natural” special point, that is the constant map x 1—*■ (3(Q), so there is 
a “natural” object in pSet representing Hom(P,Q). Let

pS et(P,Q) =  (Hom(P,Q),x (-► (3{Q))

denotes this object. For each pointed set P, we then have an endofunctor 
pSet(P, —) on pSet, with pS et(P ,/)  — f  o —. One knows that this 
functor has a left adjoint P  A —, the so-called smash product, defined on 
objects by

PA Q  = ( P x Q ) / | P V Q | ,

where the set |P  V Q| is defined by the formula (7), and on based maps 
/  : Q -  R  by

V(p,g) e |P| x \Q\,(P^f)((p,Q)) = (p , /(?))• (8)

Then, endowed with the smash product, pSet is a closed symmetric 
monoidal category. Note that there are no projections associated with 
the smash product, and that the two-elements pointed set is a unit for 
it.
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6.2 Pointed Integral Connectivity Spaces

Definition 13. A pointed integral connectivity space X  is a triple 
(S,JC,b), where (S, 1C) is an integral connectivity space and b a point 
of S, called the base-point of X .

For every pointed connectivity space X, we will denote |X| its un
derlying carrier set, k(X) its connectivity structure and /3(X) its base- 
point, so X = (¡X\,k{X),P{X)).

The category whose objects are the pointed integral connectivity 
spaces and whose morphisms are connectivity morphisms preserving 
base-points will be denoted by pCnct. It can be viewed as a category 
with lattices of structures on the base category pSet of pointed sets. In
deed, the choice of a base-point does not have any effect on the lattice of 
(integral) connectivity structures on a given set, and connectivity mor
phisms between pointed spaces are just based maps between underlying 
pointed sets which preserve connected subsets, so pCnct = p S et^ ^  
with pCnct = Cnct o | — | : pSet —► JCPos. Thus,

Proposition 14. pCnct is a topological category on pSet. It is thus 
complete and cocomplete.

The topological forgetful functor pCnct —► pSet will be denoted 
| — |p, so that |X|P = (\X\,f3(X)). The category pCnct can also be 
viewed as a concrete category on Cnct, and we will denote | — |K the 
corresponding forgetful functor, so that |X |re = (|X|, k(X)). Then, 
the product of two pointed integral connectivity spaces X\ and X 2 is 
characterised by |Xi x X^\p — \X\\P x \X%\P and |Xi x X 2\K = |X i|K x 
IX 2 1k■ If ~  is an equivalence relation on |X|, the quotient pointed space 
X f^  is likewise characterised by \X /^\P = \X\P/^  and \X /^\K — \X\K/^. 
This gives in particular the definition of X /T  with T  C |X|. The 
coproduct satisfies |Xi V X 2\p = |Xi|p V |X2|P, and its connectivity part 
|Xi VX 2\k can be defined either as the quotient of |X i|K II |X2|K by the 
relation /3(Xi) ~  /3(X2), or as induced by the space IXJ* El \X2\K on 
\X\ V X 2\ seen as a subset of |Xi| x \X2\ according to the formula (7), 
the Xi replacing there the Pt. In the sequel, the expression |Xi V X 2\ 
will keep this last meaning. Now, the same argument as for pSet shows 
that pCnct is not cartesian closed.
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6.3 The Smash Product

Definition 14. Let Xi and X 2 be pointed integral connectivity spaces. 
Then,

•  the tensor product Xi X2 is defined by the relations

1. |X1 H X 2|p = |X1|p x | X 2|p>

I X i H X a U H X i U H l X a L

• the smash product is defined by X i A X2 = (Xi S  X2)/|X i V X2|,

• pCnct (Xi, X2), the pointed connectivity space of connecting based 
maps from Xi to X2, is defined by

1. IpCncfciX^Xa)! =  ICnctflXiU, |X2U)|n|pSet(|X1|p, |X2|P)|,

2. /c(pCnct(Xi,X2)) = ^(«(CnctdXil«, |X2|k))), where i is 
the inclusion map i : |pCnct(Xi, X2)| |C nct(|X i|K, |X2|K)|,

3. /?(pCnct(Xi, X2)) is the constant map x 1—> /?(X2).

Now, with those objects we can define, for every pointed integral 
connectivity space X , the endofunctors pCnct(X , —) and X  A — on 
the category pCnct. In fact, for every morphism / ,  the morphisms 
X  A f  and pC nct (X, / )  are given by the same formulas as for the 
corresponding endofunctors on pSet.

Theorem  15. For every pointed integral connectivity space X , the end- 
ofunctor (XA—) on pC nct is left adjoint to the endofunctor pCnct(X , —).

Proof. Let X, Y  and Z  be pointed integral connectivity spaces. For 
every based connecting map ip : X  A Y  —> Z, one has a based connecting 
map p(ip) : Y  —► pCnct(X , Z) defined for all y €E Y  by

pWO(y) =  V»((-,y))-

Indeed, for every y € Y, i/>((—,y)) 6 pCnct(X , Z) since

• V’ is defined on classes (x,y), so ijj((—,y)) is a function from |X| 
to \Z\,
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•  m x ) )  =  W ( x  a  Y ) )  =  0 ( Z ) ,

• for every K  £ k(X), s ( K  x  {y}) £ k(X  A Y) so /tp((—,y)(K) £ 
k(Z),

where - » I A  Y  denotes the canonical map. And the function

y i—> ip((—, y)) is a based connecting map from Y  to pCnct(X, Z), since

• ^ ((-J? (y )))  =  (x ~  0(Z)) = /3(vCnct(X,Z)),

• for every L £ k(Y), {ip((—,y)),y £ L} £ /t(pCnct(X, Z)), since

for every x £ |X| one has < {4’({—,y)),y £ L},x  >=  i/>((:r, L)) £ 
k(Z).

Now, one verifies as well that the formula

0 (¥>)(O*M/)) = <p(y)(z)

defines a map 6 from Hom(Y, pCnct(X , Z)) to Hom(X  A Y,Z), and 
that 6 and p are inverses of each other. Finally, p is natural since for all 
pointed integral connectivity spaces Y, Y ' . Z  and Z' and for all based 
connecting maps u : Y  —* Y', v : Z —> Z' and ip : X  A Y ' —* Z, one has
p(y o o (X  A u)) = (y i—*• v o ip((—, u(y))))  =  pCnct(X, v) o p(ip) o u.

□

7 Finite Integral Connectivity Spaces 

7.1 Generic Graphs
Definition 15. Let X  be a finite integral connectivity space. A generic 
point of X  is a non-empty irreducible connected subset of X . The 
generic graph Gx of X  is the directed graph whose vertices are the 
generic points of X  and such that g —> h is a directed edge of Gx if and 
only if g ^ .h  and there is no generic point k such that g^.k~^.h.
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Associated with a partial order, the directed graph Gx is a so-called 
directed acyclic graph, that is a directed graph with no directed cycle; 
note that cycles are allowed in the undirected graph obtained by forget
ting orientation of the edges. On the other hand, not every finite acyclic 
directed graph is a Gx for some finite integral connectivity space X. For 
example, the directed acyclic graph a —» b is not such a Gx-

Notation. For the sake of simplicity, if G is a directed graph, a € G 
will express that a is a vertex of G and (a —> b) € G will express that 
a —* b = (a,b) is a directed edge of this graph.

Proposition 16. A finite integral connectivity space X  is characterised, 
up to isomorphism, by its generic graph Gx (defined up to isomor
phism).

Proof. The space X  being integral, every singleton is an irreducible 
connected subset, and appears in Gx as a sink, i.e. a vertex with 
no outgoing edges. Thus, the carrier |X| of the space is given, up to 
bijection, by the set of sinks of Gx- Now, the connectivity structure is 
given by Gx as a consequence of the proposition 5.

□
Proposition 17. If X  is a non-empty finite integral connectivity space, 
then

1. X  is connected iffG x is connected,

2. there is a bijection between connected components of X  and those 
ofG x,

3. X  is irreducible iff Gx has exactly one source, i. e. a vertex with 
no incoming edges,

4- X  is distinguished iff there is no triple (a, b, c) of distinct vertices 
in Gx such that (a b) and (b <— c) are in Gx-

5. X  is connected and distinguished iff Gx is a directed tree.

Proof.
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1. If there is an arrow (a —> b) in Gx then a and b, as subsets of 
|X|, are contained in the same connected component of X; thus, 
if Gx is connected then X  is also connected. On the other hand, 
let (Ci) be the family of Gx connected components and, for each
i, let cr(Ci) be the union of sinks belonging to Ct; then, every 
connected subset produced at any step of the process described 
in theorem 3 stays in one of the a(Ci), otherwise there should be 
two irreducible connected subsets of X  contained respectively in 
two distinct a(Ci) and with a non-empty intersection, which is 
not possible. Thus, if Gx is not connected, neither is X.

2 . The generic graph Gx of the disjoint union X  of any finite family 
of finite spaces X t is clearly the disjoint union of the Gx, ■ thus 
the connected components of any finite space X  are the cr(Ci) 
associated with the connected components Ci of Gx-

3. If X  is irreducible then |X| is a generic point which contains all 
other generic points so it is the only source in Gx-

If Gx has only one source, then each irreducible connected proper 
subset of X  is contained in a larger irreducible subset, so, X  being 
finite and the set of irreducible connected sets being nonempty, |X| 
is itself an irreducible connected subset.

4. If there is a triple (a, b, c) with a ^  c and a —> b <— c in G x, 
then a U c is a reducible connected subset of X  which is thus not 
distinguished.

If two irreducible connected subsets of X  not included one in the 
other have a common point, then there must exist in Gx a triple 
of distinct points (a, b, c) with a —> b <— c in G x ; thus, if Gx does 
not admit such a triple, then the inductive generation of connected 
subsets from irreducible ones (theorem 3) will not produce any new 
connected subsets.

5. The last affirmation is a direct consequence of the others.

□
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Definition 16. Let X  be a non-empty finite integral connectivity space. 
The order of any irreducible subset of X  is its height as a vertex of the 
directed acyclic graph Gx (*• e. the length of the longest path from that 
vertex to a sink ofGx)- The order u>(X) of X  is the maximum of orders 
of its irreducible connected subsets, that is the length of Gx ■

Example 17. A finite space of order 0 is totally disconnected, i.e. its 
structure is the discrete one.
Example 18. One has lo(Ug(S)) < 1 for any finite simple undirected 
graph S.

The definition of the order of a finite integral connectivity space 
results in the definition of a new numerical invariant for links:

Definition 17. The connectivity order of a tame link L in R 3 (or S3) 
is oj(L) = uj(Sl ).

Example 19. The connectivity order of the Borromean link or, more 
generally, of any Brunnian link, is oj(B„) =  1.

Remark 10. The connectivity order is not a Vassiliev finite type invari
ant for links. For example, it is easy to check that the connectivity 
order of the singular link with two components, a circle and another 
component crossing this circle at 2n double-points, is greater than 2n.

Proposition 18. One has ui(X) < card(-X") — 1 for every finite integral 
space X ; and the integral connectivity space Vn defined by |Vn| =  n 
and /c(Vn)* = {2,3, • • • , n} is, up to isomorphism, the only integral 
connectivity space such that card(Vn) =  n and u>(Vn) — n — 1.

Proof A trivial induction results in the first claim. The second one is 
obvious if n = 1. Suppose that it is true for an integer n, and let X  be 
an integral connectivity space with n +1 points and with order n. Then 
there must exist an irreducible connected subset K  of X  with order n —1, 
and one has necessarily eard(ii') > n, so card(/i) =  n. By induction, 
K  Vn. Let x be the unique element of X  \  K. |X| is necessarily the 
only non-trivial connected subset which contains x, otherwise X  would 
be of order smaller than n, then k(X) =  {{#}} U k(K) U {|X|}, and 
thus X  ~  Vn+i.

□
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Let us now describe two ways to produce finite spaces from two 
given non-empty finite integral connectivity spaces X  and Y, Y  being 
supposed irreducible.

1. Let i  be a point of |X|. We denote by X  >x Y  the connectivity 
space whose generic graph is obtained by replacing in Gx the sink 
{a;} by (a copy of) Gy, arrows to x in Gx being replaced by arrows 
to the unique source of (the copy of) Gy- In other words, X  E>x Y  
is the integral space such that \X Ox Y\ — |X| \  {x} U |F '| and 
the set Ko(X t>x Y) of irreducible connected sets is given by

{K e k0(X), x i  K} U ko (Y') D{ KU \Y'\,x e K e  ko(X)}, 

where Y' is a copy of Y  such that |X| fl |F '| = 0.

2. We can replace simultaneously every sink of Gx by (a copy of) 
Gy to produce a space denoted by X  > Y.  That is, X  \> Y  is 
the connectivity space such that \X > Y\ — |X| x |F| and the set 
kq(X  > Y) of irreducible connected sets is given by

ko( X > Y )  = { { x } x L , x e  \X\ ,LG k0(Y)}U{Kx\Y\ ,K E KoPO}-

Example 20. B2 >x V„ ~  V„+1, where x is any of the two points of B2.

Proposition 19. For any non-empty finite integral connectivity space 
X  and any non-empty irreducible finite integral connectivity space Y , 
one has oj(X  > Y) = u;(X) + uj(Y).

Proof. By construction, Gx >y is obtained by replacing each sink of Gx 
by a copy of Gy, so its length is u>{X) + u(Y).

□
Example 21. The link depicted on figure 1 is a Borromean assembly of 
three Borromean links. Its generic graph is (isomorphic to) B3 > B3, 
and its connectivity order is 2 .
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Figure 1: A Borromean ring of borromean rings.

7.2 Representation by Links

In [7, 6], I asked whether every finite connectivity space can be repre
sented by a link, i.e. whether there exists a link whose connectivity 
structure is (isomorphic to) the one given. It turns out that in 1892, 
Brunn [3] first asked this question, without clearly bringing out the no
tion of a connectivity space. His answer was positive, and he gave the 
idea of a proof based on a construction using some of the links now 
called “Brunnian”. In 1964, Debrunner [5], rejecting Brunn’s “proof’, 
gave another construction, but proving it only for n-dimensional links 
with n > 2. In 1985, Kanenobu [11, 12] seems to be the first to give a 
proof of the possibility of representing every finite connectivity structure 
by a classical link, a result which is still little known at this date. The 
key idea of those different constructions is already in Brunn’s original 
article; it consists in using some Brunnian structures to successively link 
the sets of components which are desired to become unsplittable.

Thus already from Brunn’s point of view, the links we now call 
“Brunnian links” are not so interesting in and of themselves, but rather 
because they allow one to construct all finite connectivity structures 
from links.

Theorem 20 (Brunn-Debrunner-Kanenobu). Every finite connectivity 
structure is the splittability structure of at least one link in R 3.

Remark 11. Note that the structure of the links used by Brunn is well 
described by the so-called Brunnian groups constituted by the Brun-
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Figure 2: A link with a connectivity order 8 .

nian braids introduced as decomposable braids by Levinson [13, 14] (see 
also [16] and [15]) and by the Brunnian words studied by Gartside and 
Greenwood [8].

Example 22. The structure of the connectivity space V9 with 9 points 
and maximal connectivity order 8 is the splittability structure of the 
link depicted on figure 2 .
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