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Diagrammes, Volufi* 8, ftrifi 1982, 

Foundations for 

stepwise refinement of Program Spécifications 

via 

Cylindric Algebra Theory 

I. Németi 

1. Introduction. 

To investigate connections between différent théories for

mulât ed in completely différent languages is a problem in many 

branches of computer science , e. g. in structured prograraming, 

in structuring program spécifications, Burstall-Goguen (77),(79), 

Goguen-Burstall (78),(80),(79), Domolki (79), Mosses (79), in 

data types and semantics, Blum-Estes (77), in A* I. , Andréka-

Gergely-Németi (72), McCarthy-Hayes (69), Andréka-Németi (79a) 

etc.•• The connections between the différent théories and langua

ges can be called interprétations or trnslations but translations 

would suggest something much simpler than the thing we hâve in 

roind. Most often they are called Theory Morphisms. One point to 

be stressed is that between two théories there are usually many 

theory morphisms. The subject of investigation hère is actually 

a category consisting of théories and their morphisms. The notion 

of a theory morphism from the theory T into the theory Tf was 

defined for example in Winkowski (78) §1 (p. 277) and there it 

was called a modelling \x of the theory T in the other one 

Tf .In that paper theory morphisms are used to study Computer 

Simulation. 

There is a related branch of ••standard" Universal Algebra 

called Lattice of Varieties, see Gratzer (79) p. 389. That lattice 
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is a spécial subcategory of the Category of Théories considered 

hère. For the purposes reported hère, it is too spécial for two 

reasons s 

1. The main point in the présently reviewed field is that the 

théories are of différent similarity types. 

2. Between two théories there are many morphisms. 

(In some Computer Science papers the Category of Théories was 

called "Hierarchy of Languages" to emphasize that the underlying 

languages, similarity types, or even logics are usually différent, 

see Andréka-Gergely-Német (72), Rattray-Rus (77), Andréka-Németi 

(79a), Sain (79b).) 

Hère we quote three approaches which are complémentary (and 

are most useful when applied together). 

(1.1) Let the théories Th- and Th2 be aquatlonal but possibly 

heterogenous (many sorted). Let F - and F 0 be the countably 
A/ 1 /\/ 2 

generated free algebras of the varieties Mod(Th;.) and Mod(TlO 

respectively. Then a suitable homomorphism h: F - > F „ 
A/ 1 /y 2 

could establish a connection between the two théories i. e. 

between the two varieties. The problem is that F n and F „ 
r** 1 +* l 

are usually of completely différent similarity types ! Hence 

the notion of a homomorphism between them is just meaningless. 

To alleviate this problem, Blum-Estes (77) generalized the usual 

notion of homomorphism to be defined between algebras of différent 

similarity types* One définition could be to say that f: A — > B 

is a generalized homomorphism if f takes every term function 

of A into some term function of B . That is, the image of an 

opération of A is required to be a function definable in B . 

One can then make restrictions (or generalizations) on the notion 

of definability used e. g. term-definable, first-order definable, 

implicitely definable by first order formulas etc... Then the 

Theory of Definability which is a branch of Model Theory, see 

for example the Chang-Keisler monograph, can be used as a guide 
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for choosing the notion with the desired properties from a fairly 

broad spectrum of existing and well understood ones. For some 

varying choices see Blum-Estes (77), Blum-Lynch (79a),(79b). 

(1.2) One of the main aims of Algebraïc Théories of Lawvere is to 

deal with the présent problem. I. e. the aim is to investigate the 

"structure" or"systemHconsisting of several théories of several 

similarity types and several possible "interprétations" (i. e. 

connections) between thèse théories and languages. Hence this is 

not a mère translation of Universai Algebra into category theore-

tical language, but instead this is an approach to a problem 

inhérent both in Uni versai Algebra and in Model Theory s to a 

problem which has not been attacked in "standard" Univeral Algebra 

or Model Theory yet. Though it should be mentioned her thats the 

Lattice of varieties, Reducts, Clone Algebras, see Gratzer (79), 

are branches in "standard" Universal Algebra which might be appli

cable to the présent problem. Our reason for pointing this out 

is that there hâve been misinterpretations saying Lawvere*s 

Algebraïc Théories were merely "new bottles for old wine". 

Algebraïc Théories hâve been widely applied to the quoted 

Computer Science problems and from thèse applications the theory 

itself benefited considerably. Some of the références ares 

Elgot (71),(75), Tiuryn (79a), Wand (75a),(77a), Goguen-Burstall 

(78), Wagner et al (77),(76), and other works of the ADJ team. 

The field is too extensive to make proper références hères our 

références are samples chosen in a random manner, 

Burstall and Goguen hâve made a distinction hère which is 

worth of emphasizing. Namelys Stepwise refinement of programs and 

stepwise refinement of spécifications are two différent matters 

which need différent tools. The former needs Rational Algebraïc 

Théories, ADJ (76), or itérative ones, Elgot (75), while the se

cond needs only plain Algebraïc Théories. In program spécifications, 

in their stepwise refinement, etc..., no algorithms are involved. 

Spécifications are only déclarative statements. Hence in the 
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theory (or foundations) of Spécifications no algorithmic or ité

rative notions are needed. 

Spécifications are important in themselves. Spécifications 

are answers to "what" while programs are answers to "how". 

Sometimes it is more important to understand clearly what we are 

trying to do than to understand how we are trying to do it. It is 

valuable to be aware of what one really does intend to do and 

what one does not (and what one just happens to do without really 

intending). 

An autonomous theory of spécifications is badly needed. An 

approach to that is Burstall-Goguen (77),(79), Goguen-Burstall 

(78),(80),(79), Mosses (79) etc.. 

(1.3) The category of ail first-order théories and their morphisms 

can be treated naturally by using Cylindric Algebras, Németi-Sain 

(78). Hère a theory morphism correspond to an homomorphism between 

two cylindric algebras. This correspondent works both ways. A re

présentation theorem to this effect was formulated in Németi-Sain 

(7 8), and Sain (79b). See Thm. 5 in the présent paper. The category 

of théories obtained this way is complète and cocomplete, thence 

"Theory Procédures" of Burstall-Goguen (77) do work in this setting 

too, see Thm. 4 in this paper. Hère, the so-called "Regular Cy

lindric Algebras" are the main tool for handling ail first order 

théories see Prop. 1 in Németi-Sain (78). For regular cylindric 

algebras see Henkin-Monk-Tarski (79), Andréka-Gergely-Németi (77), 

Németi-Sain (78). In the latter two références they were called 

"i-finite" instead of "regular". "Base homomorphisms" of cylindric 

set algebras do représent theory morphisms see Sain (79b), 

Andréka-Németi (79b). 

By this kind of Algebraïc Logic one can go beyond ciassical 

first order logic and languages as was shown in Andréka-Gergely-

Németi (77) and Németi-Sain (7 8). 

In this paper we shall not explain in more détail than it 

was done in sec. 1 , 2 , how and why the category of ail first 



N 5 

order théories and theory morphisms is considered to be the basic 

device for stepwise refinement of program spécifications. For 

detailed explanations the reader is kindly referred to e. g. 

Burstall-Goguen (77),(79) and Goguen-Burstall (78)-(80). However, 

if we keep in mind that algebraïc théories (and their morphisms) 

are spécial cases of first order théories (and their morphisms) 

then reading sec. 1 , 2 again might be sufficient to see the point, 

i. e. to see that an appropriate study of the category of ail 

first order théories and their morphisms is soaehow a mathematical 

foundation for an autonomous theory of spécifications (in the 

sensé outlined in sec. 1 , 2 ) . 

2» The category of ail first order théories. 

Définition 1 (théories, concepts). 

(i) By a similarity type t we understand a pair t = < H,tf > 

such that t» is a function t1* Dom(tf) > N 

where N is the set of natural numbers and 0 £ N , and 

H c Dom(tf) . Let < r,n> € t* (i. e. let t*(r) = n ). 

If r € H then r is said to be an (n - l)-ary function 

symbol, if r £ H then r is said to be an n -ary relation 

symbol. 

(ii) Throughout the paper xs Ord > > Sets is a fixed one-

one function defined on the class Ord of ail ordinals. 

I. e. if ot < (3 are two ordinals then x £ TU . 

Let a € Ord and let t be a similarity type. 

F~ dénotes the set of ail first order formulas with 

equality and with variables in £x. s i < a} , see e. g. 

Chang-Keisler (73), Monk (76). 



N 6 

(iii) Let a be an ordinal, A x c p ^ and 1*€ F . 

The semantic conséquence Ax l=:f is defined the usual 

way, see e. g. the références in (ii). 

(iv) By a theory T in a variables we understand a pair 

T = < Ax,Fv> such that t is a similarity type and 

Ax c f^ .See Def. 11.29. of Monk (76). 

(v) Let T be a theory, Then the set CL, of the concepts of 

T is def ined as follows. Let T = < Ax,F? > . Then 

— T S F
t x F is defined by 

(Vf ,f EF^ ) p S I f 

»ow q, « ^ ,„T . 

End of Définition 1. 

Convention. 

Throughout, a dénotes an arbitrary ordinal. 

Let i be a number. 

Then t. « < H, ,t. f > , Ax. e F? , T. = < Ax. ,F? > . 
i i l ' i — t. * i i t. 

i i 

Définition 2 (interprétations - cf. Monk (65), Def. 11.43 , theory 

morphisms, concept-interprétations). 

Let T- and T 2 be théories in a variables. 

(i) Let m t F^ > F? . 
t i H 

We define < T1 ,m,T„ > to be an interprétation going from 

T, into T» (or an interprétation of T. in T_ ) iff 

conditions (a)-(c) below hold: 
(a) m( x. = x. ) = ( x. = x.) for every i,j < a » 

(b) m(*f A ? ) = m(*f) MB(Y) , 
m( 1 f ) = 1 m( f ) , 
m( 3x.f ) = 3xim(^) , 

for ail ^, ^ € F? and i < a , 
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(c) Ax2 \Z m("f) for ail ^ € F^ such that Axx frf . 

We shall often say that m is an interprétation but in 

thèse cases we actually mean < T-,m,T2 > • 

(ii) Let m , n be two interprétations of T- in T2 . 

The interprétations < Tlfm,T2 > , < T-,n,T2 > are def ined 
t o ^ semantically équivalent, in syrabols m SE n , iff 

condition (a) below holds. 

(a) AX2 fcr j~m(^) < > n(f) 1 for ail ^ € F^ . 

(iii) Let < Tlfm,T2 > be an interprétation. 

We define the équivalence class m/-5 of m (or more 

precisely < T1,m,T2 > / s ) to bes 

m/* ? { <T1,n,T2 > s n 2. m } . 

(iv) By a theory morphism \x: T- > T2 going from T-

into T2 we understand an équivalence class of interpré

tations of T 1 in T2 , i. e. \x is a theory morphism 

jĵ  T » > T2 iff p, « m/^ for some interprétation 

< Tx,m,T2 > . 

End of Définition 2. 

Définition 3 (présentations of theory morphisms). 

Let T- and T2 be two théories in a variables. 

(i) By a présentation of interprétations from T- to T2 

we understand a mapping ps t* > Fr • 
1 c2 

(ii) The interprétations < T-,m,T2 > satisfies the présentation 

p: tj ~-> F** iff for every < r,n > € t! conditions 

(a) and (b) below hold. 

(a) If r € n^ then m(r(xQ,...,xn_2) « x ^) = p(r,n). 
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(b) If r (f H1 then m(r(xQ,. •. >xn--1))
 u PCcfn) . 

We define the theory morphism p, to satisfy the présentation 

p if < Tlfm,T2 > satisfies p for some < T-,m,T2 > € p, • 

End of Définition 3. 

Proposition 1 (présentations détermine morphisms uniquely). 

Let T- and T2 be two théories in a variables. 

Let ps t* — > F^ be a présentation of interprétations from 

i t2 

Tx to T2 . 

Then there is at most one theory morphism which satisfies p . 

QED 

Définition 4. 

(i) Tî^ is def ined to be the pair llf ~ < ObTH** , MorTHa > 

of classes where 

ObTrf1 s- { T : T is a theory in a variables } (i. e. 

ObTH0^ = { < AxfP^ > Ï t is an arbitrary similarity type 

and Ax g F^ } ) 

MorTflF ~ { < T1,(i,T2 > s p, i s a theory morphism 
^ . T > x2 and T $ x 2 ç QbTH*1 3 . 

(ii) Let \ii T- > T2 and vs T2 > T3 be two 

theory morphisms. We def ine the composition v.p.s T- > T3 

to be the (unique) theory morphism for which 

( 3 m ^ [ l # i n Ç v ) V.p, = (n.m)/» 

where the function (n.m)s 1^ > 1^ is def ined by 
h Z3 

(n.m)(f) s n(mOf )) for ail ^ € ï? . 
zl 

(iii) Let T » < Ax,F^ > be a theory. The identity function 

Idjût is def ined to be Icyx ~ £<f ,f > s f € F^ 3 . 

The identity morphism ItL, on T is def ined to be 
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Idj — (idpOO/n 

End of Définition 4. 

From now on we shall use the basic notions of category theory, see 

Herrlich-Strecker (73). 

Proposition 2. 

TH00 is a category with objects ObTH00 , morphisms MorTI^, 

composition v.p, for any p,,v € MorTH^ and identity morphisms 

IdX f o r a X I T e 0bTî^ • 

Proof. 

Fact 2.1. Let p,s T- > T2 be a theory morphism. Then there 

is a unique mapping \x s CL, — > CL, between the sets of 

concepts (of T- and T2 resp.) such that 

(Vm€^)(Vf€F^ ) {T (f/«T ) = m(1
))/^T . 

tl L l l 2 

Fact 2.2. < ObT!T%Interprétations > is a category with usual 

set theoretic composition <T-,(n.m),T~ > of interprétations 

< Tx,m,T2 > and < T2,n,T3 > and with identity < T,IdFa#T > 

for every theory T r < Ax,JEr > • 

QED 

Now we shall use the category theoretic notion of isomorhism 

between théories. Two théories T- and T? are defined to be 

isomorphic iff in the category T^1 the objects T- and T2 

are isomorphic in the category theoretical sensé, i. e. iff there 

are two morphisms p,s T- > T2 and vs T- > T-

such that p,.v « IcL, and v.p, = IdL . 
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Proposition 3, 

Let T = < Ax,F^ > be an arbitrary theory with t = < H,tf > . 

Then there exists a theory T = < Ax >%+> such that (i)-(iv) 

below hold. 

+ + 

(i) t = < 0,tf > (i. e. t is the same as t* except that 

there is no function symbol in t ) where 0 is the 

empty set. 
(ii) T and T are isomorphic, i. e. T^s T . 

(iii) Let the présentation ps t1 -> Fr+ be def ined as 

p(r,n) «• r(xQ,...,x ,) for every < r,n > £ tf . 

Then there is an isomorphism p,§ T *~> T which 

satisfies p , i. e. 

(Bm Ç. (i)(V< r,n > € tf) r(xQ,...#x ĵ ) =V 
if r € H 

m(r(x(),...,xn^1)) 

if r i H 

(iv) The above interprétation ms F^ > F + is 

effective (is a computable function). 

Proof. 

The proof is based on Thm. 10.5 of Bell-Machover (77). 

QED 

To formulate Theorem 4 below we use the notion of completeness of 

catégories in the sensé of Herrlich-Strecker (73) or équivalently 

MacLane (71). For those unfamiliar with thèse notions we shall 

recall them after having formulated Thm. 4 • 

Theorem 4. 

(i) The category TH0^ of ail théories is complète and cocomplete. 

(ii) There is an effective procédure to construct the limits and 
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colimits of the effectively given diagrams in TET , 

Before proving Thm. 4 we shall recall the basic notions used in 

its formulation, and shall try to illustrate its meaning. 

By a small category we understand a category £ = < Ob£,Mor£ > 

such that MorC is a set. 

Examples. 

(1) Every partially ordered set is a small category? let 

< P> £ > be a partial order, then < P, {< a,b > € P x P : 
a < b 3 > 

is a small category. 

a^rl^D 
(2) P w (̂  0 ̂ T *s a small category . 

(3) ° ̂ 3 iç̂ 3 ^s a small category. 

(4) E f 0 *~ l~J is a small category, 
b 

End of examples. 

By a diagram in the category TH^ we understand a functor 

Ds C > l¥r where £ is a small category, and a functor is 

a pair D » <D ,D-> of functions DQs 0b£ •—> ObTH0^ , 

D. : Mor£ > Morïrf* such that D préserves the basic structure 

of £ i. e. (i)-(iii) below hold. 

(i) If fs A — > B in £ , then D^f): DQ(A) > DQ(B) 

in T}f . 

(ii) Dx(f.g) « D1(f).D1(g) for ail f,g € Mor£ . 

(iii) Dx(IdA) = IdD ,A) for ail A € 0b£ . 

The category C is called the index category of the diagram D . 
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Examples. 

(5) Let P be the category in Example (2). Let Ds P > TflP 

be any functor. Let T. = DQ(i) for i < 3 and let 

\i ~ Dx(a) , V sf Dx(b) . By définition, TQ , T][ , T2 

are théories and p,, v are theory morphisms • Then the 

diagram D is usually il lustrât ed as 

v 

We do not indicate the identity morphisms D,(i,i) , i < 3 , 

if not needed. 

The historical reason for calling thèse functors diagrams 

is the possibility of illustrating them as we hâve just done. 

(6) In the above diagram we may choose DQ(D =
 Dn^2^ f T h e n w e 

obtain 

(7) If we replace the index category of the above diagram by 

E given in Example (4) then we obtain 

JL -> 
T T 

V 

It is important to keep in mind that the diagrams (6) and (7) 

above are différent ! 

End of Examples. 

Définition 5 (cône, colimit, limit). 

Let Ds 1̂  •- > TH01 be a diagram. Let ^ = < I,M > . 

(i) A cône over D is a System < < h . s i € I > f T > such 
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that TÇObTuF, (Vi 6 I) h. € MorT*^ and for every f € M 

if f. i — ^ _ > j in ^ then h. = h..D1(f) in THP . 

(ii) The colimit of D in THa is a cône < < g. si € I > , G > 

over D such that for every cône < < h . s i € I > , T > 

over D there is a unique morphism p,s G — > T such that 

(Vi € D \ a (i.gi . 

(iii) The limit of D is defined exactly as above but ail the 

arrows are reversed. 

End of Définition 5. 

Examples. 

(8) The colimit of the diagram Tr given m 

Example (5) is a theory T3 and two theory morphisms V 9P 

such that 

M-^ 1\? 

V - v ^ ^ 
T/2 

and V'.p, » P , v , and for any other T, and p , b if 

|3.p, = â • V then there is a unique TTS T~ — > T. 

such that TT. x* = TT. P 

(9) The colimit of the diagram in Example (7) is a single theory 

morphism ^f and a theory T~ such that 

-> Ll 
— > T, 

and y(»\i * 7f»v etc... 
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Note that the différence between diagrams (6) and (7) shows 

itself in that in the colimit of (6) there are two morphisms y* 

P from T, into T~ while in the colimit of (7) there is 

only one. 

(10) Let the index category j[ of the diagram D be the one 

in Example (3). Then our diagram D has the shape 

T T 

!• e. no morphisms except the identity ones, 

The limit of this c 

TT0 , TN such that 

The limit of this diagram is a theory T? and two morphisms 

* i 

T 

«°/ \ 
l0 1 

anf for every similar cocone < T̂ ,(3,d > there is a unique 

morphism p,s T^ • •"»« > T2 such that j3 = rr0. p, and 

â = T̂ .p, . 

End of Examples. 

Limits of the kind of Example (10) are called products and are 

denoted by Tfl xT, . If T0 and T1 are two théories then 
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is defined to be the limit in Example (10) and is called the 

product of T and T.. • The morphisms TTQ and TT., are called 
the Projections of the product. 

Définition 6. 

A category K is said to be complète and cocomplete if for every 

small category ,1 and for every diagram (i. e. functor) 

0S i* ,,,„, > K b0th the limit and the colimit of D exixt in K • 

End of Définition 6. 

By the aboves we see that Theorem 4 says that every diagram 

Ds I > TH** has both limit and colimit in TH** . I. e. in 

the category T¥r of ail théories ail possible limits and coli-

mits exist (and can be constructed). 

Exaiaples. 

(14) Let T ~ < 0,F.^> , T ~ < Ax.. ,F^ > , where 
u tQ i l zl 

tQ = < 0,{ < R,2 > 3 > , tx = < £+3,{ < + , 3 > 3 > and 

A*! îf C (3¾4,3¾ = x 0),((x 0^p+x 2^Hx 1^)),x 0+x 1=x 1+x 0}, 

Let p, s T Q——-*> T- and V s T '••»"•"»> T be two 

theory morphisms such that for some m € p, and n € v we 

hâve 

m(R(x(),x1)) = X Q + X J ^ ^ and n(R(xQ,x1) = ^+¾
3 8 3¾ • 

(a) Consider the diagram 

To 

T l T l 

The colimit of this diagram is 
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T 

1 / 1 

T x2 

2 - ̂  "V*̂
 > * Where *2 = < t*> ^'tK +'3 >,<C *'3 ̂  > 

where T« « "Lattice theory" , i. e. 

T^ « < A: 

and 

Ax^ « {(x^)+(x0.x1)=x0),(x0.(x0+x1)=x0)3 

U {(x0.x0^)f((x0.x1).x2=x0.(x1.x2)),(x0.x1=x1.x())3 

U Axx . 

£> and S are such that r(x0+x1=
sx2)

 s ̂ +¾5¾ and 

d(xQ+x1=x2) = X Q . X ^ X ^ for some r Ç |> and d € b . 

(b) Consider the diagram 

JL ~> 
T T 
l0 > Ll 

The colimit of this diagram is 

—il, > f 
T T —-! > T 

where T2 «s < Ax^F^
4* > and 

Ax2 = { x 0 ^ ^ ^ > ( x Q ^ ) ^ ^ + ( x 1 ^ ) , ^ ^ a x Q , 

x 0 + x 1 = x 0 — 5 ^ - ¾ 3 

Proof. 

Proof of (a). 

1). Proof of P •(! = d»v s 

r(m(R(x0,x1))) = r ^ + x ^ X j ) = X Q + X J * ^ , 
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d(n(R(xQ,x1))) « d(x0+x1=x()) = xQ.x1=x0 . 

We hâve to prove r.m = d.n , i. e. we hâve to show 

(x0+x1=^x)/£T ~ ^ ^ i ^ o ^ ^ T ' i# e° t h a t 

A ^ 1« (XQ+X^XJ <—~-> x0.x1=xQ). 

Suppose x^^x.^x^ . Then xQ.x1=x0.(x0+x1)=^0 by 

( )̂.(x )̂+x1)=x0) € Ax^ . 

We obtain Ax2 \m
 (XQ.X^XQ > X Q + X ^ X ^ similarly. 

2). Suppose Pf,p, « ô'.v • We hâve to show TT. P = £ f 

and TT.Ô K è* for some theory morphism TT • 

T2 « < * 3 ' Tt* > 

Let rf € £ » and df € ô1 . 

Ax£ •* (rt(x0+x1=x1) <•—-> dKx^^s*^)) by £>f.|i = ô'.v 

Let p(x0+x1=x2) =¾ rf(x0+x1=x2) and 

p(xD.x1=x2) ^ d^XQ+Xj^^) . 

We hâve to show that p détermines a theory morphism 

^ . i > T| . I. e. we hâve to show that 

(Vf € AX2) Ax£ \m p(f ) . 
Notations r*(+) = fr , df(+) = ft . 

We know that 

Ax£ I» {X 0»X 0= X D,(X 0.X 1)»X 2=X 0»(X 1»X 2), 

NOW p(x0+(3^).X1)=X0) = X Q . C X Q ^ ) ^ . 
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We hâve to show Axï V* x^Cx^Stx^^L. • 

x0»(x0*x1)«(x0*x0)*x1 = xQ*x1 and therefore 

xoa(xQ»x1) = xQ . 

Similarly for the other éléments of Ax2 • 

Proof of (b). 

The proof i s based on the f a c t t h a t 

T l^Ax^ « Th(Ax1 U { X Q + X ^ Q < > Xg+x-^x^ > • 

QED 

End of Examples. 

Définition 7. 

Let a be any ordinal. The class Lf of Cylindric Algebras 

was defined in the monograph Henkin-Monk-Tarski (71). Hère Lf 

is ccusidered a category the usual way; 

The objects of Lf are the cylindric algebras Lf and the 

morphisms of Lf are the homomorphisms between algebras in 
Lf „ • a 

In more détail* 

Lf is defined the following way. 

First a similarity type & of algebras is fixed with a + 2 

opérations symbols. Then 8 simple schemes C0-C7 of équations are 

postulated. Then CA is defined to be the class of ail algebras 

of type <? satisfying the équations C0-C7 • Clearly CA is 

a variety. 

Then Lf ç: CA is defined as followss 
a a 

Let &l Ç CA . Then &^€ Lf i f f 
a a <2£ 

(N/x € A) Cf€Dom(^»)s € » ( f ) > 0 and f ( x , . . . , x ) i x) i s f i n i t e . 
I. e. Oiç Lf iff 

OC 
(Vx € A) f the number of those basic opérations of &L which 

x is not a fixed point is finite3 
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I. e. 01 € Lf iff 
a 

(Vx € A) £x is a fixed point of every basic opération of OL 

with finitely many exceptions\\ 

By this the class Lf of algebras has been defined. 
a 

The category Lf is the usual one, namelys 

ObLf ~ Lf 
-a -~ a 

and 

torLf -sr Ail the homomorphisms between the algebras in Lf 

in the usual sensé• 

End of Définition 7. 

From the above définition it should be clear that the définition 

of Lf is much simpler than that of TH*1 , at least for certain 

kinds of investigations. Certainly the standard tools of abstract 

algebra and universal algebra can be directly applied to Lf . 

Theorem 5. 

Let a be an arbitrary ordinal • Assume a > ***•* • Then the 

catégories TH** and Lf are isomorphic in the sensé of 

MacLane (71). 

QED of Theorem 5. 

Parts and some semantic aspects of the above Theorem 5 are illus-

trated and proved in Németi-Sain (78). See also Andréka-Gergely-

Németi (77),(80). 

Theorem 5 above can be used to apply the theory of Cylindric 

Algebras (CA-theory) to investi^ate the category Tir of théories 

and theory morphisms. Hence CA-theory can be used as a theoretical 

foundation for stçpwise refinement of program spécifications 

along the lines outlined e. g. in Burstall-Goguen (77),(79), 

Goguen-Burstall (78)-(80). 
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In the remaining part of this paper we shall concentrate on 

the category TH of ail first order théories and interprétations 

between thera. We hâve seen that Tn is isomorphic with the 

category Lf of ail locally finite cylindric algebras and their 

homomorphisms. Lf can be defined in a clear abstract style 

and nice représentation theorems simplify our work with Lf . 

We shall prove that Lf and Tir are strongly algebroïdal 

catégories (in the sensé of e. g. Banaschewski-Herrlich (76), 

Andréka-Németi (79) ) and they hâve enough projectives, are 

complète and cocomplete e t c . Hence the resuit s of category theore

tic Uni versai Algebra in the sensé of e. g. Andréka-Németi (79),(78), 

Németi-Sain (77) can be applied to TH00 and Lf . The strongly 

small objects (or compact objects) and projective objects of TKr 

and Lf will be characteri^ed. TYr is a locally finitely presented 

category in the sensé of Gabriel-Ulmer. Specially ultraproducts 

exist in TH0, and Lf . It turns out that ultraproducts of 

théories (objects of TIT ) commute with ultraproducts of their 

models. I. e. let <T. : i € I > bea System of théories and F 

be an ultrafilter on I . Let T be the ultraproduct of 

< T. s i € I > modulo F in the category TH0C . Then a structure 

ÊA is a model of the ultraproduct theory T iff &L is an 

ultraproduct of some models < £/L s i € I > modulo F such 

that (Vi € I) f&l is a model of the theory T. 3 . This 

resuit extends to reduced products if and only if the cylindric 

algebras Lf are replaced with cylindric (meet) semilattices. 

Parts of the results reported hère are joint resuis of the author 

with H. Andréka and T. Gergely. 
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