DIAGRAMMES

I. SAIN

Weak products for universal algebra and model theory
Diagrammes, tome 8 (1982), exp. no 2 , p. S1-S15
http://www.numdam.org/item?id=DIA_1982__8_A2_0
© Université Paris 7, UER math., 1982, tous droits réservés.
L'accès aux archives de la revue « Diagrammes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Diagrammes, Volume 8, Paris 1982.

WEAK PRODUCTS
 FOR
 UNIVERSAL ALGEBRA
 AND
 MODEL THEORY

I. Sain

Abstract.

Weak products of arbitrary universal algebras are introm duced. The usual notion for groups nd rings is a special case. Some universal algebraic properties are proved and applications to cylindric algebras are considered.

Introduction.

The universal algebraic notions of weak products introduced in the literature so far (e. g. <9> et <10>) are not universal algebraic at all. For any similarity type t we denote by M_{t} the class of all algebras of type t. In any class M_{t} of similar algebras the weak products as defined e. g. in Grätzer <9> do not exist, except in the trivial case when t consists of a single constant symbol ony (i.e. when $t=\{\langle c, 0\rangle\}$). Further, neither rings with unit element, nor Boolean algebras have weak products in the sense of $\langle 9\rangle$. At the same time, these weak products play an important role in recent literature see e. g. Monk <19> (while they do not exist in the sense of <9>). Thus we conciude that the universal algebraic
notion of weak products introduced in <9> are highly unsactisfactory (they do not exist in any nontrivial similarity class of algebras !). Here we suggest an improved version which exists in most cases.

Here we would like to mention one misconception of many algebraists. Some of them believe that weak products are used in algebra only to obtain structure theorems. I. e. : they believe that the only purpose of weak products is structure theorems. Perhaps this may hold in group theory, but weak products play an important role in Boolean algebra theory and for Boolean algebras no structure theorem holds with weak products. Hence the above quoted prejudice of some algebraists is false.

Throughout, t is a similarity type such that in the similarity class M_{t} of all algebras of type t every algebra has a minimal subalgebra.

Remark:

There are two ways of achieving this: either t contains at least one constant symbol or else the empty algebra is not excluded from M_{t}. Here we do not care which one is the case.

Let $\Omega_{i} \in M_{t}$ for each $i \in I$, for some set I. , $\mathrm{P} \Omega_{i}$ denotes the product of the algebras in the usual sense, $i \in I$
cf. <9> or <10> D.0.3.1.
The following definition generalises R.0.3.60 of $<10>$ p. 104.
It is also a generalisation of <9> p. 139 . Note that the Boolean algebras do not have infinite weak products in the sense of <9> but they do in the sense of Definition 1 below. Weak products of Boolean algebras proved to be rather useful
in e. g. Monk <19>.

DEFINITION 1.

The weak product $\underset{i \in I}{p^{W}} \Omega_{i}$ of the system $\left.<\Omega_{i}: i \in I\right\rangle$ of algebras is defined as follows:

- let M denote the universe of the minimal subalgebra of $\underset{i \in I}{p} \Omega_{i}$,
- now $\underset{i \in I}{p^{W}} A_{i}=\left\{f \in \underset{i \in I}{P} A_{i}:(\exists g \in M)(\{i \in I: f(i) \neq g(i)\}\right.$ finite $\left.)\right\}$
$-\underset{i \in I}{P^{W}} \Omega_{i}$ is defined to be the subalgebra of ${ }_{i \in I} \Omega_{i}$ with
universe $\underset{i \in I}{ }{ }^{W} A_{i} \quad$.
Clearly, $\underset{i \in I}{ }{ }^{\mathrm{W}} \Omega_{i}$ is unique.

PROPOSITION.
(i) Definition 1 is correct in the sense that $\underset{i \in I}{P_{i}^{W}} A_{i}$ is a subuniverse of $\underset{i \in I}{ } \Omega_{i}$.
(ii.) ${ }_{i \in I} \Omega_{i}$ is a subdirect product, if the minimal subalgebra M of $p_{i \in I}^{W} \Omega_{i}$ is nonempty, e. g. if t contains a constant symbol.

The proof is left to the reader.

Let $K \subseteq M_{t}$. I. e. K is a alass of algebras of type t.
$\mathrm{P}^{\mathrm{W}} \mathrm{K}$ denotes the class of all weak products of possibly infinite families of algebras in K :

$\mathrm{Po}^{\mathrm{W}} \mathrm{K}$ denotes the class of weak powers of elements of K . We shall use the notations $\mathrm{HK}, \mathrm{S} K, \mathrm{PK}$ as defined in <9> et $\langle 10\rangle$.

Up K denotes the class of ultraproducts of elements of K see <10>.
We shall consider $H, S, P, U p, P^{W}$ and Po^{W} as operators on the class M_{t} of all universal algebras of some fixed similarity type t . See $\langle 17\rangle,\langle 10\rangle$ p. 89 above T.0.3.17, <4>, <13> p. 387 , or <9> p. 152 §23.
Namely, to any class $K \subseteq M_{t}$ the operator H correlates another class $H K \subseteq M_{t}$. Juxtaposition of names of operators denotes composition. Namely, HSP is the operator correlating with each $K \subseteq M_{t}$ the class HSP K , see p. 109 of $\langle 10\rangle$, or <9>.

The statement " $\mathrm{HH}=\mathrm{H}$ " means that for every type t and every class $K \subseteq M_{t}$ we claim $H H K=H K$.
See T.0.2.23 of $\langle 10\rangle$. On the other hand, $\mathrm{SH} \neq \mathrm{HS}$ means that there exist a type t and a class $K \subseteq M_{t}$ such that SH K \neq HS K , cf. 0.2.19 of < 10\rangle.
See also <17>.

Recall from e. g. $\langle 13\rangle,\langle 12\rangle$ or $\langle 15\rangle$ Thm. 3 that HSP and SPUp are the closure operators of generating the smallest variety and generating the smallest quasivariety respectively. I. e. : HSP K and SPUp K are the smallest classes containing K and axiomatisable by equations and equational implications
respectively.

PROPOSITION 2.

(0) $\mathrm{P} \neq \mathrm{P}^{\mathrm{W}}$,
(i) HSUp $\mathrm{P}^{\mathrm{W}}=\mathrm{HSP}=\operatorname{HSU}_{\mathrm{p}} \mathrm{P}$.

SUp $P^{W}=\operatorname{SPUp}=\operatorname{SUp} P$,
(ii) HSP ${ }^{\text {W }}$ Up \neq HST , $S P^{W}$ Up \neq SPUR ,
(iii) $H S P^{W} \mathrm{~K}$ is not first order axiomatisable, for some $K \subseteq M_{t}$,
(iv) $H S P^{W}, S P^{W}, H P^{W}, \mathrm{P}^{\mathrm{W}}, \mathrm{HSP}^{\mathrm{W}} \mathrm{Up}, \mathrm{SP}$ Wp are not closure operators, though, HSUp P^{W} and $\operatorname{SUp} P^{W}$ are closure operators,
(v) HSPo ${ }^{W}$ preserves the formulas of the following shape:

$$
\vee_{i<\alpha}\left(\bigwedge_{i \leq j<\alpha} e_{j}\right)
$$

where α is an arbitrary ordinal and $\left\{e_{j}: j<\alpha\right\}$ is a set of equations, and $\left\{e_{j}: j<\alpha\right\}$ contains a finite set of variables only (iv. let β be a formula of the above shape, then $K \mid=\beta$ implies $\mathrm{HSPo}^{\mathrm{W}} \mathrm{K}=\beta$),
(vi) $\mathrm{SPo}^{\mathrm{W}}$ preserves all the formulas of the shape:

$$
\wedge_{n \in N} e_{n} \longrightarrow{ }_{i<\alpha}^{V}\left(i \leq j<\alpha e_{j}\right)
$$

where N is an arbitrary set, α is an ordinal and e_{n}, e_{j} are equations (of type t), and $\left\{e_{n}, e_{j}: n \in N, j<\alpha\right\}$ contains a finite set of variable only.

Proof.

Notation: if Q, Q_{1} are operators, then $Q \subseteq Q_{1}$ means that $Q K \subseteq Q_{1} K$ for every K, see $\langle 17>$.

Proof of (i).
It is known that $H S P=$ HSUp P, see e. g, $\langle 10\rangle 0.4 .64$. To prove $\operatorname{SUp} \mathrm{P}^{\mathrm{W}}=\operatorname{SUp} \mathrm{P}=$ SPUp we shall use the following lemma.

Lemma 1.
Let P^{f} and P^{r} denote the operators of taking all finite products and all reduced products respectively. Let Q be an operator such that $\mathrm{P}^{\mathrm{f}} \subseteq \mathrm{Q} \subseteq \mathrm{SP}^{\mathrm{r}}$. Then:

$$
\text { SUp } Q=\operatorname{SPUp} .
$$

Proof of lemma 1.

Some notations:

- let $K \subseteq M_{t}$, then

Univ $K=\left\{\left(\wedge_{i \in I} e_{i} \longrightarrow \underset{j \in J}{V} p_{j}\right): K 1=\left(\Lambda e_{i} \longrightarrow \forall p_{j}\right)\right.$ and
$\left\{e_{i}, p_{j}: i \in I, j \in J\right\}$
is a finite set of equations of type t,

Qeq $K=\left\{\left(\underset{i I}{ } \mathbf{e}_{\mathbf{i}} \longrightarrow p\right):\left(\wedge e_{i} \longrightarrow p\right) \in \operatorname{Univ} K\right\}$,
_ if Σ is a set of formulas then $M d \Sigma$ denotes the class of all models of Σ.

Now, SUp $Q K=M d$ Univ $Q K$, by $<10>T .0 .3 .83$ and C.0.3.70 or Thm. 3 (v) of $\langle 15\rangle$.

It is not hard to prove that:

(x) imply

$$
(\exists j \in J) \quad K \vDash\left(\wedge e_{i} \longrightarrow p_{j}\right) \text {, }
$$

(see e. g. Lemma 5 of $<15\rangle$).
Now (x) , $\mathrm{P}^{\mathrm{f}} \subseteq \mathrm{Q} \subseteq \mathrm{SP}^{\mathrm{r}}$, and the fact that $S P^{\mathrm{r}}$ preserves quasiequations (i. e. elements of Qeq \emptyset) imply that:
Md Univ Q K = Md Qeq K .

It is known that Md Qeq $K=$ SPUp K, see e. g. <12>, <15> Thm. 3 (vi).

QED of lemma 1.

Since $\mathrm{P}^{\mathrm{f}} \subseteq \mathrm{P} \subseteq \mathrm{SP}^{\mathrm{r}}$ and $\mathrm{P}^{\mathrm{f}} \subseteq \mathrm{P}^{\mathrm{W}} \subseteq \mathrm{SP}^{\mathrm{r}}$, lemma 1 implies SUp $P^{W}=\operatorname{SUp} P=$ SPUp.

By this (i) is proved.

Proof of (o), (ii) and (iv).
To prove (o), (ii) and (iv) it is enough to prove:

$$
\text { HSP }^{W} \text { Up } \nsupseteq P \text { and } H S P^{W} U p \nsubseteq P^{W} P^{W} .
$$

We shall fix a class K of algebras for which:

$$
H S P^{W} U p K \nsubseteq P K \quad \text { and } \quad H S P^{W} U p K \nsubseteq P^{W} P^{W} K
$$

Let the type t be:
$t=\left\{(0,0),(1,0),\left(f_{i}, 1\right),\left(g_{i}, 1\right): i \in \omega\right\}$.
Now:

$$
\begin{aligned}
K=\left\{\Omega \in M_{t}:\right. & A=\{0,1\} \text { and for every } i \in \omega \\
\Omega & \left.=f_{i} 0=0 \text { and } \Omega!=g_{i} 1=1\right\} .
\end{aligned}
$$

Lemma 2.
For every element "a " of an arbitrary algebra $\Omega \in \operatorname{HSP}^{W}$ Up K, either $\left\{f_{i} a: i \in \omega\right\}$ is finite or $\left\{g_{i} a: i \in \omega\right\}$ is finite.

Proof of lemma 2.

It is enough to prove lemma 2 for every $\Omega \in P^{W} K$, since the operator HS "preserves" the above property and Up = K .
Let $\Omega={\underset{i}{ }{ }^{W} \Omega_{i}}$ and $\left\{\Omega_{i}: i \in I\right\} \subseteq K$.
Let $a \in A, a=\left\langle a_{i}: i \in I\right\rangle$.
Now, either $\left\{i \in I: a_{i} \neq 0\right\}$ is finite or $\left\{i \in I: a_{i} \neq 1\right\}$ is finite.
Now, $K l=\left\{f_{i} 0=0, g_{i} 1=1: i \in \omega\right\}$ completes the proof of the lemma.

QED of lemma 2.

Now we define a system $<\Omega_{i}$: if $\omega+\omega>$ of algebras of K. Let $i, j \in \omega$.
In the algebra Ω_{i} we define the operations f_{j} and g_{j} as:

$$
f_{j}(1)=\left\{\begin{array}{ll}
0 & \text { if } \quad j \leq i \\
1 & \text { otherwise }
\end{array} \quad, \quad g_{j}=\right.\text { Identity }
$$

In $\Omega_{\omega+i}$ we define f_{j} and g_{j} as:

$$
g_{j}(0)=\left\{\begin{array}{ll}
1 & \text { if } \quad \mathrm{i} i \\
0 & \text { otherwise }
\end{array}, \quad f_{j}=\right.\text { Identity }
$$

 Now $\Omega^{\prime} \in P K, \Omega_{1}^{\prime} \in P^{W} P^{W} K$ and $\Omega_{1}^{\prime} \subseteq \Omega^{\prime}$.

For the element $a^{\prime}=\langle 0,0, \ldots, 1,1, \ldots\rangle=A_{i}$ neither $\left\{f_{i} a^{\prime}: i \in \omega\right\}$ nor $\left\{g_{i} a^{\prime}: i \in \omega\right\}$ is finite (both in Ω_{1}^{\prime} and Ω^{\prime}).
Thus, by lemma 2 , neither Ω^{\prime} nor Ω_{1}^{\prime} is in HSP ${ }^{W}$ Up , proving $H S P^{W}$ Up $\nsubseteq P$ and $H S P^{W} U p \nsubseteq P^{W} P^{W}$.

By this (0), (ii), and (iv) are proved.

Proof of (iii).
Recall from <10> that If ω denotes the class of all locally finite dimensional cylindric algebras. $\operatorname{HSP}^{\mathrm{W}} \mathrm{Lf}{ }_{\omega}=\mathrm{Lf}{ }_{\omega}$ but $\mathrm{Lf} \boldsymbol{\omega}_{\omega}$ is not axiomatisable.

Proof of (vi).
Let $\beta=\left(\wedge_{n \in N} e_{n} \longrightarrow \bigvee_{i<\alpha}\left(\bigwedge_{i \leq j<\alpha} e_{j}\right)\right)$ be a
formula of the required shape and let $\left\{x_{1}, \ldots, x_{m}\right\}$ be the set of variables occuring in β.
Let $\Omega=\beta$. We have to prove

$$
\underset{i \in I}{p^{W}} \Omega_{i}=\Omega^{\prime} \mid=\beta
$$

where Ω_{i} is Ω for every $i \in I$.
Suppose that

$$
{\underset{i}{ }{ }^{W} \Omega_{I}} \mid=\left(\wedge_{n \in N} e_{n}\right)\left[a_{1}, \ldots, a_{m}\right] .
$$

For every projection function Ff_{i} we denote $\mathrm{pj}_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{r}}\right)$ by a_{r} (i).
We then have $\Omega F\left(\lambda_{n \in N} e_{n}\right)\left[a_{1}(i), \ldots, a_{m}(i)\right]$.
Then, since $\Omega \vDash \beta$, we have

$$
\left.\Omega k \bigvee_{z \in \alpha}^{V}{\underset{z}{i} \leq}^{\Lambda_{j<\alpha}} e_{j}\right)\left[a_{1}(i), \ldots, a_{m}(i)\right]
$$

Thus for every $i \in I$ there exists $z_{i} \in \alpha$ such that:

$$
\Omega=\left(\hat{z}_{i} \leq j<\alpha<j\right)\left[a_{1}(i), \ldots, a_{m}(i)\right]
$$

I. e. such that:

$$
\Omega F\left\{e_{j}: z_{i} \leq j<\alpha\right\}\left[a_{1}(i), \ldots, a_{m}(i)\right] .
$$

Since Ω_{i} is Ω for every $i \in I$ and $a_{1}, \ldots, a_{m} \in \underset{i \in I}{p^{W}} A_{i}$, there is a finite $J \subseteq I$ such that:

$$
\left.\left.\left\{<a_{1}(i), \ldots, a_{m}(i)\right\rangle: i \in I\right\} \subseteq\left\{<a_{1}(i), \ldots, a_{m}(i)\right\rangle: i \in J\right\}
$$

Let r be the greatest element of $\left\{z_{i}: i \in I\right\}$ (it exists since J is finite).
Now:

$$
\Omega \models=\left\{e_{j}: r \leq j<\alpha\right\}\left[a_{1}(i), \ldots, a_{m}(i)\right],
$$

for every $i \in J$, and therefore also for every $i \in I$.
This implies:

$$
\underset{i \in I}{p^{W}} \Omega_{i} \neq\left\{e_{j}: r \leq j<\alpha\right\}\left[a_{1}, \ldots, a_{m}\right]
$$

since subalgebras and direct products preserve equations and $P^{W} \subseteq S P$.
Therefore:

$$
\underset{i \in I}{p_{i}^{w}} \Omega_{i} \mid=\left(\bigwedge_{n \in N} e_{n} \longrightarrow \bigvee_{z<\alpha}\left(\bigwedge_{z \leq j<\alpha} e_{j}\right)\right)\left[a_{1}, \ldots, a_{m}\right]
$$

Since a_{1}, \ldots, a_{m} was arbitrary, (vi) is proved.
(v) is a consequence of (vi) and the fact that H preserves positive formulas even if they are infinitary.

QED

Remark.

Properties of the operator HS $^{\mathrm{f}}$ were investigated in $\langle 7\rangle$ and $\langle 18\rangle$.

Recall that if K contains finite algebras only then $P K$ contains no countable algebras.

PROPOSITION 3.

Let t contain a constant symbol.
Let α^{\prime} be an infinite cardinal such that:

$$
(\exists \Omega \in K) \quad 1<|A| \leq \alpha^{\prime} .
$$

Then $P^{W} K$ contains an algebra of cardinality α^{\prime}.

Proof.

Let $\Omega \in K$ be such that $1<|A| \leq \alpha^{\prime}$.
Let $\Omega^{\prime}=P^{W} \Omega$.
$i \in \alpha$
Now, $\quad\left|A^{\prime}\right|=\alpha^{\prime}$ because $\quad|A| \geq 2$ and $\alpha^{\prime} \cdot \alpha^{\prime}=\alpha^{\prime}$ (since α^{\prime} is infinite).

QED.

EXAMPLES.

1. Weak direct products of Boolean algebras have been studied recently by J. D. Monk $\langle 19\rangle,\langle 14\rangle$, see also p. 20 above question 50 in <6>.
2. In discussions of various special classes of algebras, in particular in the theories of groups and rings, weak products actually play a more impertant role than ordinary direct products, cf. e. g. <10> p. 105.
3. P^{W} is specially important for cylindric algebras because $\mathrm{P}^{\mathrm{W}} \mathrm{Lf}_{\alpha}=\mathrm{Lf}{ }_{\alpha}$ moreover $\mathrm{HSP}^{\mathrm{W}} \mathrm{Lf}_{\alpha}=\mathrm{Lf}{ }_{\alpha}$ and the class $\mathrm{Lf}{ }_{\alpha}$ is the class of all first order theories when considered as algebras. See Thm. 5.3. of $\langle<\rangle$ and V.5, VI. 5 of $\langle 1\rangle$.

PROPOSITION 4. $\quad \mathrm{P}^{\mathrm{W}} \mathrm{Lf}_{\alpha}=\mathrm{Lf}{ }_{\alpha}$.

Proof.
Let $\Omega_{i} \in$ Lf $_{\alpha}$ for every $i \in I$. Let $f \in \underset{i \in I}{P^{W}} A_{i}$ be arbitrary. By definition 1 there is a $g \in M \subseteq \underset{i \in I}{P} A_{i}$, where M is the minimal subalgebra of $\underset{i \in I}{P} \Omega_{i}$, such that f and g differ only at finitely many places, i. e.:
$\{i \in I: f(i) \neq g(i)\}$ is finite.
By T.2.4.2, of $\langle 10\rangle \quad \Delta f=U\{\Delta f(i): i \in I\}$. A1so $(\forall i \in I) \Delta g(i) \subseteq \Delta g$ and Δg is finite by $T .2 .1 .16$ of $\langle 10\rangle$. Since $(\forall i \in I)[\Delta f(i)$ is finite] by $\Omega_{i} \in L_{\alpha}$, we can conclude that also Δf is finite. QED.

PROBLEM (cf. <10>).
Denote by or the class of simple elements of $\mathrm{Lf} \omega$. HSP ${ }^{W}$ dur $\subseteq \mathrm{If}_{\omega}$, obviously.
Now, is it also true that $\operatorname{HSP}^{W}{ }_{d}{ }_{\omega} \sigma=\operatorname{Lf}_{\omega}$?
The importance and basic properties of the class her were discussed in $\langle 1\rangle,\langle \rangle\rangle,\langle 3\rangle,\langle 11\rangle$ and in $\langle 16\rangle$.

Continuation of examples.
4. Weak direct sum of vector spaces is a special case of weak product P^{W} as defined here, see <5> p. 42.
5. Direct sums of modules are also a special case of weak products.
Direct sums of Abelian groups are also a special case, see e. g. $<8>$.

Recall that for groups, rings, semigroups with zero (annihilator) $\mathrm{P}^{\mathrm{W}} \mathrm{P}^{\mathrm{W}}=\mathrm{P}^{\mathrm{W}}$, see also Prop. 5 (i) below.

PROPOSITION 5.
(i) Let $V=P^{W} V$ be a class of algebras in which the one-element algebra is initial (i. e. every algebra
in V contains a minimal subalgebra and the minimal
subalgebra has exactly one element).
Then in V we have $P^{W} P^{W}=P^{W}$, i. e. for every
$K \subseteq V$ we have $P^{W} P^{W} K=P^{W} K$.
(ii) For Boolean algebras, $\mathrm{P}^{\mathrm{W}}, \mathrm{SP}^{\mathrm{W}}, S \mathrm{P}^{\mathrm{W}} \mathrm{Up}, \mathrm{P}^{\mathrm{W}} \mathrm{Up}$ are not closure operators.
(iii) For rings $\langle R ;+, \ldots, 0,1\rangle$ with unit (ii) holds.

Proof.
Proof of (i) is left to the reader.
Proof of (ii).
Let $\underset{\sim}{2}=\langle 2 ; \cap, U, \backslash\rangle$ denote the two-element Boolean algebra, and $K=\{\underset{\sim}{2}\}$.
Let $\Omega^{\prime} \in S P^{W} K$ be arbitrary.
Then $\left(\forall a^{\prime} \in A^{\prime}\right)\left[\left\{x \in A^{\prime}: x>a^{\prime}\right\}\right.$ is finite or $\left\{x \in A^{\prime}: x<a^{\prime}\right\}$ is finite $]$
But this is not true for elements of $\mathrm{P}^{\mathrm{W}} \mathrm{P}^{\mathrm{W}} \mathrm{K}$:

- let $\Omega^{\prime}=\underset{i \in \omega}{\mathrm{P}^{\mathrm{W}}} \underset{\sim}{2}$,
- then $\left(3 a^{\prime} \in A^{\prime} x A^{\prime}\right)\left[\left\{x \in A^{\prime} x A^{\prime}: x>a^{\prime}\right\}\right.$ is infinite and

$$
\left.\left\{x \in A^{\prime} x A^{\prime}: x<a^{\prime}\right\} \text { is infinite }\right] .
$$

Of course, $<$ is understood in $\Omega^{\prime} x \Omega^{\prime}$.
Clearly $K=U p K$ and thus $S P^{W} U p K=S P^{W} K$.

Proof of (iii) (for rings with unit).
Let $\underset{\sim}{2}=\langle\{0,1\} ;+, \ldots, 0,1\rangle$ be the ring with unit 1 defined by $1+1=0$ (this is the twomelement Boolean ring).

Define \leq by:

$$
x \leq y \quad \text { iff } \quad x \cdot y=x .
$$

Now the proof given for (ii) works by taking $K=\{\underset{N}{2}\}$. QED.

PROBLEM.
Find a category-theoretic characterisation of weak products.

REFERENCES.

$\left.\begin{array}{l}\text { <1> Andréka H, Gergely T., Németi I. : Purely algebraic } \\ \text { construction of first order logics, logic Semester } 1973 \\ \\ \text { Warsaw Banach Center, Also: Central Re. Inst. Phis. }\end{array}\right\}$
<8> Fuchs L. : Infinite Abelian Groups. Ac. Press, 1970.
<9> Grätzer G. : Universal Algebra. Second edition, Springer Verlag, 1979.
<10> Henkin L. , Monk J. D. , Tarski A. : Cylindric Algebras, Part I . North Holland, 1971.
<11> Henkin L. , Monk J. D. , Tarski A., Andréka H., Németi I. : Cylindric Set Algebras. Lect. Notes in Math. Vol. 883, Springer Verlag, 1981.
<12> Malcev I. : Algebraic Systems. Akademie Verlag Berlin, 1973.
<13> Monk J. D. : Mathematical Logic. Springer Verlag GTM 37, 1978.
$<14>$ Monk J. D. : On depth of Boolean algebras. Lecture at the Math. Inst. Hung. Acad. Sci., Dec. 1978.
$<15>$ Németi I. , Sain I. : Cone Injectivity and some Birkhoff type Theorems in Categories. Universal Algebra (Proc. Coll. Univ. Alg., Esztergom, 1977). North-Holland, 1981, pp. 535-578.
 Algebraic Logic and Initial Algebra Semantics of CF Languages. Mathematical Logic in Computer Science (Proc. Coll. Logic in Programming, Salgótarján, 1978). NorthHolland, 1981, pp. 25-83 and 561-605.
<17> Pigozzi D. : On some operations on classes of algebras. ALGEBRA UNIVERSALIS Vo1. 2, 1972, pp. 346-353.
<18> Rosicky J. : Concerning equational categories. Universal Algebra (Proc. Coll. Univ. Alg., Esztergom 1977). NorthHolland, 1981.
<19> Monk J. D. : Cardinal functions on Boolean algebras. Preprint Univ. Colorado Boulder, 1981.

Mathematical Institute of the Hungarian Academy of Sciences Budapest, Reáltanoda u. 13-15 H-1053 Hungary.

