DIAGRAMMES

J. Rosický

Abstract tangent functors

Diagrammes, tome 12 (1984), exp. no 3, p. JR1-JR11
http://www.numdam.org/item?id=DIA_1984__12__A3_0
© Université Paris 7, UER math., 1984, tous droits réservés.
L'accès aux archives de la revue « Diagrammes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Abstract tangent functors
J. Rosický

Our aim is to axiomatize properties of the tangent functor $T: M \rightarrow M$ on the category of smooth manifolds. The resulting abstract tangent functor $T: C \rightarrow C$ on a category C has the property that there is a well-behaved bracket operation of its sections $A \rightarrow T A$ on any object $A \in C$. Representable abstract tangent functors are closely connected with rings of line type in the sense of Kock - Lawvere.

1. Natural group bundles

Let C be a category, $F, G: C \rightarrow C$ functors and $p: G \rightarrow F$ a natural transformation. Let \oplus denote products in the category of functors over F. It means that

is a pullback. We say that (G, p) is a natural group bundle over F if it is a group in the category of functors over F. It means that G is equipped with natural transformations

$$
+: G \oplus G \rightarrow G,-: G \rightarrow G, O: F \rightarrow G
$$

which are over F (i.e. $p_{0}+=p_{1} p_{1}, p_{.}-=p$ and $p_{0} O=1$) and satisfy the group axioms. A natural group bundle is a natural group bundle over the identity functor on C.

Let (G, p) be a natural group bundle over F and (H, q) a natural group bundle over $E . A$ homomorphism $(f, g):(G, p) \rightarrow(H, q)$ is a couple of natural transformations $f: G \rightarrow H$ and $g: F \rightarrow E$ such that the following diagrams oommute

g

f

Let (G, p) be a natural group bundle. If the pullbacks $G \oplus G$ and $G \oplus G \oplus G$ are pointwise then $\left(G^{2}, p G\right)$ is a natural group bundle over G with respect to $+G,-G, O G$ and $(G p, p):\left(G^{2}, p G\right) \rightarrow(G, p)$ is a homomorphism. If G preserves $G \oplus G$ and $G \oplus G \oplus G$ then $\left(G^{2}, G p\right)$ is a natural group bundle over G and $(p G, p):\left(G^{2}, G p\right) \rightarrow(G, p)$ is a homomorphism.

2. Tangent functors

We say that $T: C \rightarrow C$ is a tangent functor if there are p, i and m such that
(Tl) (T,p) is a natural commutative group bundle such that pullbacks $T \oplus T$ and $T \oplus T \oplus T$ are pointwise and preserved by T.
$(T 2)(i, l):\left(T^{2}, p T\right) \rightarrow\left(T^{2}, T p\right)$ is a homomorphism and $i^{2}=1$.
$(T 3)(m, O):(T, p) \rightarrow\left(T^{2}, p T\right)$ is a homomorphism such that i.m=m and the following diagram is a pointwise equalizer

$$
T \xrightarrow{m} T^{2} \xrightarrow[O \cdot p \cdot p T]{\frac{p T}{T p}} T
$$

(T4) The following diagrams commute

These axioms are satisfied by the tangent functor $T: M \rightarrow M$ on the category of smooth manifolds. Since $T\left(\boldsymbol{R}^{\mathrm{n}}\right)=$ $=R^{2 n}$, the following example also indicates the description of i and m in local coordinates.

Example 1 : Let $A b$ be the category of abelian groups and $T=(-)^{2}$. Then $p_{A}(a, b)=a,(a, b)+_{A}(a, c)=(a, b+c)$, $-_{A}(a, b)=(a,-b), O_{A}(a)=(a, 0), i_{A}(a, b, c, d)=(a, c, b, d)$ and $m_{A}(a, b)=(a, O, O, b)$ make from T a tangent functor. We indicate that $T \oplus T=(-)^{3}$ and $(a, b, c, d)+_{T A}\left(a, b, c^{\prime}, d^{\prime}\right)=$ $=\left(a, b, c+c^{\prime}, d+d^{\prime}\right)$ and $(a, b, c, d) T^{+}{ }_{A}\left(a, b^{\prime}, c, d^{\prime}\right)=$ $=\left(a, b+b^{\prime}, c, d+d^{\prime}\right)$. Here ${ }_{T A}$ and $T^{+}{ }_{A}$ denote the addition in group bundles $\left(T^{2} A, P_{T A}\right)$ and $\left(T^{2} A, T(p)_{A}\right)$ over $T A$.

Example 2 : Let R be the category of commutative rings.
Let $T A=A[x] \backslash x^{2}$. Then $T A$ consists of polynomials $a+b x$, $(T \oplus T) A=A[x, y] \backslash x^{2}, y^{2}, x y$ of polynomials $a+b x+c y$ and $T^{2} A=A[x, y] \backslash x^{2}, y^{2}$ of polynomials $a+b x+c y+d x y$. Then T is a tangent functor and its structure is given by the same formulas as in the preceding example.

Example 3 : Let R be a ring of the line type in a cartesian closed category E and $D=\left\{d \in R \backslash d^{2}=0\right\}$ (see Kock [2]). Let C be a full subcategory of E which consists of all infinitesimaly linear objects having the property W. Then $T=(-)^{D}$ is a tangent functor on C. Here $T \oplus T=(-)^{D(2)}$ where $D(2)=\left\{\left(d_{1}, d_{2}\right) \in D \times D \backslash d_{1} \cdot d_{2}=0\right\},+: T \oplus T \rightarrow T$ is represented by the diagonal $D \rightarrow D(2), T^{2}=(-)^{D \times D}, i$ is represented by the symmetry $s: D \times D \rightarrow D \times D$ and m by the multiplication . : D×D \rightarrow D.

A concrete example is the category E of functors from the category R_{0} of finitely presented commutative rings to the category of sets. R is $R_{0}(Z,-)$ and D is $R_{0}\left(Z[x] \backslash x^{2},-\right)$. We took R_{0} to avoid set theoretical difficulties with functor categories. It is evident that Example 2 works for R_{0}, too. Hence the tangent functor $(-)^{\mathrm{D}}$ on $C \subset E$ is derived from the tangent functor on R_{0}. It is a general phenomenon.

Proposition 1 : Let C be a small category and $T: C \rightarrow C$ a tangent functor on C. Let B be the full subcategory of the functor category $S e t{ }^{C}$ consisting of all functors which preserve pullbacks $T^{\oplus} T, T \oplus T \oplus T$ and the equalizer from ($T 3$). Then

$$
T *(V)=V \cdot T \quad, \quad T *(\alpha)=\alpha T
$$

yields the tangent functor $T *: B \rightarrow B$.

Another general construction of new tangent functors is the following one. Let T be a tangent functor on a category C. Consider the comma category $B=C \backslash A$ where $A \in C$. Then

$$
T(X, f)=\left(T X, f \cdot p_{X}\right) \quad, T(h)=T(h)
$$

yields the tangent functor $T: B \rightarrow B$. Let

be an equalizer. If T preserves this equalizer then

$$
\bar{T}(X, f)=\left(\bar{T} X, f \cdot p_{x} \cdot v_{x}\right)
$$

provides the tangent functor $\overline{\mathrm{T}}: B \rightarrow B$.
If $T: M \rightarrow M$ is the tangent functor on the category of smooth manifolds then \bar{T} gives the vertical bundle on the category of fibered manifolds.

The following property of tangent functors is very important.

Lemma 1 : Let T be a tangent functor and consider the composition

Then the diagram

$$
T \oplus T \xrightarrow{e} T^{2} \xrightarrow[O \cdot p \cdot p T]{p T} T
$$

is an equalizer.

Since $T(p) . e=p_{1}$, it says that if $f: S \rightarrow T^{2}$ is a natural transformation equalizing pT and O.p.pT then there is a unique natural transformation $g: S \rightarrow T$ such that
(1) $f=T(p . O) . f+{ }_{T} m . g$.

3. Bracket operation

Let T be a tangent functor on a category C and $A \in C$. A morphism $r: A \rightarrow T A$ is called a section of T if $p_{A} \cdot r=1$. Hence r is a T-coalgebra in the terminology of Kelly [1].

If $T: M \rightarrow M$ is the usual tangent functor, the sections are vector fields. We want to define the bracket [r,s] of sections $r, s: A \rightarrow T A$ of any tangent functor. For this purpose, we would need the description of the bracket of vector fields in terms of T only and not using functions on manifolds. This description was given by Kolár [3] and we will follow it. Very similar description is stated in White [8].

Let $r, s: A \rightarrow T A$ be sections. Since $T(p) A_{A} \cdot T(s) . r=r=$ $=T(p){ }_{A} \cdot i_{A} \cdot T(r) . s$, it is defined the difference

$$
\left.v=(T(s) \cdot r)_{T}{ }^{-}{ }^{\left(i_{A}\right.} \cdot T(i) \cdot s\right)
$$

It is easy to see that $\mathrm{p}_{\mathrm{TA}} \cdot \mathrm{v}=\mathrm{O}_{\mathrm{A}}$. Following lemma 1 , there is a unique morphism $\overline{\mathrm{V}}: A \rightarrow(T \oplus T) A$ such that $e_{A} \cdot \overline{\mathrm{~V}}=\mathrm{V}$. Put

$$
[r, s]: A \xrightarrow{\vec{v}}(T \oplus T) A \xrightarrow{\left(p_{2}\right)_{A}} T A \text {. }
$$

In example 1 , sections $r: A \rightarrow A^{2}$ correspond to endomorphisms $r: A \rightarrow A$. The bracket is the usual bracket of endomorphisms

$$
[r, s]=s . r-r . s .
$$

In example 2 , sections $r: A \rightarrow A[x] \backslash x^{2}$ coincide with Cerivations $r: A \rightarrow A$ and the bracket is the usual bracket of derivations. In example 3, the bracket is the bracket from the synthetic differential geometry (see [2]).It follows from the fact that
$m_{A} \cdot[r, s]=\left(+{ }_{n}\right)_{T A} \cdot T^{2}(+. k)_{A} \cdot T(i) T_{A} \cdot-T^{3} A \cdot T(-)_{T}{ }^{2} \cdot T^{3}(s) \cdot T^{2}(r) \cdot T(s) \cdot r$ and that this formula corresponds to the commutator of infinitesimal transformations. Here $k: T^{2} \rightarrow T \oplus T$ is given by $p_{1} \cdot k=p T$ and $p_{2} \cdot k=T p$.

Theorem 1 : Let T be a tangent functor. Then the bracket operation has properties

$$
\begin{equation*}
[r+s, t]=[r, t]+[s, t] \tag{B1}
\end{equation*}
$$

$$
\begin{equation*}
[s, r]=-[r, s] \tag{B2}
\end{equation*}
$$

$$
\begin{equation*}
[r,[s, t]]+[s,[t, r]]+[t,[r, s]]=0 \tag{B3}
\end{equation*}
$$

It is not difficult to calculate (B1) - (B3) for manifolds without using functions (see Vanžurova [7]). In the general case, we are facing the coherence problem for tangent functors. Remark that (B1) and (B2) hold on the basis of axioms (T1) - (T3) only. The proofs from synthetic differential geometry (see Reyes, Wraith [6], Lavendhomme [5] and Kock [2]) do not work in the general case. Our proof is "additive" and consists in calculations with natural group bundles T, T^{2} and T^{3} over $1, T$ and T^{2} given by $p, p T, T p, p T^{2}, p T p$ and $T^{2} p$.

We did not need the R-linear structure on $T: M \rightarrow M_{0}$ However, it is present in the general case, too. We say that $h: T \rightarrow T$ is andomorphism of a tangent functor $T: C \rightarrow C$ if the following diagrams commute

It means that h is andomorphism of the natural group bundle
T and preserves the tangent structure given by i and m. The set R of all endomorphisms of T is a ring with the composition as the multiplication and the addition

$$
\mathrm{g}+\mathrm{h}: \mathrm{T} \xrightarrow{\langle\mathrm{~g}, \mathrm{~h}\rangle} \mathrm{T} \oplus \mathrm{~T} \xrightarrow{+} \mathrm{T}
$$

The morphisms $h_{A}: T A \rightarrow T A$ put an R-module structure on TA and T becomes a natural R-module bundle. If $h \in R$ and $r, s: A \rightarrow T A$ are sections of T then it holds

$$
\left[h_{A} \cdot r, s\right]=h_{A} \cdot[r, s]
$$

Kolár [4] proved that if $T: M \rightarrow M$ then natural transformations $h: T \rightarrow T$ with $p . h=p$ are precisely homotheties given by multiplying with $x \in R$. Any homothety is an endomorphism of T and therefore $R=R$ in this case. $R=\mathbb{Z}$ in ex. 1 and 2 . In synthetic differential geometry, any morphism
$h: D \rightarrow D$ with $h(O)=O$ gives an endomorphism $(-)^{h}:(-)^{\mathrm{D}} \rightarrow(-)^{\mathrm{D}}$. The ring of endomorphism of $(-)^{\mathrm{D}}$ is the ring of O preserving morphisms $D \rightarrow D$. However, it is the starting ring R of the line type. To see it one has to realize that the line type property implies that O preserving morphism $h: D \rightarrow D$ coincide with morphisms $-. x, x \in R$. Hence the line R is determined by its infinitesimal segment D.

4. Representable tangent functors

Let C be a cartesian closed category and $D \in C$ such that $T=(-)^{D}: C \rightarrow C$ is a tangent functor. Let $p,+,-, 0, i$ and m be represented by $O: 1 \rightarrow D, \delta: D \rightarrow D * D,-D: D, D \rightarrow 1$, $\left\llcorner: D^{2} \rightarrow D^{2}\right.$ and $: D^{2} \rightarrow D$.

Here,

is a pushout. There is a unique morphism $+: D * D \rightarrow D$ such that $+. \pi_{1}=+. \pi_{2}=1$.

Proposition 2 : (D,.) is a semigroup with the zero 0 such that $d^{2}=0$ for any $d \in D$.

Categorical logic justifies the set theoretical terminology. The last assertion means that

commutes where Δ is the diagonal. It follows from the fact that Δ is the composition

$$
\mathrm{D} \xrightarrow{\delta} \mathrm{D} * \mathrm{D} \xrightarrow{x} \mathrm{D}^{2}
$$

and that

commutes. The morphism x represents $k: T^{2} \rightarrow T \oplus T$, i.e. $x_{\cdot} \pi_{1}(d)=(0, d)$ and $x_{0} \pi_{2}(d)=(d, 0)$ for any $d \in D$. Hence $x(D * D) \subseteq D(2)=\left\{\left(d_{1}, d_{2}\right) \in D^{2} \backslash d_{1} \cdot d_{2}=0\right\}$.

From now on, assume that T is represented in such a way that ι is the symmetry s. Then ($\mathrm{D},$.) is commutative because i.m $=\mathrm{m}$.

Let an endomorphism of T be represented by a morphism $h: D \rightarrow D . \quad$ Then $h(0)=0, \delta . h=(h * h) . \delta$ and

$$
h\left(d_{1} \cdot d_{2}\right)=h\left(d_{1}\right) \cdot d_{2}
$$

for any $d_{1}, d_{2} \in D$. Let \bar{R} be the ring of these endomorphisms $h: D \rightarrow D$. The exponential transpose $0: D \rightarrow D^{D}$ of - : $\mathrm{D}^{2} \rightarrow \mathrm{D}$ yields a morphism $\mathrm{j}: \mathrm{D} \rightarrow \overline{\mathrm{R}}$.

Proposition 3 : For any morphism $f: D \rightarrow \bar{R}$ there is a unique element $h \in \bar{R}$ such that

$$
f(d)=f(0)+h \cdot j(d)
$$

holds for any $d \in D$.
It is the translation of formula (1). Hence $\bar{R}^{D} \cong \bar{R}^{2}$ and \bar{R} thus has some properties of a ring of a line type. We are missing the commutativity of $\overline{\mathrm{R}}$ and the fact that

$$
D=\left\{h \in \bar{R} \backslash h^{2}=0\right\}
$$

Since $\mathbf{O} \times \mathrm{D} \cong \mathbf{O}$ where \mathbf{O} is an initial object, the tangent functors from examples 1 and 2 are not representable. The tangent functor from example 1 is not a restriction of a representable tangent functor on a subcategory closed with respect to a terminal object. It follows from the fact that 0 is not a unique natural transformation $1 \rightarrow T$. On the other hand, there are very convenient extensions of $T: M \rightarrow M$ to a representable tangent functor (see Kock [2]).

This paper had a rather slow development due to difficulties with the proof of theorem 1. The other material was completed
in 1982. Proofs will appear elsewhere. I profited from discussions with G. Wraith and A. Kock. However, I am especially indebted to I. Kolár who patiently introduced me into basic differential geometry.

References

[1] G. M. Kelly, A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on, Bull. Austral. Math. Soc. 22 (1980), 1-83.
[2] A. Kock, Synthetic Differential Geometry, Cambridge Univ. Press 1981.
[3] I. Kolař, On the second tangent bundle and generalized Lie derivatives, Tensor 38 (1982), 98-102.
[4] I. Kolăr, Natural transformations of the second tangent functor into itself, to appear in Arch. Math. (Brno) 4 (1984).
[5] R. Lavendhomme, Note sur l'algèbre de Lie d'un groupe de Lie en géometrie différentielle synthetique, Univ. Cath. de Louvain, Sém. de math. pure, Rapport no. lll (1981).
[6] G. E. Reyes and G. C. Wraith, A note on tangent bundles in a category with a ring object, Math. Scand. 42 (1978), 53-63.
[7] A. Vanžurova, On geometry of the third tangent bundle, to appear in Acta Univ. Olom. 82 (1985).
[8] J. E. White, The method of iterated tangents with application in local Riemannian geometry, Pitman 1982.

Department of Mathematics
Purkyně University
Brno, Czechoslovakia

