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DIAGRAMMES VOLUME 23 . 1990 

ACTES DES JOURNEES E.L.X.T. 

CUIMIV. PARI8 7. 27 JUIN-2 JUILLET 1966) 

SUBSTITUTION UP TO ISOMORPHISM 

Extended Abstract 
P.-L. Curien, LIENS (CNRS URA 1327)1 

1 Introduction 

The essence of the categorical semantics of dépendent types is known since the mid 
seventies (J. Cartmell [Cart] along a computer science line, R. Seely [Se] along a 
categorical logic line). Thèse early ideas hâve been revisited by a number of authors 
[HyPi,Tay,Ehr,Jac,Lam,Ob,Stre], with the aim 

- of accommodating them with domain theory on one hand, Grothendieck fibrations 
on the other hand, 

- of lifting them to a categorical semantics of the calculus of constructions of 
Coquand-Huet. 

The aim of this article is to solve a difficulty arising from a serious mismatch 
between syntax and semantics: substitution in types is modelled by pullbacks (more 
generally pseudo-functors), that is only up to isomorphism, unless split fibrational 
hypothèses are imposed, which seems a bit unnatural in category theory, at least 
viewed from usual standards of mathematics. We hâve to show that thèse 
isomorphisms are cohérent in a sensé familiar to category theorists. Due to this 
cohérence problem at the level of types, we hâve to 

- switch to a syntax where substitutions are explicitly présent (whereas in traditional 
syntaxes substitution is meta, defined by induction), 

- include type equality judgements in this modified syntax (we consider hère only 
equalities describing the stepwise performance of substitution). 

This introduces a new "flaw": there are now différent proofs that a given term has a 
given type, since at any stage in a proof of well-typing one may intersperce type 
equality judgements. Thus cohérence arises not only at the level of types, but also at the 
level of terms. We already investigated cohérence problems in a différent setting (a 
System with polymorphism and type and inclusion; joint work with G. Ghelli) 
[GheCu]. As in [CuGhe] we attack this problem with tools of rewriting theory (and 
cohérence in category theory).To our knowledge, the work presented hère is the first 
solution to this problem, which, until very recently, had not even been clearly 
identified, mainly due to emphasis on interesting mathematical models rather than 
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syntactic issues. 

Prerequisites are the notion of locally cartesian closed category, of Beck-Chevalley 
condition (see [Se], there is a quick summary in 2.1), and of calculi of dépendent 
types (a first source and agreeable référence is [Mar]). Syntax will be given when 
needed in the text. We assume also some expérience of categorical logic (the 
quantifiers-as-adjoints paradigm mainly: again the source référence [Law] is a nice 
reading). The reader may find it helpful to refer to the survey paper [Cur2], where an 
effort is made to suggest the categorical structures from suitable présentations of 
syntax. In particular the reader will find there (but also in [Curl] and in the source 
paper [Brui]) an account of De Bruijn's nameless notation, which will be also adopted 
hère, and which we briefly recall now. 

Roughly, De Bruijn's notational convention consists in replacing variable names by 
a natural number recording its place in the environment (where the values of free 
variables are recorded), added to its binding depth, as illustrated by the following 
example: in the environment cons((t=...i),cons((z=...2),nil)) (written in a Lisp like 
syntax), t and Xx.(Xy.y)z become respectively 1 and X.(X. 1)3 . Hère the number 3 
décomposes as 1+1+1: in order to find z's binder one has to "pass" over Xx and the top 
t=6 of the environment, viewed as a stack. This operational flavor has been exploited 
in the Categorical Abstract Machine [CouCurMau] (see also [ACCL] for more récent 
work on machine-oriented syntax). 

2 Interpreting dépendent types in locally cartesian closed catégories: 

2.1 Some categorical preliminaries Let us first fix some categorical notation. We shall 
use the following définition of locally cartesian closed catégories (LCCC): a category C 
is locally cartesian closed iff it has a terminal object, and for any k: a—>b the functor 
Z k : C/a -> C/a defined by Xk(f) = kof admits two successive right adjoints, written 
k*, nk,i.e. Ek-lk*-/nk . 

A feature which is crucially used in the sequel is the pseudo-funcîorial character of 
the pullback (p.b. for short): for each pair of composable arrows t,s, there exists a 
natural iso t*o s* «-> (sot)*, and those isos are cohérent in the sensé that the 
transformation between two paths Connecting the same points in any commuting 
diagram, obtained by pasting those elementary isos, is independent of the 
décomposition of the pasting2. 

Why is the pullback only pseudo-functorial? The point is that p.b. diagrams 
compose, but chosen pullbacks do not in gênerai. This can be seen in two ways: 

1) By a direct argument, as illustrated on Figure 1, where the two inner squares and 

^The cohérence of pseudo-functors can be reduced to the cohérence in bicategories (which is the same 
as cohérence of monoidal catégories), as was shown with care in [MacLaPar]. 
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the outer trapezium are the chosen p.b. diagrams of s and a, t and o[s], sot and a 
respectively (s*a is renamed a[s]). 

Figure 1 

a[sot] 

2) By making use of Xk-H k* and ESot = Ls o 2^ . This is more abstract than 1), 
which was defined "pointwiseM.The natural transformation t*o s* —> (s©t)* is shown 
on figure 2 3 . 

Figure 2 

3This way of representing natural transformations (more generally 2-cells) is known as pasting. It has 

been proved to be mathematically well defined only recently [Pow]. A pasting is a labelled planar graph 

(with additional properties, see [Pow]): points are catégories (0-cells), arrows are functors (one-cells) 

and (bounded) régions are natural transformations (2-cells). 
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Remark: Pseudo-functoriality arises also for the identities. So one should also consider 
canonical isos between a[id] and id, and assume as a second cohérence condition that 
the isos k*oid*<->(idok)* (=k*) and k*oid*<->idok* (=k*) coincide. In the présent paper 
we shall assume though, for simplicity, that id* is id, which can be done by choice. 
This choice is safe, since it is then clear that the iso id*ok*<->(idok)* is the identity, by 
the uniqueness of mediating arrows. Thus, when choosing id* as id, we may freely 
forget about the second cohérence condition. Actually we shall assume more widely, 
still by choice, that i* is ^(i"1) for any iso i (this is used in the proof of theorem 8). 

The adjunctions Xk—|k*, together with the pseudo-functoriality of *, détermine 
for each commuting square a canonical natural transformation Lots^s'* —» s*oZa: 

(Za[s].s'*-Ti)o(Za[s].i-Za)o(e.s*oZa). 
This is a quite gênerai construction, which applies in more gênerai indexed 

catégories than the indexed category of slices of a category with pullbacks. In the 
particular case where * is pullback, this natural transformation, is iso. To show this, 
we need to go down one level of abstraction, and to hâve a a more direct, "pointwise" 
description. We picture its (pointwise) inverse below. The picture is just an "oc-
conversion" of Figure 1. The component at x of the natural transformation s*oLo -> 
Lo[s]os'* is exactly the canonical i: (oox)* —» x*©o* (but now it is in the slice over the 
domain of s, instead of being over the domain of x). 

£o/c)[s] 

GOX=EG.X 

>V ° y* 

The property that the transformation Xo[s]os'* -> s*oLa is iso is the Beck-
Chevalley condition4. Symmetrically, the right adjoints to pullbacks yield canonical 
4Beck-Chevalley condition is important in categorical logic, since it allows to interpret substitution 
across quantifiers. But it also appears (as well as the notion of exact square [Gui], a suitable abstraction 
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transformations s*oFIa -» nG[s]os'*, and the canonical transformations LG[S]OS'* -> 
s*o£o are iso iff the canonical transformations S*OI1G —» na[s]os'* are iso. 

2.2 Svntax of first-order X-calculus with dépendent types We présent a pure first-
order X-calculus with dépendent types. That may seem a rather frustrating calculus, 
because without some dépendent constants, no true dependency arises (as was formally 
shown in [MeyRein]). But the syntax is prepared to accept such constants (the typical 
example from computer science is list(n), the type of lists of length at most n, a type 
depending on the type nat of natural numbers), and the main conceptual step is 
independent of the spécifie choice of those constants. Dépendent types, unlike simple 
Curry types, hâve to be proved well-formed. One first defines a syntax of raw (or pre-
well-formed) types and terms, given by 

o ::= K I Ilx:a.a I ^XIO.G (K base type) 
M ::= x I Xx:o\M I MM I (M,M) I fst(M) I snd(M). 

Dependency will arise when a dépendent constant K can be formed from terms M 
(cf. list(n) above, or the equality type I(M,N) of Martin-Lof). The typing rules hâve the 
following structure. A context C is a séquence of assertions of the form x:o. C(x) is the 
a of the first item x:a in the list, starting from the right There are three judgements: C 
context, C h G type , C h M:G. 

2.3 Name-free syntax Next we turn to a name-free syntax, which is well-suited to the 
description of meaning. Also, as quoted in the introduction, we pay particular attention 
to substitution, which will be modelled in gênerai only up to isomorphism. So we 
include an explicit syntax of substitutions, as already undertaken in [ACCL]. We refer 
to [ACCL] for an operational explanation of the notation and of the opérations. But the 
reader can get a "graphical" insight from the pictures which follow. 

Types: G ::= K I FIG.G I ZG.G I G[S] 

Terms: M ::= 1 I XcM I MM I (M,M) I fst(M) I snd(M) I M[s] 
Substitutions: s::= id I T I M.s I s o s 

The typing rules are as follows (the contexts are now just séquences of types) 

of it) in other géométrie or topological applications of category theory. The Beck Chevalley condition can 

also be expressed in a synthetic way, using the notion of fibered adjunction [Jac]. 
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Context formation rules 
0 context 
C h a type (x not defined in C) 
C,a context 

Type formation rules 
[Const] 

Ktype 
[II] (and symmetrically [X]) 

C, a h x type 
C h rio.xtype 

[aClos] 
C h s:C C h a type 

C h a[s] type 

Term formation rules 
[Var] 

C h a type 
C,a h l:a[T] 

[Abs] 

[App] 

[Pair] 

[fst] 

[snd] 

C,c h M:x 

C h XCT.M: riax 

C h M:ria.x C h N:a 
C h M N : x[N.id] 

C h M:a C h N:x[M.id] 
C h (M,N): la.x 

C h Mrla.x 
C hfst(M): a 

C h M:Ia.x 

C h snd(M): x[fst(M).id] 
[MClos] 

C h s:C C h M:a 
C hM[s]: a[s] 
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(As a hint for the "mutation" of G in Var, think that G in the hypothesis has its De 
Bruijn indices refering to the séquence C, whereas the second occurrence G[î] in the 
conclusion has to refer to the larger context C,G. Now we refer the reader to the rules 
MClos and T below.) 

Substitution formation rules 

[W] 

C context 

[ î ] 

[Cons] 

[Comp] 

C hid: C 

C h G type 

C,G h î : C 

C h s: C C h G type C h M: G[S] 

C h M.s: C\G 

C h s': C C h s: C" 

C h s o s ' : C" 

2.4 Semantics in LCCC's We turn to a "pictorial" interprétation of the calculus just 
defined in a locally cartesian closed category. A context is mapped to a séquence of 
consécutive arrows, the last one going into the (chosen) terminal object 1. A type is 
interpreted likewise, but setting a "marker" just after the first arrow of this séquence, 
the rest of the séquence being the meaning of the context w.r.t. which the type is well-
formed. 

The basic semantic ingrédient hère is "type-as-(projection) arrow": think of list(n) 
as represented by the first projection (n,l)*n on the infinité sum {(n,l) I le list(n)}. 
Alternatively one may think of the interprétation of C h G type as a meta (or global) sum 
"LC.G" (to be contrasted to the "local" sums, say EG.T with C,G h x type). 

Judgements C h s: C are mapped to (commuting) triangles s: C—>C. Finally 
judgements C h M:G are mapped to triangles M:Id-»G. It is time to stress that we do 
not give meanings to judgements, but to proofs of judgements. This does not matter at 
présent since there is only one way to prove a judgement, but this will not be true 
anymore when we corne to the discussion of équations. We présent the définition of the 
interprétation rather informally, and make a notational confusion between syntax and 
meaning. 

[Const] A basic type is mapped to an arrow into the terminal object (the standard way 
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of turning objects into arrows). 

[FI] (and symmetrically [X]) The meaning of the II and X constructors is given by the 
adjoints Lfc and 1¾ (thus we shall freely confuse, say T\G.X and n<j(T)). 

[GCIOS] G[S] is interpreted as the p.b. of G along s. 

(The reader unfamiliar with the pullback as substitution idea may want to convince 
himself by taking, say G=list(n), and s=succ. The obvious interprétation for list(n+l) is 
the first projection on {(m,l) I lelist(m+l)}; now the latter set is in one-to-one 
correspondence with {(m,(n,l) I (l€ list(n) and) n=m+l}, which is the pullback of suce 
and (n,l)*n.) 

[Var] The meaning of 1 is the mediating arrow of id and id relative to the p.b. square of 
G and G. See the case T for a justification of the arrow named G[Î ] on the picture. 

[Abs] We write X for the natural bijection associated with the adjunction k*^!!^, 
and we use that G*(Id)=Id. Then the interprétation of A,G.M is just X(M). 

[App] This is the most complex picture in the translation. The intermediate arrow f is 
the mediating arrow for M and N relative to the p.b. square 1. Proj is the counity of the 
adjunction k ^ n ^ . MN is obtained as the mediating arrow of Proj o f and id relative 
to the p.b. square 2. We anticipate the description of the meaning of [Cons] which will 
justify the identification made between N.id and N, viewed as a global triangle 
C->C,G. 
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[Pair] Again M.id is identified with M as a global triangle C-»C,G. (M,N) is the 
composed arrow M' o N, where M'is the last side of the p.b. square of M and x. 

[fst] fst(M) is obtained as x o M. 

[snd] snd(M) is obtained as the mediating arrow of M and id along the p.b. square of x 
and fst(M). 

[MClos] M[s] is obtained as the mediating arrow of id and M© s w.r.t. the p.b. square 
of G and s. 

[Id,Comp] Identity, composition! 

[T] The interprétation of C,G h T: C is G: G>G-»C: 

[Cons] The meaning of M.s is s'o M in the following picture where s'is the last side of 
the p.b. of G and s. 

3 The cohérence problem5 

3.1 The equational theory In the usual syntax with variable names, the rules are p and 
T|. But in the namefree syntax (cf. [Curl,CouCurMau,ACCL]) J3 is decomposed in 

Beta6 (XM)N -> M[N.id] 
5For the sake of simplicity, we forget L-types in this section. They do not introduce any additional 

problem. 
6Strictly speaking, the right hand side is not well-typed. The reader may check that we need to replace 

it with M[N[id].id]. However, we already assumed that Id* is the identity. 
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followed by the application of a number of rules to actually perform the substitutions. 
Hère is the list of rules considered in [ACCL]: 

Varld l[id]->l IdL idos-»s 
VarCons l[M.s] -> M Shiftld T o id -> î 
App (MN)[s] -> M[s])(N[s]) ShiftCons î o [M.s] -» s 
Abs (to.M)[s] -> XG.(M[1.SOÎ]) Map (M.s) o t -> M[t] .(so t) 
Clos M[s][t] -> M[sot] Ass (sj © S2) © S3 -» s\ o (S2 o S3) 

In the same way, substitution is distributed in types, giving rise to the following 
rules: 

FLAbs (TIG.X)[S] -> riG[s].x[l.soT] (and similarly EAbs) 
Pseudo G[s][t] -» G[sot] 

(When a dépendent constant is eventually reached, the rule (K(M,N)[S] —» 
K(M[S],N[S]) should be applied.) 

3.2 Introducing type equality judgements When typing both sides of VarCons, we 
obtain différent types: G[T][M.S] and G[S]. The crucial step in showing that thèse types 
are equal is G[Î][M.S] "=" G[Î O (M.S)], which is only an isomorphism by the pseudo-
functoriality of the pullback. We introduce type equality judgements C h G=x type, 
together with the reflexivity, symmetry and transitivity (or eut) rule (whose obvious 
description we omit), and to add the rule 

[EqType] 

C h M:G C h G=X type 

C hM:x 

With the help of this new rule, we can dérive the type G[S] for both l[M.s] and M. 
The addition of the seemingly innocent rule EqType raises a cohérence problem: indeed 
now the same judgement can be proved well-formed in différent ways. For example 
when typing ta*.M, we may first show that M has type x, then that the same M has type 
Xj for some Xj by EqType. The typing would then proceed with Abs, yielding type 
FIG.XJ for XGM. But we could also apply Abs right after the dérivation of type x for 
M, getting XGM: Fkr.x, and then apply EqType to obtain XGM: FIG.XJ. On the way 
we hâve used a congruence rule: 
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[nCong] 

C h G=G'type C,G h x=x'type 

C h IlG.x = riG'-X' type 

This rule présents a mismatch. One expects (as a metatheorem on syntax) that if C h 
G=x type is derivable, then also C h G type and C h x type are derivable. Now from the 
hypothèses, and the conclusion, respectively we get C,G h x' type and C,G' h x' 
type. This suggests to complète our extension of syntax by yet another kind of 
judgement: h C=C context, and adding a "contravariant" counterpart of EqType (we 
state one for type judgements, but there should be one for each kind of judgement): 

[CongCont] 

C h G=G'type h C=C context 

h C ,G=C,G ' type 

[EqCont] 

C h G type h C=C context 

C h G type 

Finally, there is another congruence rule, which créâtes type equalities from 
substitution equalities: 

[ClosCong] 

C h s=t:C C h G type 

C h G[s]=G[t] type 

We extend the semantics in the following way. We interpret judgements C h o=x 
type by an isomorphism i between (the domains of) G and x, and similarly we interpret 
judgements h C=C context by an isomorphism i between (the domains of) C and C 

[EqType] If M abbreviates the meaning of (the proof of) C h M:G, then the meaning of 
C h M:x is M composed with i. 

[CongCont] The iso C,G -> C',G' is exactly the iso G->G\ 

[EqCont] This is dual to EqType. 

[FICong,G fixed] The meaning of C h FIG.X = riG.x' type is n a ( i ) if i interprets 
x=x\ 
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[FICong,x fixed] The meaning of C h IIG.X = FIG'.X type is the inverse (notice the 
contravariance) of the instance at x of the following natural transformation, where the 
2-cell is the canonical II transformation associated with the p.b. square G'O i = Id o G (I 
is as in the figure for CongCont). Notice that since we hâve chosen i"1* as Li, the 
picture describes indeed a transformation ELG'© El -» 11G. 

I l riG* 

[ClosCong] This rule does not create isomorphic types, but equal ones: equal 
substitutions s and t (and terms) of the same type are interpreted by equal arrows (see 
3.3), thus G[S] and G[t] coincide, being both the chosen pullback of the same pair of 
arrows. 

3.3 Explicit syntax The point of cohérence is that we hâve to show that the meaning of 
a tenu or of a type equality does not dépend on its proofs of well typing. To establish 
this resuit, we introduce an intermediate language where we keep an explicit track of the 
whole proofs of well-typings. The following case is added to the syntax of terms: 

M::=cO I<M> 

and EqType is replaced in this explicit language by 

oerce ype] c h M ; ( J c h Q = T t y p e 

C hc a j<M>:x 

The equational theory of 3.1 has to be revised, in order to be able to map both hand 
sides of each equality to strictly equal meanings. For example: 

VarCons c a [ î ] [ M s ]a [s ]<l[M.s]> -> M 

App ci<(MN)[s]>-> (c2<M[s]>)(N[s) where 

c l = cx[N.id][s],T[l.Soî][N[s].id] a n d c2 = c(na.x)[s],na[s].i[l. O.T]. 

We shall call thèse new équations the explicit versions of the rules of 3.1. Strictly 
speaking, we should be even more explicit, and develop a language for describing 
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coercions, i.e. the various proofs of, say G=x. Such a completely explicit syntax, 
where each syntactic construct has at most one proof of well-typing, may be found, for 
a différent calculus, in [CuGhe]. We should also hâve included in the syntax traces of 
the uses of EqCont ("cç ç'<G>"). We refrain hère to do so, to avoid a heavy 
notational apparatus, but some of the discussion below assumes that we work in such a 
completely explicit syntax. 

3.4 Cohérence The cohérence results can be now stated and proved. Some lemmas are 
needed on the way. 

Lemma4: The explicit version of the équations Beta, Varld, VarCons, App, Abs, Clos 
and Ass are valid (up to equality) in ail LCCC's. 
Proof: We proved this for VarCons using standard categorical reasoning. We détail 
another case (App) in Annex 1, with a graphical proof technique. 

Remark: We should stress hère the power of the Beck condition. When dépendent 
types are interpreted in split fibrations (that is when the substitution functor is truly 
functorial), one has to require both that ITAbs is interpreted up to equality too, and 
that the counities of the ri-adjunctions are preserved on the nose by substitution (cf. 
[CoqEhr]), whereas this second condition cornes for free in the gênerai non split 
setting. The point is that in split fibrations the power of the formulation "the canonical 
transformation ... is iso" is lost. 

Lemma5: The rewriting System defined (on closed terms) by the (explicit version of) 
Beta+Varld-i-VarCons+App+Abs+Clos+Ass+nAbs-i-ZAbs-i-Pseudo 

is confluent and strongly terminating. 
(The proof adapts quite easily from similar results in [ACCL,HarLa].) 

Theorem 6: For any C,G,x, any two proofs of C h G=x type receive equal 
interprétations in any LCCC. 
Proof sketch: The proof follows essentially the same line as the proof of cohérence of, 
say monoidal catégories. We first transform any proof into a proof where cuts occur 
only at the end (notice that this is converse to usual proof-theoretic eut élimination). 
Typically we hâve to check that the two proofs 

C h G=& type C h G'=G" type 

C h G=GU type C,G h x type 

C h nG.x=nGM.x type 
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and 
C h G=G* type C h G=GU type 

C h nG.x=nG'.x type C h UG\X=UG\X type 

C h nG.x=riG".x type 

are equal in ail interprétations7. 
We further restrict our attention to the proofs where not only the cuts occur at the 

end, but where the types connected by the séquence of cuts form a rewriting séquence 
(according to the rules FlAbs,Pseudo and ail the rules on terms and substitutions, 
accessed through ClosCong). Thèse proofs are in one-to-one correspondence with 
rewriting séquences of types. The cohérence proof then follows exactly the Knuth-
Bendix completion procédure [HueOp]: one needs to consider the critical pairs, to 
complète them, and to check that the proofs corresponding to the two paths of the local 
confluence diagram receive the same meaning. There is actually just one critical pair (if 
one forgets the critical pairs arising from rules on terms and substitutions, for which the 
vérification is trivial, since ClosCong is interpreted up to equality), between FLAbs and 
Pseudo. The analysis of this critical pair is presented in Annex 2. 

Finally we use Lemma 5 to extend the cohérence resuit to ail proofs where the cuts 
occur at the end, and corresponding to zigzags between the connected types. One 
shows by induction on the length of the zigzag that the iso pasted along the zigzag, 
composed with the iso pasted along any path from the end point of the zigzag to its 
normal form, is equal to the iso pasted along any path from the start point of the zigzag. 

Before stating cohérence at the level of terms, we need one more lemma. 

Lemma 7 If IIG.X and riG'.x' are provably equal, then so are G and G', X and x', 
respectively. 
Proof sketch: Observe that when rewriting both FIG.X and riG'.x' to their common 
normal form nG".x", the head form I~I_._ is untouched. It follows easily that 
Gy&^*G'\ and similarly for x, x', x". 

Theorem 8: For any C,M, if C h M:o and C h M:G* are provable, then G=G' is 
provable. Moreover, for any C, M, G, any two proofs of C h M:G receive equal 
7We already noticed in 3.3 that, by contravariance of n in its first argument, an iso a-xr' détermines 

an iso Uc\x->Ua.x . Thus to describe the natural transformations "witnessing" rewritings of arbitrary 

sub types (and subterms), we may need to reverse the directions of arrows: in particular Beck condition 

(which states that a canonical arrow is iso) is essential. 
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interprétations in any LCCC (and similarly for C,s,C). 
Proof sketch: By induction on the sum of the lengths of thèse proofs, and by cases on 
the shape of M.One has to generalize the statement to take care of possible uses of 
EqType and EqCont What we prove is actually: 

- For any C, M, C if C h M:G, C h M:G" and h C=C are provable, then G=G} is 
provable. 

- For any C, M, G, C s.t. h C ,G=C,G ' are provable, any two proofs of C h M:G, 

C h M:G' respectively receive interprétations in any LCCC (and similarly for C,s,C) 
which become equal when composed with the isos C<r>C and s<->s\ properly 
oriented. 

The case for application essentially amounts to check that the two proofs (cf. the 
rule App' of [CuGhe]) (we keep x fixed, and omit contexts, for simplicity) 

G=G' 

M: FIG.X FIG.X = nG'.x 

M: nG'.x N:G' 

and 
MN:x[N.id] 

G=G 

N:G' G=G 

M: FIG.X N:G 

MN:x[N.id] 

are equal in ail interprétations. Notice that, hidden behind this equality of proofs, is the 

following other equality of proofs: 
x [ c a\a < N > - i d l = c(C,a),(C ,a')<T>[N-id] • 

Similarly, for the case of abstraction one has to check the equality of the proofs given at 
the beginning of 3.3 to illustrate cohérence of proofs (we omit the easy checking; this 
corresponds to the rule X of [CuGhe]). 

4. Conclusions and future work 

Beyond the technical cohérence resuit, we believe that the graphical représentation 
of proofs whith which we learned to play while writing the paper provide an 
interesting géométrie view of syntax. It urges the need for software tools to automate 
such drawing construction and manipulation. 

We believe that the cohérence results shown hère also hold in more gênerai models 
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(relatively locally cartesian closed catégories [HyPi], D-categories [Ehr]). We would 
like to extend them to models of the calculus of constructions of T. Coquand anf G. 
Huet [Coq]. 
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Annex 1 (Validation of App) In order to validate the rules of the explicit calculus, we 
hâve to reexpress the semantic interprétation in 2-categorical terms. If k is an arrow into 
a, we dénote by 'k the constant functor with value k from the terminal category 1 to the 
slice C/a. We hâve then (Xl)o('k)='(l<>k), g*o('k)='k[g] for l,g of appropriate types. If f 
is an arrow k->l in C/a, then we represent it as a natural transformation from 'k to '1. 
The main tool used in 2.4 for the description of the interprétation is the notion of 
mediating arrow. Hère is a pictorial représentation of the mediating arrow of M,N 
w.r.t. the p.b. diagram of s and G, considered as an arrow N-»G[S] : 
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'N Es 

M 

Tl 

Now we can express the meaning MN as a natural transformation.We use a "dual" 
notation, suggested by Y. Lafont [Laf], which is more convenient to handle. Natural 
transformations are now points (actually horizontal Unes), the arcs are still functors, but 
now they connect the natural transformations previously pasted on both sides, and the 
régions (not named in the drawings below) are now the previous points, i.e. catégories. 
Redexes are isolated by appropriately stretching a "dual pasting diagram", both 
horizontally and vertically. The redisplay after réduction is much easier with this 
représentation. Indeed, in the présentation by pastings, after an T]e-cancellation has 
occurred, two arcs hâve to be merged (for example the two arcs ¾Sot) in the first 
picture of Annex A.l, or the two arcs 2Xk"ok') in the picture below), and it is not 
always immédiate to see how to redisplay the neigbouring arcs and régions after 
merging (for example the counity e at k in the dual of the picture below). In the dual 
représentation, instead of having to merge arcs, we just need to tie them. 
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and similarly for the meaning of N[s] 

'id 

'a[s] 

Now we are able to draw cj<(MN)[s]>, and to rewrite it8% 

°The technique of pasting rewriting has been conceived by E. Rodeja, and used in mathematical 

practice for almost twenty years by the Santiago de Compostela algebra group [Rod]. 
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We use the following équation, easily derivable from the définition of i. 

n 

Ik 

n 

II 

II (lok) 1* k* 
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We leave the reader check that the drawing obtained by T]e-expanding the vertical G[S]* 

line is (c2<M[s]>)(N[s]). 

Annex 2 (The critical pair UAbs-Pseudo) (The notation is taken from Figure 1). 
We first describe the completion of the critical pair, then build and paste the 
isomorphisms along one path (we hâve reversed one direction for convenience); finally 
we rewrite those pastings until we obtain at the end the iso obtained by following the 
other path (nG.x)[sot]->(nG[sot].x[(sot)']. 

<na[s].t[s'])[t] 

na[s][t].x[s][t] 

nG[Sot].T[(Sot)!] 
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ISAAXAA/iSAA^^ u u v u v v u 

(Sot)" 

(sot)"» 
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(Sot)11 Id* 

Tlo :5* : S 

n 
o[sot]* no[sot] 

" M M * t* 

uhl* ^ 

^ 2 ;a= 

(Sot)'" 


