DIAGRAMMES

RENÉ GUITART

Construction of an homology and a cohomology theory associated to a first order formula

Diagrammes, tome 23 (1990), p. 7-13

http://www.numdam.org/item?id=DIA_1990__23__7_0

© Université Paris 7, UER math., 1990, tous droits réservés.

L'accès aux archives de la revue « Diagrammes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

ACTES DES JOURNEES E.L.I.T. (UNIV. PARIS 7, 27 JUIN-2 JUILLET 1988)

CONSTRUCTION OF AN HOMOLOGY AND A COHOMOLOGY THEORY

ASSOCIATED TO A FIRST ORDER FORMULA

by René GUITART

RESUME - On montre comment chaque formule ϕ d'un langage $\mathcal L$ détermine une théorie d'homologie (et une théorie de cohomologie) sur la catégorie des interprétations de $\mathcal L$, dont la valeur sur chaque interprétation I de $\mathcal L$ est une obstruction à I $\models \phi$ "à des co-équations près" (et "à des équations près").

This paper is a sequel of [7].

O. Let \mathcal{L} be a first order language, let I be an interpretation of \mathcal{L} , and let ϕ be a formula of \mathcal{L} . The aim of this note is to indicate a way in which it is possible to measure partially and to compute how I is far from the models of ϕ .

In the papers [7] and [8] it is shown how this question is connected with the possibility of a geometrical study of algorithms and ambiguïties.

1. PROPOSITION. Let $\mu(x_1,...,x_n)$ be a first order formula of $\mathcal L$, and let $Mod_\mu\phi$ be the category with objects the models of ϕ , and with morphisms from M to M' the morphisms (of models of Φ) $m:M\longrightarrow M'$ such that

$$\forall \ \textbf{x}_{1}, \dots, \textbf{x}_{n} \ [\ \mu(\textbf{m}(\textbf{x}_{1}), \dots, \textbf{m}(\textbf{x}_{n})) \ \longrightarrow \ \mu(\textbf{x}_{1}, \dots, \textbf{x}_{n}) \]$$

Then there is a small mixed sketch σ such that $\operatorname{Mod}_{\Pi} \phi \cong \operatorname{Mod} \sigma$.

The existence of σ is proved by the juxtaposition of proposition 3 p.8 of [6], théorème 2.1 p.26 of [5], and proposition 3 p.301 of [7],II. In fact, this juxtaposition shows more than our proposition here.

2. For C a category, let BC = |NC| be the geometric realization of the nerve of C. BC is a cw-complexe, and $\pi_1 BC \cong C[C^{-1}]$ (the category of fractions of C). Of course if C is a class, BC is a class too. But, if $C = \text{Mod}\sigma$ for a small sketch σ , then in BC we can construct a set $g\sigma$ such that the inclusion $g\sigma \longrightarrow BMod\sigma$ is an equivalence of homotopy. In particular we get

PROPOSITION. $Mod\sigma[(Mod\sigma)^{-1}]$ is a small groupoid, up to equivalence. We call it the fundamental groupoid of σ , and we denote it by $\pi_1 g\sigma$.

The existence of the set $g\sigma$ comes from [7].

3. Let $\operatorname{Mod}_{\mu}\phi/I$ be the category with objects the morphisms (of interpretations of $\mathscr L$) $f:M\longrightarrow I$ where M is a model of ϕ , and with morphisms, from $f:M\longrightarrow I$ to $f':M'\longrightarrow I$, the morphisms of $\operatorname{Mod}_{\mu}\phi$) $g:M\longrightarrow M'$ such that f'.g=f. Then

PROPOSITION. There is a small sketch $\sigma=\sigma(\mathcal{L},\ I,\ \phi,\ \mu)$ such that $\mathrm{Mod}_{\mu}\phi/I\cong\mathrm{Mod}\sigma.$

So we get a small cw-complexe go(ℓ , I, ϕ , μ), which is a geometric description of the position of I with respect to Mod $_{II}\phi$.

4. Let \mathbf{Ab} be the category of small abelian groups, and let $F: \mathrm{Mod}_{\mu}\phi \longrightarrow \mathbf{Ab}$ be a functor. (In particular F could be the constant functor on a fixed abelian group A, or it could be a "canonical" functor if $\mathcal L$ is a language over the language of abelian groups, etc). The André's homology measures "how I is far from $\mathrm{Mod}_{\mu}\phi$, from the point of view of F". In order to do that we consider the chain complexe

$$\longrightarrow C_2(I,F) \xrightarrow{\frac{d}{2}} C_1(I,F) \xrightarrow{\frac{d}{1}} C_0(I,F) \xrightarrow{\frac{d}{0}} 0$$

which is

$$\dots \longrightarrow \sum FM_2 \xrightarrow{d_2} \sum FM_1 \xrightarrow{d_1} \sum FM_0 \xrightarrow{d_0} 0$$

$$M_2 \xrightarrow{} M_1 \xrightarrow{} M_0 \xrightarrow{} I \qquad M_1 \xrightarrow{} M_0 \xrightarrow{} I \qquad M_0 \xrightarrow{} I$$

with
$$d_1 = s_1^0 - s_1^1$$
, where
$$s_1^0 : (FM_1)_{(M_1 \to M_0 \to I)} \xrightarrow{Id} (FM_1)_{(M_1 \to I)} \xrightarrow{Inc} \sum FM$$

$$s_1^1 : (FM_1)_{(M_1 \to M_0 \to I)} \xrightarrow{F(\alpha)} (FM_0)_{(M_0 \to I)} \xrightarrow{Inc} \sum FM$$

and so on, and we define

 $H_0(I, F) = \ker d_0/Im d_1 = \operatorname{coker} d_1, H_1(I, F) = \ker d_1/Im d_2$, and, for every $n \ge 0$, $H_n(I, F) = \ker d_1/Im d_{n+1}$.

PROPOSITION. $H_n(I, F)$ is a function of F, I, μ , ϕ , which in fact depends only of the homotopy type of $Mod_{\mu}\phi/I$ and of F and could be denoted by $H_n(Mod_{\mu}\phi/I,F)$.

see [1], [2], [3] and [4].

Let $\operatorname{Int} \mathscr L$ be the category of interpretations of $\mathscr L$, let $J:\operatorname{Mod} \phi \longrightarrow \operatorname{Int} \mathscr L$ be the canonical inclusion. Then the inductive Kan extension of F along J is given by

$$[\underbrace{\mathsf{Ext}}_{\mathsf{J}}\mathsf{F}](\mathsf{I}) = \underset{\mathsf{M}_{\mathsf{0}}}{\mathsf{Lim}} \;\; \mathsf{F}(\mathsf{M}_{\mathsf{0}})$$

and we have

$$H_0(I, F) = [\underbrace{Ext}_J F](I).$$

If
$$I \models \phi$$
, then $H_n(Mod_\mu \phi/I,F) = \begin{cases} F(I) & \text{if } n = 0 \\ 0 & \text{if } n > 0 \end{cases}$

5. Now, the point is that, because of the results hereover ($\S\S$ 1 to 4), we get

PROPOSITION. The tools of [1] and of [3], available in the situation where a <u>full and small category M</u> (called a category of "models") lives inside a big category of "spaces", are also available in the situation where a (<u>possibly big and not necessarly full</u>) category $\operatorname{Mod}_{\mu}\phi$ of models of a theory lives inside a big category of interpretations of a language $\mathcal L$ (compare with the idea of "paires adéquates" p. 43 of [1]). Precisely here we get the fact that the $\operatorname{H}_n(\operatorname{Mod}_{\mu}\phi/I,F)$ are small.

6. After the existence of go proved in [7], the theorem hereunder §9 is just a second stone for a work to be pursed. Theoretically the computation of our H_n is based on the effective construction of a "locally cofree diagram", and more precisely on the construction of a "relatively cofiltered locally cofree diagram" (r.cf.l.cf.d.)(see [5] and [6]) (in the category $Mod_{\mu}\phi$) generated by I. This r.cf.l.cf.d. contains all the information we need, and it will be the starting point of an absolute calculus. But for concrete situations we need a relative calculus, by the way of comparaisons between various H_n . For that it will be essential to go toward effective relative calculation of these small H_n , and especially we need a description of the link between these calculations and the theory of demonstrations. For example we need relations among $H_n(Mod_{\mu}\phi/I,F)$, $H_n(Mod_{\mu}\gamma/I,G)$, $H_n(Mod_{\mu}[\phi\wedge\gamma]/I,K)$, $H_n(Mod_{\mu}[\phi\wedge\gamma]/I,L)$ (for conveniant K and L).

For that it will be necessary to describe the category $For(\mathcal{L})$ of formulas of the language \mathcal{L} . At first this will be usefull to precise the functoriality of the $H_n(Mod_\mu\phi/I,F)$ with respect to ϕ and μ .

7. The first purpose of this paper was to show precisely how each classical first order formula ϕ of a language $\mathcal L$ determines a "small" homology theory on the category of interpretations of $\mathcal L$.

Now, the continuation of this research pass trough the description of $For(\mathcal{L})$. With respect to that, I would like to make the following remark: what have to be morphisms between formulas? it is not so clear a priori; they have to be "demonstrations" or "proofs", but there is no

canonical idea of what is a demonstration.

But if we decide to stay in (or to come back to) the style of sketches, a first picture is easy to give. In fact $\mathcal L$ "is" a sketch σ_0 (i.e. the category of interpretations of $\mathcal L$ is isomorphic to $\operatorname{Mod}\sigma_0$), the formula ϕ (or $_{\mu}\phi$) is a sketch σ , and the inclusion of the category of models of ϕ (of u^{ϕ}) in the category of interpretations of $\mathcal L$ is induced by a morphism of sketches $P: \sigma_0 \longrightarrow \sigma$. This P is the "proof" that a model of ϕ (of $\mu \phi$) is an interpretation of \mathcal{L} . In fact P is not a general morphism of sketches, but determines σ as a σ_0 -sketch (see [6] p.10 for the precise definition). So we choose to say now that a formula for σ_n (in the place of a $\mathscr{L}\text{-formula}$) is nothing but such a P, a σ_0 -sketch. In [6] the boolean calculus of σ_0 -sketches (conjonctions, disjonctions, complements) is exposed as construction in the category of sketches. Then we can defined the category $For(\sigma_0)$ as being the category of $\sigma_{\rm p}$ -sketches, as objects, with morphisms from P to P' the morphisms of sketches $f:\sigma\longrightarrow\sigma'$ which determine σ' as a σ -sketch, such that f.P = P'.

At this level of language, we can change our notations, replacing $\operatorname{Mod}_{\mu}\phi$ by $\operatorname{Mod}\sigma$, or even, more precisely, by P, and the $\operatorname{H}_n(\operatorname{Mod}_{\mu}\phi/I,F)$ will be denoted by $\operatorname{H}_n(P/I,F)$. Of course for general mixed sketches (and not only for those associated to first order formulas) the result in §5 works, and the abelian groups $\operatorname{H}_n(P/I,F)$ are smalls. Now

PROPOSITION. The functoriality of these H_n , with respect to P, I and F are trivial facts.

8. In a dual way, given a functor $F: \operatorname{Mod}_{\mu}\phi \longrightarrow \operatorname{Ab}$ and an interpretation I of \mathcal{L} , the cohomology of I with coefficient in F is defined by considering the cochain complexe

$$\longleftarrow \quad C^2(I,F) \stackrel{d^1}{\longleftarrow} \quad C^1(I,F) \stackrel{d^0}{\longleftarrow} \quad C^0(I,F)$$

which is

$$\longleftarrow \prod_{\substack{\mathsf{FM}_{2} \leftarrow \mathsf{M}_{1} \leftarrow \mathsf{M}_{0} \leftarrow \mathsf{I}} \prod_{\substack{\mathsf{FM}_{1} \leftarrow \mathsf{M}_{0} \leftarrow \mathsf{I}} \prod_{\substack{\mathsf{d}^{\mathsf{O}} \\ \mathsf{M}_{0} \leftarrow \mathsf{I}}} \prod_{\mathsf{f}^{\mathsf{C}} \mathsf{M}_{0} \leftarrow \mathsf{I}} \prod_{\mathsf{f$$

with

$$d^{1}(x)\left(I \xrightarrow{\gamma} M_{0} \xrightarrow{\lambda} M_{1}\right) = F(\lambda)\left(x\left(I \xrightarrow{\gamma} M_{0}\right)\right) - x\left(I \xrightarrow{\lambda \cdot \gamma} M_{1}\right)$$

and so on, and we define $H^{n}(I, F) = \ker d^{n}/Im d^{n-1}$.

For these cohomology groups, the same result is true, that is to say that they are small. But now, the computation is based on the effective construction of a "relatively filtered locally free diagram" (r.f.l.f.d.) (in the category $\operatorname{Mod}_{\mu}\phi$) generated by I. These cohomology groups will be denoted by $\operatorname{H}^n((I/\operatorname{Mod}_{\mu}\phi)^{\operatorname{op}},F)$.

9. Collecting the results of §5, §7 and §8, we get :

THEOREM :The abelian groups $H_n(\text{Mod}_{\mu}\phi/I,F)$ and $H^n((I/\text{Mod}_{\mu}\phi)^{op},F)$ are small, i.e. they are elements of the category Ab, they are functorial with respect to I, F, μ and ϕ , and if $I \models \phi$, then $H_n(\text{Mod}_{\mu}\phi/I,F) = 0$, for every n > 0, and $H^n((I/\text{Mod}_{\mu}\phi)^{op},F) = 0$, for n > 0, In fact, more precisely, we have $H_n(\text{Mod}_{\mu}\phi/I,F) = 0$, for every n > 0, if there is a cofree model generated by I, and we have $H^n((I/\text{Mod}_{\mu}\phi)^{op},F) = 0$, for n > 0, if there is a free model generated by I. So they are small obstructions to the satisfaction of ϕ in I "up to co-equations" and "up to "equations".

REFERENCES

- [1] M. André, Méthode simpliciale en algèbre homologique et algèbre commutative, S.L.N. 32, 1967.
- [2] M. Evrard, Homotopie d'un espace topologique relativement à un recouvrement. Applications à l'homotopie des préschémas, Thèse d'Etat, Université Paris 7, 1973.

- [3] M. Evrard, Fibrations de petites catégories, Bull. Soc. Math. France 103, p.241-265, 1975.
- [4] D. Quillen, *Higher algebraic K-theory*, I, S.L.N. 341, p.85-147, 1973.
- [5] R. Guitart et C. Lair, Calcul syntaxique des modèles et calcul des formules internes, Diagrammes, vol. 4, 106 p., 1980.
- [6] R. Guitart et C. Lair, Limites et co-limites pour représenter les formules, Diagrammes, vol. 7, 24 p., 1982.
- [7] R. Guitart, On the geometry of computations, I and II, Cahiers Top. Géo. Diff. Cat., vol. XXVII-4 (1986), p. 107-136, et vol. XXIX-4 (1988), p. 297-326.
- [8] R. Guitart, L'unité de la théorie des modèles et de l'algèbre homologique (conf. at the Summer meeting on Category Theory, Louvain-la-Neuve, July 26 Aug 1, 1987), in Cahiers Top. Géo. Diff. Cat. XXX-3 (1989).
- U.F.R. Maths, Tours 45-55, 5^{ème} ét., Université. PARIS 7, 2 place Jussieu, 75005, FRANCE.