DIAGRAMMES

SEYED-KAZEM LELLAHI

NICOLAS SPYRATOS

Deduction over graphs under constraints : a soundness
and completeness theorem

Diagrammes, tome 29 (1993), exp. n°2, p. LS1-LS24
<http://www.numdam.org/item?id=DIA_1993_ 29 A2 0>

© Université Paris 7, UER math., 1993, tous droits réservés.
L’accés aux archives de la revue « Diagrammes » implique I’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impres-
sion systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

http://www.numdam.org/item?id=DIA_1993__29__A2_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

DIAGRAMMES VOLUME 29, 1993

DEDUCTION OVER GRAPHS UNDER
CONSTRAINTS: A SOUNDNESS AND
COMPLETENESS THEOREM

Seyed-Kazem LELLAHI
e-mail: kl@lipn.univ-paris13.fr
LIPN, URA 1507 du CNRS
Université de Paris 13, Institut Galilée
Av. J.B.Clément, 93430 Villetaneuse, France

Nicolas SPYRATOS
e-mail: spyratos@lri.fr
LRI, URA 410 du CNRS
Bat. 490, Université de Paris 12
91405 Orsay Cedex, France

Abstract

We introduce a notion of computation and a notion of constraint over graphs, and we give
an inference system for deducing new computations or constraints from old. The graphs and the
inference rules are interpreted in suitable enriched categories, which allow to define the model of
a graph under constraints. We prove that our inference system is sound and complete.

Keywords: Categorical Semantics, Categorical Logic, Enriched Categories, Graph-Based
Modelling of Knowledge, Algebraic Specification-

1 INTRODUCTION

In advanced computer applications, such as multimedia applications, entities
of different systems must cooperate together. These entities have usually different
representations and organizations, and they may come from a functional, or a
logic, or an applicative or an object-oriented programming language as well as
from a data or a knowledge base. As a consequence it seems necessary to have a
uniform representation of all kinds of entities at conceptual level. Indeed such a
representation makes easier interfacing of the systems concerned on the one hand,

AM.S. SUB. CLASS.:18C10,68 C99,18D 20

mailto:kl@lipn.univ-parisl3.fr
mailto:spyratos@lri.fr

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

and the comprehension of the behavior of the whole system on the other hand. In
any case, in order to answer user queries, the system must be able to combine old
entities of various kinds to deduce new entities. Therefore, the uniform
representation of entities should be equipped with constructs such that their
instantiation in a given system provides constructs of that system.

In recent years the database community and the knowledge base community
have been faced with this kind of problems. Some researchers have argued that at
conceptual level data should be structured as graphs, and several graph-based
models have been proposed recently [CoMe90], [GPV90], [Wedd92], [VaVa92],
[KaVa93]. Others have proposed second order signatures as a modeling tool
[Giiti93], and some authors have tried to use category theory for such a modelling
[TGP91], [TuGu92]. In [LeSp93, 92, 91] we have proposed a data model in which
the conceptual level is presented as a graph with constraints and in which data are
organized as partial/mutivalued functions, or more generally as morphisms of a
special category. However, the approach of [LeSp93, 92, 91] is a model theoretic
approach. In this paper we present a proof theoretic approach by introducing a
system of effective inference rules, and we show how the deduction process,
constructs a free adjoint functor. We prove soundness and completeness of the
rules using the properties of enriched categories [Gray74], [Kelly82], [PoWe92]
and the Yoneda Lemma [MacL71], [BaWe90]. This may be seen as the main result
of the present paper.

The rest of the paper is organized as follows. In Sections 2 we present the
notion of semantic universe and semantic function: a semantic universe is a V-
category, and a semantic function is a W-functor [Gray74], [Kelly82], when V is
a category of special posets called well-behaved posets. In Section 3 we introduce
the basic concepts of graph and interpretation of a graph in a semantic universe.
We give a syntactic way that constructs a semantic universe over a graph. The
arrows of this semantic universe are called computations. We prove that the
‘meaningful’ computations with respect to a given interpretation for a given
graph is a free construction in a comma category. In Section 4 we define the
notion of constraint on a graph. Constraints are declarations of the form pc<e,
where p is a path and e is an edge, which must be enforced between computations.
We present a set of inference rules which operate on a graph with constraints.
Computations obtained by these rules are called computations under constraints.
We introduce a notion of constraint satisfaction, a notion of model and a notion of
constraint implication and we prove that the inference rules are sound and
complete. This is the main result of the paper. In Section 5 we consider
interpretations which are not models but are consistent with the constraints. Such
an interpretation generates a canonical model and we prove that his model is
constructed as a least fixpoint. We call this least fixpoint the fixpoint semantics.
Finally, in Section 6, we offer some concluding remarks and suggestions for
further research.

IS 2

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

2 SEMANTIC UNIVERSES

A subset of a partially ordered set (poset) is said to be consistent if it is
bounded. A well-behaved poset, or wposet for short, is a non empty poset in
which every finite consistent subset A has a least upper bound, denoted /ubA. In
particular, the empty subset has a least upper bound called the zero of the wposet.
Clearly every upper semi-lattice is a wposet. A morphism between two wposets is
a function which preserves consistency and /ub. That is f is a morphism of
wposets if for every finite bounded subset A, of the source of f, the subset 7(A) is
bounded, in the target of f, and Jub(f(A)) = f(lubA). An equivalent way is to say
that 7 is a morphism of wposets if f preserves zero and whenever (a, bJ is
consistent so is (fa, rb] and f(lub(a, b)) = lub{fa, fb). Such a function f is
monotonic. The category of small wposets is denoted by T8#. It is easy to see that
this category is finite complete and finite cocomplete. Moreover, limits and sums
in %% can be computed pointwise.

Definition 1 A w®-category [Gray74], [Kelly82] is called a semantic universe. ©

In fact, semantic universes are special 2-categories [PoWe92]. More
precisely, given an arrow U : A — B, call A the source of u, denoted src(u), and B
the rarget of u, denoted tgt(u). Now, the category Cis a semantic universe if

o for all objects A and B the set C(A, B) of arrows! from A to B is a wposet; the

zero of this wposet is denoted O(A, B),

e O(tgt(u), A)u = O(src(u), A), and UO(A, src(u)) = O(A, tgt(u)), for every
arrow U and every object A,

o for all arrows x, y, z and ¢ as in the following configuration

y
H—5 11—y 451

if (y, z)is a consistent pair, then so are (yx, zx)and (ty, tz) and we have:
- lub(yx, zx] = lubly, z]x (left continuity)
- lubl(ty, tz) = t lubly, z] (right continuity).

Let < denote the partial ordering over arrows of &. We can prove that
composition of arrows defines a monotonic function with respect to the ordering,
that is, in the above configuration:

- if y < zthen yx < zx (right augmentation), and

-if y < zthen ty < tz (left augmentation)

From now on, in a semantic universe we shall write '9' instead of <. It is
clear that the category W is itself a semantic universe. Indeed, morphisms

1 All semantic universes considered in this paper are small or locally small categories

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

between two wposets can be ordered pointwise and this ordering satisfies the
above axioms. Other interesting examples of semantic universes are:

o the category Set; of sets and partial functions with the usual ordering on
partial functions,

o the category mSet of sets and multivalued functions with pointwise inclusion,

o the category $B1ef of sets and binary relations with the usual ordering on
binary relations, and

« the category Cpe of continuous functions between complete partial orderings
[GuSc90].

A semantic universe with only one object is a monoid equipped with a well
behaved partial ordering satisfying continuity. More precisely, let M be a set
equipped with an associative product, an identity element e and a partial ordering
'>' such that:

« there is an element € of M, called zero, satisfying € »m and ém = me = € for
allmin M,
« for all elements m; and m,, if there is mz such that m; < mzyand m, < m3, then
lub{m, m,] exists, and
e if Jub{m,, m,) exists then so does lub(msm,;, msmj,], for every mz in M, and
lub{m,;, mo)ms = lub{m m,,m;m3z] and
mszlub{m,, my} = lub{msm,, msm,]

A sub-category €' of a semantic universe Cis called a sub-semantic universe
of Cif € equipped with the restriction of the ordering of € becomes a semantic
universe.

A semantic universe C being a 2-category, C contains three category

structures which cooperate together, as sated for general 2-categories in
[PoWe92]. These three categories are:

The base category C, whose class of objects will be denoted €, and whose class of
arrows will be denoted C,.

The vertical category, defined by the ordering '9' of &, whose objects are all
elements of C; and whose arrows, called 2-cells, are pairs of parallel arrows f, g
such that 7 2 g. Such a cell is seen as a vertical arrow from f to g, and the vertical
composition is defined by the transitivity of the ordering. That is (f 2 g).(g® h) =
(f ® h)corresponds to: if (f<g and g<h) then f< h. Moreover, in this category the
coproduct of two objects 1 and g, when it exists, is Jub(f, g). So, we use f @ g as
an alternative notation for /ub(f, gJ.

The horizontal category, whose class of objects is C,, and whose class of arrows is
the class €, of all 2-cells. A 2-cell f 9 gis seen as a horizontal arrow from A to B

where A is the common source and B is the common target of parallel arrows

LS 4

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

and g. The horizontal composition is the composition in the category €xC, that is
(h ® k)o(f » g) = (hf » kg) if and only if src(h) = tgt(f) and src(k) = tgt(g).

Thus, in a semantic universe, any pair « = (f, g) of arrows such that 2 g, may be
seen as a vertical or a horizontal arrow. We adopt the notation of [PoWe92] and
we write o : f ® g when ais seen as a vertical arrow, and we write: 72 g: A —» B
when a is seen as a horizontal arrow.

The interaction between these three categories is expressed in the following well
known proposition:

Proposition 1 In a semantic universe &, for all configurations of objects,
arrows and cells as in Figure 1, the following holds:

interchange law: (Bloa').(Bocx) = (B'.B)e(cd.@@). ©

Figure 1 : f

Intuitively, a morphism between two semantic universes is a functor which
preserves at least all these three structures. More precisely:

Definition 2 A WP-functor [Gray74], [Kelly82] is called a semantic function. ©

Thus, semantic functions are special 2-functors. More precisely a functor /
from a semantic universe Cto a semantic universe €' is a semantic function if the

following holds:
e [(O(A, B)) = O(IA, IB) for all objects A and B, and
o for all parallel and consistent arrows 2 and b in C, the arrows /a and /b are
consistentin C'and /(a2 ® b) = /a @ |b.
It is clear that such a functor is monotonic. We denote by Sem the category whose
objects are all locally small semantic universes and whose arrows are semantic
functions.

3 COMPUTATIONS OVER A GRAPH

Graphs

In this paper, by graph we mean a directed labelled multigraph. An edge
from node / to node J with label e is displayedas e : / — J, or | £— Jor leJ.

The node / is called the source of e, denoted src(e), and the node J is called the

IS 6

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

target of e, denoted tgt(e). We assume that edges have distinct labels. A sequence
(ey, eo,..., ey) of edges in a graph G, is called a G-path of length n, if tgt(ej) =
src(e,.,) for every i, i<i<n-1. We denote such a path by e, e,...e,. Morphisms of
graphs are defined as usual, and the category of locally small graphs is denoted by

G+
Computations

Given a graph G, we apply the recursive inference rules, of Figure 2 on G to
obtain what we shall call G-computations. In these rules, a computation @ from A
to Bis denoted ¢ : A— B, and

D

¥
means that " in any context, if we have already a premise & then we can construct
the consequence .

Figure 2 : | Inclusion e (edge)
e :src(e) —» tgt(e)
identity _A___(node)
id(A):A—> A
Product Q. A—> B y:B—C
Qy:A —>C
Addition Q. A—B wy. A—B
oty: A—> B
Parenthesis 9. A—B
(@):A—> B
zero A B (nodes)
zero(A,B). A—> B

If we regard src, tgt, id, "" and +' as operations, then G-computations can be
seen as terms obtained by applying these operations on the symbols representing
nodes and edges of G. A G-computation of the form e, e,...e, where all e, are
edges is identified with the path e,e,...e,. A G-computation of the form id(A) is
seen as a special G-path of length 0 associated with A. Thus, there are several
paths of length 0O, one for each node. From now on by G-path we mean a path of
length 0, or a path of positive length. Two G-computations are said to be parallel
if they have common source and common target.

Note: It is important to note that all the above rules are syntactic rules. A
computation may be seen as a program, and this is the reason why we denote the
product of two consecutive computations ¢ : A—=> B and y: B—> Cby @.y
and not by y.¢ (which is the usual notation in a category).

Equivalent Computations

Let p,, po, .. , p,be parallel G-computations with source A and target 8. We
say the G-computation p, +p,*...+p, is a G-expression if each p, is either a G-path

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

or the G- computation zero(A, B). In particular, every G-path is a G-expression.
We shall see that expressions are canonical forms of computations.

Now, with every G-expression e from A to B we associate a set 4(e) of

parallel G-paths, from A to B, as follows:

e A(zero(A, B)) =2,

e 4(p) = (p), for every path p, and

o Ale+e') = B(e)ub(e’), for all parallel G-expressions € and e
The particularity of the set 4(e) is that it is a set of parallel paths, so it contains at
most one computation of the form id(A) and no computation of the form zero(A, B).
We can extend the function .8 to all G-computations using the following rules,
where the extension is denoted 4*.

For every expression e, all parallel computations ¢, ¢', all computations v, and
all edges 1 with src(f) = tgt(e) = src(y), define:
o« 4b%(e) = Ae),
A () = 8%(@.id(src(@))) = 4™ (id(1gt(p)).@) = 4*(@),
A (P+@') = A (P)JuL*(Q'),
A(Q.1) =V, g y8°(9.7), and
A1 Q.y) = U, guy8*(@.1).

Definition 3 Two G-computations ¢ and y are said to be equivalent, denoted ¢
= y, if they are parallel and 4*(p) =48%(y). ©

For instance, f+f = f and f+g = g+f. Similarly, f+g+zero(src(f), tgt(f)) = f+g, and
so on. The following proposition is an immediate consequence of definitions.

Proposition 2 The relation = is a congruence relation for the operations src,
tgt, zero, *.’,‘+’ and parenthesizing. That is, = is an equivalence relation and:
o if @ = ythen src(¢) =src(y) and tgt(¢) = tgt(y), for all parallel
G-computations ¢ and y,
o if @ = ythen (@) = (y), for all parallel G-computations ¢ and y,
o if @ = ythen @ + £ = y + &, for all parallel G-computations @, yand &,
o if @ = ythen @.& = y.& and p.p = p.y, for all parallel G-computations ¢, y,
and all G-computations p and & such that @.£, y.£, p.gpand p.y are well
defined. ©

Let us denote by [¢] the equivalence class of a G-computation ¢. Using the
above proposition, the operations [id], [zero], [src], [tgt], [.] and [+] can be defined
on equivalence classes of G-computations as follows:

e [id](A) = [id(A)], [zerol(A, B) = [zero(A, B)],
e [srcl(@) = src(@), [tgtl) = tgt(e),

e [plllly] = [p.y]and

o [QI[+]ly]= [p+y].

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

Moreover, equivalence classes of G-computations can be ordered by:

[@] < [¢']if and only if 8*(p) C 4*(¢')
That is, [p] < [¢'] if and only if @ + @' = ¢'. Moreover, [@p+@'] = lub{l@], [¢']],
for all computations ¢ and ¢'.
For simplicity we denote the operations [id], [zero], [src], [tgt], []and [+]by id,
zero, src, tgt, ""and ‘+*, respectively.

Proposition 3 The equivalence classes of G-computations equipped with the
operations Zero, id and '’ , and the ordering '<' form a semantic universe,
denoted ¢G.

Proof The objects of ¢G are the nodes of G, the arrows of ¢G are all
equivalence classes of G-computations, and the composition of arrows is defined
by:

[yllg] = [@][y]if and only if src(y) = tgt(e).
The rest of the proof is obvious, but tedious, using the properties of union on sets
and the definitions of 4*and =. ©

The function that associates each graph G with the semantic universe ¢G
defines a functor ¢ from the category G4 to the category Sem. However, c is not a
left free adjoint to the forgetful functor U : Sem — G4. That is, there may exist a
graph morphism / from G to a semantic universe € which cannot be freely
extended to ¢@G as a semantic function. Indeed for a computation ¢ which uses the
addition rule, /(¢) may be ‘meaningless’ in the semantic universe €. However, we

shall prove in the sequel, that / can be freely extended to a suitable sub-semantic
universe of ¢G.

The Meaning of Computations

Recall that the ordering of a general semantic universe is denoted '=' and its
lub operation is denoted '&'.

Definition 4 Given a graph G, we say (G, [[) is an interpretation of G, if Cis
a semantic universe and [[is a graph morphism from G to UC. ©

When Cis given, [[is called a C-interpretation of G. Intuitively, for every
node/edge x of G, [x| is the meaning of x in the universe of discourse €. Now,
the important question is: Can [[be extended to all G-computations ? The answer
to this question depends on the semantic universe C. For example, let G be the
graph with only two parallel edges e and e’, and let [/ be an interpretation of G
in the semantic universe Set; (i.e. the universe of partial functions). Suppose that
the greatest lower bound of the functions [e [and [e’[does not exist. Then e+e’
is a G-computation, but [/ cannot be extended to e+e’. However, if we consider

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

I I as an interpretation in the universe of multivalued functions, then { [can be
extended to e+e’'by [[(e+e')(x) = fex)Jule'(x)], for every x in src(fe]).
This example shows that, given an interpretation [J of a graph, J [cannot
necessarily be extended to all computations. We call those computations to which
[[can be extended meaningful computations with respect to [J. This partial
extension of [[, denoted f [, is defined as follows:

Definition 5 Given an interpretation f J of a graph G,

» every G-node or G-edge x is meaningful and [x/, = [x/,

e id(A)is meaningful and [id(A)[,, = id(J A[), for every node A,

e every G-path p = e e,...e, of positive length is meaningful and
Tolm=lend...0exl fe,d,

e zero(A,B) is meaningful and [zero(A,B)[,,= O([A[,, I8/, for all nodes

Aand B, and)

* a G-expression e = p;+py*...*pp, is meaningful if [p; [,@[oo[® ...

[ppll exists in € and then el = [p; [@lps0 @ ... elpal,. ©

Note that when the meaning function [[, is applied to apath p = e e,...e, it
reverses the order of edges in the path.

It follows from this definition that all equivalent G-expressions have the
same interpretation (if one exists). Now, let ¢ be a G-computation, let 4*(¢p)=
{p;., P2, ..., PpJ, and let €p = Pi*P2*..*Pp. Moreover, let eg, =
Pa(1)*Pa(2)*---*Pga(n) Where o@ stands for a permutation of the indices /1, 2, ...,
nin e, Since e, and ey, are equivalent, if ey, exists then [e/, exists and
legl n= legol - The expression e, is called the canonical form of ¢. Now, we
can define the meaning of a computation as follows:

Definition 6 A computation ¢ is said to be meaningful, with respect to an
interpretation [[, if [e, [, is defined; otherwise @ is said to be meaningless. If ¢
is meaningful, then e, ,, is called the meaning of . ©

For example if a, b and c are edges then (a+b).c is meaningful if and only if
lacl,elb.cl,=lvollalelcl]al exists. Moreover, Ia+b).cl, =
Iol lafelcl f2f. We note that (a+b).c may be meaningful while (a+b) may not
be meaningful.

It is not difficult to prove that:
o if @is meaningful and ¢ = ¢’ then ¢' is meaningful and [/, = [¢'[,,.
* if pand @' are meaningful and ¢@.¢' is defined then @.¢' is meaningful and
lo.¢'ln= 19 lnlol,, and
o if pand ¢’ are meaningful and if [@[,©[¢'[,, is defined then @+¢'is
meaningful and [o+¢'[,, = [ol.el¢'[.

Thus we can state

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

Proposition 4 Let G be a graph. For every interpretation (G, [[) of G, the

equivalence classes of meaningful G-computations, with respect to f [, form a
semantic universe mG which is a sub-semantic universe of ¢G. Moreover, [[1, is

a semantic function from mGto C. ©

We shall prove that the semantic universe mG may be seen as a free
construction over (G, [[). Let us consider a category Sem1 in which the objects
are semantic universes, and morphisms from Cto €' are functors / such that the
following holds:

e | preserves zero, and
o for all parallel arrows a and b in C, if /a@/b exists in € then a®b exists in C
and /(a®b)=laelb.

It is easy to prove that the semantic function [[, is also a morphism of
Sem1. A morphism / : C — €' of Sem1 is not necessarily a semantic function nor a
monotonic function. However, if a® b and /ae/b exists (for instance, if /a2 and /b
are consistent) then /a2 $ /b. Again we have a forgetful functor V : Sem1 — GF4.
Let us denote by §4/C the category of objects over V€ [MacL71]. An object of
G4/Cis a pair (G, [[) where [[is a C-interpretation of G. An arrow of §4/C
from (G, [[)to (G, [|') is a graph morphism F : G — G’ satisfying [Fx[' =
[x|, for every node or arrow x in G. We define Sem /€ similarly, replacing
graph morphisms by morphisms of Sem1. The forgetful functor V defines a
forgetful functor V/€ from Sem#/Cto G4/C.

Theorem 1 Let Cbe a semantic universe. The function that associates each
object (G, [[) of §G4/C with the object (m&, [[) of Sem1/C, defines a functor

m/C: §4/C — Sem1/C which is a left free adjoint to V/C: Sem1/C — G4/C.

Proof Let ¢ : G - V(mG) be the inclusion graph morphism. As V([[.)n¢ =
[l so n¢ is an arrow of §4/€ from (G, [[) to v/€mG, [[) = (V(mG),
V([[). We shall prove that 1¢ is the unit of an adjunction. The notations in the

proof are referred to Figure 3. In this Figure, dotted lines represent objects and
other lines represent arrows of the categories §4/C or Sem/C.

Let (€', T) be an object of Sem1/Cand let F : G — V€' be an arrow of gvwe
from (G, [[|)to V/C(€, T) = (V(€'), V(T)). Let ¢ be a meaningful computation
with canoical form ey =p; *+ py + .. * p,. Thus, @[, = eyl , =
Ipilnelezlne ... @ Ippl, exists in C.If p; = ¢, e;,....e;,, define p;* =

Iol,.So lol,, = v(T)p,*e ... V(T)p,* =Tp,* e ... ® Tp,* We conclude
that the arrow @* = p,*® ... @ p,* exists in C'and T(@*) = Tp;*® .. ® Tp,*
(because T is a morphism of Sem1). If we define H(g) = ¢* then H is an arrow of
Sem1/Cas it satisfies TH = [[,,. Moreover, the equation V(H)n¢ = F is satisfied in

LS 10

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

G4/Cand H is the unique arrow of Sem 1/C satisfying this equation. This completes
the proof. ©

Figure 3:

Initial Semantics An immediate consequence of this adjunction is the

following: Consider the category of V-objects under (G, [[) [MacL71]; an object
of this category is a pair (F, (€', T)) where (€', T)is an object of Sem1/C and

F: (G, [[)— v/€e, T)is an arrow of §4/C; an arrow from (F, (€', T))to

(F’, (€”, T')is a semantic function H satisfying F(V(H)) = F". In this category the
object (g, (mG, [[,,))is an initial object. Therefore, we may call (m@G, [[,,) the
initial semantics of (G, [[|).

4 COMPUTATIONS UNDER CONSTRAINTS

Inference Rules

Informally, constraints are ‘relationships' that must be enforced on
computations and the question is: what is the effect of constraints on computations
? In other words, how do we compute under constraints? In this section we answer
this and other related questions.

Definition 7 A constraint over a graph G is any statement of the form @<’
where ¢ and ¢’ are parallel G-computations and @ = @'. A specification G|K
consists of a graph & and a set K of constraints over G (usually & and K arefinite). ©

Intuitively, a specification G|X is a graph G under constraints K, so G|K can
be read "G such that K". In order to extend the results of the previous section to
computations under constraints we restrict our attention to a special class of
constraints, called edge constraint, Such a constraint has the form < e, where 7 is
a path called the body of the constraint, and e is an edge called the head of the
constraint. From now on constraints in a specification will be edge constraints.

IS u

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

Given a specification G|K we define G|K-computations and their preordering,
denoted s,: using the recursive inference rules shown in Figure 4. It is important

* .
to note that G|K-computations and their preordering <, are defined

simultaneously.
Figure 4: Constraint Inference rules Computation
Inference rules
Inclusion _x<e (constraint) e (edge)
xe n: src(e) — tgt(e)
Reflexivity _— —A _ (node)
(and Identity) o<™o id(A): A—> A
Transitivity osw__wik™e Q. A—9B w.B—C
(and Product) ‘PfK*e QYA —>C
Addition o< X0 wo o0 o)
(pfng*e ¢P5K*‘P"I’ WsK*‘p*'V @ty src(0) — tgt(6)
Parenthesis @ A—3B
(p) . A—> B
Zero Q A B (nodes)
zero(src(e), tgt(e))sk™o zero(A, B A— B
Q X (node)

zero(X, src(p)esi’zero(x, tgt(p))

Q X_(noge)
pzero(tgt(e), X)s*zero(src(p) X)
Augmentation | ¢y £ tgtlp)—s A
P& v e

_gp;K*,w R A—> src(o)
p.o<K Py

Distributivity | (@+y) & tat(p)— A

(p+y).Esk p.E+y.E

_(o+yw) R A —> src(p)
p(o+w)sk potp.y

We note that all G-paths and, in particular, all G-edges are GI|K-
computations. Thus the G-computations used in edge constraints are already G|K-
computations. We also note that the operation '+’ of G|K-computations is a

restriction of the operation '+' for G-computations. Indeed, the application of '+’
is now conditioned on the existence of a bound for the operands.

We use the notation K¢'<@ (read K infers g<¢') as an alternative notation
for q)s:(p’. In fact qos;(p’ means that ¢ and ¢’ are G|K-computations and the

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

constraint @<¢' is deduced from K using the inference rules of Figure 4. Given
two sets of constrains K and K’ over G, we write K K" if K -k for every k in K.

Now, two G|K-computations ¢ and ¢’ are said to be equivalent, denoted ¢ =, ¢',

iff (ps;(p' and q)'s,:(p. We extend the relation =, as follows:
@ = (Q) =, 1d(src(p)).p =, @.id(tgt(p)), for every GIK-computation @.

One can prove that this extended relation =, is actually a congruence relation and
has all properties seen earlier for the relation =. Therefore, the operations src,
tgt, ', zero and id can be defined on equivalence classes of G|K-computations.
These operations have the same properties as in Section 3. For example, from the
addition rules, the operation '+' is idempotent and product is distributive with

* -
respect to addition. Moreover, the preordering <, induces an ordering on parallel

G|K-computations, denoted <, which has also the same properties as the ordering
< defined earlier on G-computations. In particular, [@] <, [¢'] if and only if

[@] + [¢'] =[], i.e. if and only if ¢ + @' =, ¢". In view of the above rules and
definitions, Proposition 4 can be extended as follows:

Proposition 4 (continued) The equivalence classes of G|K-computations
equipped with the operations zero, id and "’, and the ordering '<, ' form a
semantic universe, denoted ¢GIK. ©

The meaning of Computations under Constraints

Clearly, every G|K-computation is a G-computation. Thus as in the previous
section one can define the meaning of a G|K-computation with respect to an
interpretation (C, I']l) of G. We recall that not all G-computations are necessarily
meaningful, and thus not all G|K-computations are necessarily meaningful. We
also recall, however, that two meaningful and equivalent G-computations have the
same meaning. This unfortunately, is not always the case for G|K-computations,
i.e. two meaningful and equivalent G|K-computations may have different
meanings. For example let C = Set; and K = {e<e’], where e and e are edges. The
computation e+e’is a G|K-computation obtained by addition and reflexivity rules.
Now, if lub([le], [e']l] exists in G, but lub([e], [e'[) = [e [then [e+e'[.=
wolfel, fe'l) =[ef=]e [, However, e+e'and e’ are equivalent G|K-
computations.

So the effect of constraints on computations is that the constraints may cause
violation of our basic requirement, i.e. that two meaningful and equivalent
computations must have the same meaning. Clearly, this is an undesirable

LS 13

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

situation, and in what follows we characterize interpretations in which equivalent
GlK-computations do have the same meaning, if they have a meaning at all.

Definition 8 Given an interpretation (G [[) of a graph G, we say that
e (G [|) satisfies the constraint ¢ < ¢', denoted [[ke @<¢', if @ and ¢’ are
meaningful with respectto (G [[)and o[, » l¢'[..
e (& || satisfies a set K of constraints, denoted [[ke K, if (G []) satisfies

every constraint in K, and
o (G I]) is a model of the specification GIKif [[FeK. ©

To simplify matters we shall drop the index € when no confusion is possible.
Clearly, in the absence of constraints, every C-interpretation of G is a C-model of
G. Note that if 7 = e ;e,...e, is a path then 7 is meaningful and [rf,=
lenlles-il...1e; . Thus, (G [[) satisfies the edge constraint 7< e if
Izl » fel. A specification GIK has always at least one C-model, namely, any
interpretation / such that /(e) = O(src(le), tgt(/e)) for every edge e present in K,
is a model of G|K. Such C-models are called trivial C-models. From now on by &-
model we mean a nontrivial C-model.

Let K be a set of constraints and let k be a constraint, which may or may not
be in K. We say that K implies k denoted K |- k, if every interpretation which
satisfies K also satisfies k. Given two sets of constraints K and K’ over G, we say
that K implies K", denoted K |- K*, if K implies every constraint in K’.

Theorem 2 The constraint inference rules of Figure 4 are sound and complete.
That is, for every specification G|K, if k is a constraint over G then K |- k if and
only if K k.

Proof Note that soundness means that the consequences of any constraint
inference rules are implied from its hypotheses. Let (G [[) be an interpretation
which satisfies a set of constraints K. Clearly the inclusion rule is sound. Since 2 is
an ordering in the semantic universe, reflexivity and transitivity rules are sound
too. To prove the soundness of addition rule, assume ¢@, y and 6 to be G|K-

computations and assume ¢ s,:e and V/:,ZG to be satisfied, and prove that qo+w§,:0,

(ps;(p'fw and ws,:(pw/ are satisfied. The assumption means that ¢, y and 0 are

meaningful and [o@/,.» [0/, and [yl .> I8/, in C. Thus, o[e[yl exists in
C, lolnelvlns 18l loln < lolnelyl,and [yl < @l .olyl,. Thus,itis
enough to prove that [¢[e[yl .= [¢+vl .. With earlier notations we can write
lo+wlan= ley, lm lQln = leylmand [yln = le, .. But [e,,, [, is the sum of
paths in 4*(p+y). Similarly, [e, [, is the sum of paths in 8*(p) and [e, [, is the
sum of paths in 8*(y). As 4*(p+y) = 4*()us*(y) so [p+y],, differs from
lol..elyl.. by a permutation of its terms and by repetition of some of its terms.
But @ is idempotent, associative and commutative, so [o+y/,, = ol e[yl

LS 14

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

The proof of the soundness of the remaining rules is similar. In fact each rule
reflects a property of the ordering of the semantic universe. Augmentation
reflects the monotonicity of composition, zero reflects the axiom of zero and
distributivity reflects continuity.
To prove completeness we show that if a constraint k cannot be inferred from K
using the rules, then there must be a nontrivial model (/, €) which does not satisfy
k. We shall give such a model when Cis W#, using the (enriched) Yoneda’s
Lemma [MacL71] as follows:
Let X be a node in G and consider the graph morphism /, : G — 8% defined by:
o for every node A, /,(A) = cGIK(X, A), i.e. the well behaved set of all
equivalece classes of GlK-computations from X to A, and
« for every edge u, /y(u) is the morphism from /,(src(u)) to /,(tgt(u)) that
associates the class of xu with every class x.
The graph morphism /, is a W#-model. Obviously /, is a nontrivial
interpretation. Moreover, if p<e is in K then for every v : X — src(p) we can

write u.p :,:u.e that is, /,(p)(u) :;/ x(e)(u). In other words /,(p) % /,(e) which

means that /, satisfies p<e. Now, assume that k = c<c’and K +- k. The model
I spc(c) does not satisfy k, otherwise we must have /y(c) % /y(c’). This means that

lsrece)(CHU) (;I src(c)(€')(u) or, equivalently,
u.c g,:u.c’, for every u : src(c) — src(c).

Taking u = id(src(c)) we must have ¢ g,:c' which contradicts K k. This complete

the proof. ©

Now, we shall prove the soundness and completeness of computation rules.
Let us first define + and |- notations for computations. We write
K+ @ when @ is a G|K-computation. That is, @ is a G-computation and ¢ can be
obtained by a finite number of application of computation rules beginning with G

and K. Similarly, K - ¢ means that ¢ is a G-computation and ¢ is meaningful with
respect to every model (G [[[) of K.

Theorem 3 The inference computation rules of Figure 4 are sound and
complete, i.e. for each set K of constraints over G, and for each G-computation ¢,
K+ @if and only if K |- ¢.

Proof The proof of soundness of computation rules is already contained in the
proof of Theorem 2. To prove completeness we use again the enriched Yoneda’s
Lemma. Let ¢ be a G-computation such that ¢ is meaningful with respect to
every model (G [[[) of K. We must prove that ¢ is a G|K-computation. Let X =
src(¢@) and consider the model (%%, /y) constructed in the proof of Theorem 2.
Thus, /(@) is meaningful in %». In particular /,()(id(X)) = ¢ has a meaning in
¢GlK, that is K i ¢. This completes the proof. ©

LS 15

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

Corollary 1 If (€ [/) is a model of the specification G|K then any two

equivalent GlK-computations have the same meaning with repect to
@ 1.

Proof if (¢, §[) is a model then, by Theorem 2, all G|K-computations are

meaningful. Moreover, if @=,y then if tpg,:w and ws,,;q) then we can write

lol 2 lvl,, and [yl 2@l so [wlw=19¢l.. Otherwise, w has the form (),
id.@ or @.id. In all these cases we obviously have [y/l..=lo[,.. ©

Specifications are objects of a category Spec. A morphism of Spec from
G K, to GJK> is a graph morphism F : G; — G such that for every constraint
e e,...ep<e in K the constraint Fe;.Fe,...Fe,<Feis in K,. Let us see a semantic
universe C as a specification (not necessarily finite) whose constraints are all 7 2 e
where m = e;.e5....episapathand e = e,;.e,-,....e,. As every semantic function
is monotonic, so there is a forgetful functor U : Sem — Spec. Let us denote by
Spec/C the category of objects over UC and by Sem/C the category of objects over
C. We denote by C-JMed the full sub-category of Spec/C whose objects are C-
models. The functor U defines a functor U/C : Sem/C — C-Med. Theorem 1 and

its proof can now be extended as follows:

Theorem 1 (continued) Let C be a semantic universe. The function that
associates each object (GIK, [[[) of C-Med with the object (¢GK, [[,,,) of Sem/C
defines a functor mK/C: C-Med — Sem/C which is a left free adjoint to the
functor U/C: Sem/C — C-Mod.

Proof Since [[, is a semantic function [[,, is a G-model of ¢GIK, so

Ur&(cBIK, [|) is an object of C-sed. Let 1, - GIK — U(cGIK) be the inclusion
graph morphism. As U([[m)gy = I, s0 Ny is an arrow of C-sMed from
object (GK, [1) to UrC(c¢@K, | I) = UsCc@IK, [[n). We shall prove that 7 is
the unit of an adjunction (see Figure 5, with the same convention as in Figure 3).

Figure S

ssasad

Sem/C mK/ @

Let (¢, T) be an object of Sem/Cand let F : G — UC' be an arrow of C-sMed
from (GIK, [[) to U/C(C, T) = (U(C"), U(T)). Let ¢ be a G|K-computation with

LS 16

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

canonical form e =p; + P2 * ... + p,. As [[is a model, ¢ is meaningful, that is,
{olo=lp Inelpolne ... ©0pnl . exists in €. As @is obtained by the addition
rule, there is a computation = such that p; <xx for all i, /<i<n. But F is an arrow of
C-Med, so F(p;) 9xF(x) for all i, 1<isn. This implies that ¢p*= F(p,) @ ... & F(py)
exists in C'. If we define H(¢gp) = @* then H is a semantic function and defines an
arrow of Sem/C, as it satisfies TH = | f,,. Moreover, the equation UHMgk = F is
satisfied in C-med and H is the unique arrow of Sem/C satisfying this equation.
This completes the proof. ©

Initial Semantics Similarly to Section 3 we can call (¢GIK, [[,,) the initial

semantics of (GIK, || [|) because it provides an initial object in the category of U-
objects under (GIK, [[).

5 CONSISTENCY AND FIXPOINT SEMANTICS

Let GIK be a specification and let [/ be an interpretation of G in some
semantic universe €. If [[is not a model of GIK then the question is: should we

discard [[? The answer is no, provided that [[is consistent with K because, as
we shall prove, a consistent interpretation can be embedded in a model.

Definition 9 Given a specification G|K, we say that an interpretation
(G, | |) of G is consistent with K if every G|K-computation is meaningful with

respectto [[. ©
By Theorem 2, every model (G [[) of GIK is consistent with K.

Proposition 5 Let G|K be a specification and let (G [/) be an interpretation
of GIK. Then (G, [[)is a G-model of GK if and only if

(G [) is consistent with K and any two equivalent and meaningful G|K-
computations have the same meaning with repect to [/.

Proof The ‘only if* part is expressed by corollary 1 of Theorem 2. Conversely,
assume that [[is consistent and that any two equivalent and meaningful G|K-

computations have the same meaning. Let z<e be an edge constraint in K. We can
write es e by reflexivity, and then by addition rules, e+x is a G|K-computation

and e+m< e e+n. Thus, e+n = e and we have [e+m[,,= e ,,. That is
lel .o lxl =lel or, equivalently, [n],> [el,. This means that [[satisfies

n<e. This completes the proof. ©

LS 17

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

Definition 10 Let GIK be a specification. The derivative of a G-computation ¢,
denoted dg, is defined recursively as follows:

e J(id(A)) = zero(A, A) and d(zero(A, B)) = zero(A, B),

« if @is an edge of G then if @is not the head of any constraint in K then dg is
zero(src(e), tgt(e))else dg is the sum of the bodies of all constraints in K
with head ¢,

o if @ = (p;) then 8((p) = (3<p,),

o if @ = @2 then d@) = ¢,.902+(9p).92+Ip;.0¢2, and

o if 9 = @;+¢,then d(Q) = dp,;+dp,. ©

Now, for every 720 and for every computation ¢, define "¢ as follows:
8(0)(0 =@, a(’)q) = aq)’ a(i)q) = a(a(l-l)¢)

Lemma 1 If ¢ is a GiK-computation then so is &”¢ and Ji)(ps,:(o, for all i20.

Proof It is enough to prove the proposition for i =/. We prove it by structural
induction. If d¢ = zero(src(g), tgt(p)) then, by the zero rule, d¢ is a GIK-

computation and 3<ps,:(p. If @is an edge of G and do = zero(src(¢p), tgt(e)) then

@ is the head of some constraint, dg is obtained by the addition rule and agos;:p.
Now, let ¢ be a derived G|K-computation such that, for each component e of ¢, de
is a G|K-computation and Bes,:e (structural induction hypothesis). If ¢ has the

form u.v then du anddv are G|K-computations and 3us;u and avs,jv by the
induction hypothesis. So by augmentation Ju.vsu.v, u.avg,:u. v and Ju.dveu.v.

Thus, d¢ = u.dv + du.v + du.dv is a G|K-computation and 8¢s:u.v = @, by the

addition rule. Similarly, if ¢ has the form u+v, where du and dv are G|K-
computations satisfying aug,:u and dv<yv, then du < us, @ and AV, V<, @, SOIP =

du+dv is a GIK-computation and 3¢s,:u.v = ¢ by addition rules. This completes the

proof. ©

Definition 11 An edge ¢ in a specification GIK is said to be non recursive if
there is an integer k 20 such that &%*'’e = zero(src(e), tgt(e)); otherwise e is
called a recursive edge. A specification with no recursive edges is called acyclic,
otherwise is said to be cyclic. For a non recursive edge e the smallest integer /,
satisfying d'e* e = zero(src(e), tgt(e)), is called the depth of e, and is denoted
depth(e). ©

LS 18

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

We stress that acyclicity refers to constraints K and not to graph G. The way
edges in K depend on one another, may be represented as a graph X called the

dependency graph. This graph is defined as follows:
o the nodes of X are the edges of G, and

« there is an edge from f to e in X whenever e is the head of a constraint in X
and r is the body of that constraint.

Note that for every edge e of G the edges which appear in de are the
immediate sons of e in X. In particular, leaves of X are those edges of G, which
appear only in the body of constraints. This allows to state the following
proposutions and lemmas which express important properties of cyclic
specifications.

Proposition 6 GIK is cyclic if and only if its dependency graph is cyclic.

Proof If the dependency graph X of GIK is cyclic then there is an edge e of G
(i.e. a node of X) such that &"e contains e for some 7 (in fact i is the length of a
cycle in X traversing e). This means that %’e = zero(src(e), tgt(e)) for every
k, that is GIK is cyclic. Conversely, if X is acyclic then an edge e of G cannot be a
son of e in the graph K. Thus, for some k, d’e is formed by leaves of X. This

means that %* e = zero(src(e), tgt(e)). This completes the proof. ©

Lemma 2 If GIK is cyclic then there is at least one edge e which is head of a
constraint in K, and two paths /. and r, such that K+ I..e.r, S;(e. Moreover, I, and

r. are cycles of G, but /, and r, are not necessarily unique nor with positive
length.

Proof Note that when we write K I I..e re< e, the paths I, and r, are cycles in
G. Indeed, I,.e.r, and e are parallel so src(l,) = src(l..er,) = src(e) and tgt(l,)
= src(e) so 1, is a cycle. Similarly r, is a cycle. Now, assume that the specification
is cyclic. From Lemma 2, there are edges e, e, ..., €, in G such that the
constraints Iy .e.lp < e, I;.e.rs en (i=1,2, ., n-1and Ipe,ry < eareinK,
where [; or r; may be the empty path for i = 0, 1, ..., n. It follows that K -l.ere <e,
where r, = ror; ...rn-yrp and I = Iy1,-; ...1,1,. Of course, the paths /. and r,
depend on the given cycle c but the last equalities show how to construct them
fromK. ©

Now, if I, and r, in the above lemma are unique for every recursive edge e
then G|K is said to be linearly cyclic. Note that uniqueness of /. and r, means that
they are formed by non recursive edges. Now the notion of depth can be
generalized for recursive edges.

Definition 12 The depth of a recursive edge e is the smallest integer /> / such
that &'e’e contains e. ©

LS 19

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

Lemma 3 In a linear cyclic specification G|K, for every recursive edge e, and
for all integers n and k, if 7<n and O<k<depth(e) then

a(nxdepth(e)*k)e = ,en_ a(k)e_ ren (*)

Proof We shall prove (*) by induction on k and n. From the proof of Lemma 2
we can see that 9@%Pt(€)e = |_e r,. This means that the equality (*) stands for k=0

and n=1. Assume that for a given n>1, equality (*) stands for O<k<depth(e)-1
(induction hyopothesis for). As /. and r, are formed by non recursive edges, we
can write

a(nxdepth(e))*k*l)e = a(le".a("’e.re") = Ien‘a(k'l)e'ren.
Similarly, assume that for a given k, O<k<depth(e), equality (*) stands for n21
(induction hypothesis for n). We can then write,

a((n+l)xdepth(e)+k)e = a(deph(e))(a(nxdepth(e)ok)) = a(deph(e))(len.a(k)e_r.en)
= ,en_a(depth(e)*k)_ren = ’en~(’e-a(k)e're)-ren = ,en*lla(k)e'ren* I.
This completes the proof. ©

Lemma 4 For every edge e in an acyclic or in a linearly cyclic specification and
for every natural number 20, the G-computation

Tie) = 3l pd®e
is a GlK-computation and T ,(e)s;e. Moreover,

(e) Aile)
Ti(e) = T,_,(e)+ I"’e e

where A;(e) = i div depth(e), nj(e) = i mod depth(e).

Proof The first part is an immediate consequence of Lemma 1 and addition
rule. The second part is a result of Lemma 3. ©

An important remark at this point is that, even for i>depth(e), the G|K-
computation T,(e) uses only dX’e, for O<i<depth(e). Moreover, since the
specification is assumed to be linearly cyclic, the cycles I, and r, and all o%’e,
O<k<depth(e), do not contain any recursive edge. ©

Now, we shall prove that every consistent interpretation can be embedded in

a model, and that this model can be constructed by a fixpoint operator. To this
end, let us first define an ordering on the class of all C-interpretations of a given

specification GIK as follows:
o [I</'ifandonlyif 1) JA] = JA] for every node A,and 2) [le] < [e]
for every edge e.

Definition 13 Given a cycle u : X — X in a semantic universe, we say that u is
finitely representable if there is integer n such that (u, u2, ..., u""'} is consistent

LS 20

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

and u' < u + u? + ... + U™ for every i2n. The least n satisfying this inequality is
called the height of u and is denoted height(u). ©

For example, every finite multivalued function is finitely representable (see
[LeSp93] for more details).

Let G|K be acyclic or linearly cyclic specification. Let € be a semantic
universe in which every cycle is finitely representable, and let (G, f f) be a given
interpretation of G which is consistent with K. Let J be the set of all C-
interpretations / which are consistent with K and [[</. Each / in J can be
extended to all G|K-computations. For simplicity, let us denote the extension of /
also by /. Then /(e+de) exists and is equal to /(e)®/(de), for every edge e in G.
Now, we define 7 : J — Jby:

o T(IXA) = I(A), for every node A, and
o T(I)Xe) = I(e)®l(de), for every edge e.

Theorem 4 With the above hypotheses, Jis a wposet with least element [[,

and the function T is continuous and has a least fixpoint [[° which is a model of
GlK.

Proof From the definition of the ordering of 4, it is clear that [/ [is the least
element of J. Moreover, J is a wposet, because the ordering of J is defined
pointwise and Cis a semantic universe. Let /,, /, be in Jand assume that Jub(/,,/,)
exists in J. This means that for every edge e in G, /,(e)@/,(e) exists in €. Thus we
have T(lub(l,,1,))e) = I,(e) @ I,(e) & [,(de) ®I,(de) = T(I,)(e)®T(l,)(e) =
lub(T(1,), T(l,))(e). That is, the function T is continuous.

As usual, the least fixpoint is obtained by iterating T on the least element of J.
That is, for every edge e, [e [° is the limit of the sequence ([ef, [e[e[de],
lele[oele]dzef, ..). Using the above notation we can write [e[° =
lim T e)].

We must show that [e [° can be computed in a finite number of steps. i.e. we
must show that [e [° is bouded by an arrow of €. Using the above Lemmas, if e is
not recursive then e [[° = [e[®[oel... @ [oceotne)-1)e .

Otherwise, consider /, and r, as in Lemma 2 and denote
e = max(height(J1.[), height([r.I)),
Le=l1Meli2]e...ef1.], and
Re = lrcllelrile...efr., 1.
Now, for all n>0 and all k, O<k<depth(e) we can write
110 1%el [rell = LoldPe [R, for every i>0. *)

From Lemma 4 we can write

depth(e)-1 Aj(e)x—~depth(e)-1
Te) =3 g o®e+ 3 k0 le-o®er!

nite) A(e)+ 1 Lie)
+Zk=olle ke T (*%)

IS 21

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

Now, from (*) and (**) we can write
lel® < &% Jowre | @ R @* i ok)L,

This inequality prove that [e [is bounded which completes the proof. ©

In [LeSp93] we show that [[° can be computed by an effective algorithm, in the
semantic universe mdet.

Fixpoint Semantics Using Theorem 1, the model f J° can be extended to ¢GIK
as a semantic function J [3.. This semantic function provides meaning for all

computations under the constraints of K. Let us consider the functor U : Sem —
Spec seen earlier and let us consider the full sub-category of the category of U-
objects under (G|K, [f), whose object are consistent interpretations. The pair

(¢GIK, [[3) is an initial object in this sub-category, on the one hand, and is

obtained by a fixpoint operator, on the other hand. We call (¢GIK, [I3 the
fixpoint semantics of (GK, [[).

6 CONCLUSION AND FURTHER RESEARCH

We have considered computations over a graph as special subgraphs, and we have
introduced a set of inference rules for deducing new constraints and new
computations from old. These notions received interpretations in an enriched
category. We proved that the inference rules are sound and complete.

One aspect of our approach that has not been developped here is its possibility of
incremental specification. This aspect, is of particular interest for modular
specification, especially in databases specifictaion. We are currently investigating
this research direction.

Acknowledgements: This paper would not have been written in its present
form without several valuable discussions that S.K. Lellahi had with Christian
Lair. The authors would like to thank him. The authors would also like to thank
the referees for their comments that have contributed to improve the paper.

LS 22

DEDUCTION OVER GRAPHS UNDER CONSTRAINTS ...

REFERENCES

[BaWe90] M. Barr, C. Wells, Category for Computing Science (Prentice Hall,
1990).

[CoMe90] M.P. Consens, A. Mendelzon, Graphlog : A Visual Formalism for Real
Life Recursion, in : Proc. ACM-SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (1990) 404-416.

[GPV90] M. Guyssen, J. Paredaens, D. Van Gusht, A Graph-Oriented Object
Database Model, Proc. ACM-SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (1990) 417-424.

[Gray74] J.W. Gray, Formal Category Theory : Adjointness for 2-categories,
Lecture Notes in Mathematics, vol 391 (Springer, Berlin, 1974).

[Gray89] J.W. Gray, The Theory of Sketches as a Model for Algebraic Semantics,
In : Category in Computer Science and Logic, Contemporary Mathematics vol. 92
(American Math. Society, 1989) 109-135

[GuSc90] C.A. Gunter, D.S. Scott, Semantic Domains, In : J.van Leeuwen ed.,
Handbook of Theoretical Computer Science vol. B (Elsevier Science Publishers,
1990) 635-674.

[Giiti93] R.H. Giiting, Second-Order Signature : A Tool for Specifying Data
Model, Query Processing, and Optimization, Sigmod's 93, Proc. of the ACM-
Sigmod International Conference on Management of Data. Washington DC may
26-28 1993, edited by P. Buneman and S. Jajodia, acm Press.

[KuVa93] G.M. Kuper, M.Y. Vardi, The Logical Model, ACM transactions on
Database Systems, vol. 18, No. 3, September 1993, pages 379-413.

[Kelly 82] G.M. Kelly, Basic Concepts of Enriched Category Theory, vol. 64 of
London Mathematical Society Lecture Note Series (Cambridge University Press,
1982).

[Lell93] S.K. Lellahi, Une formalisation Algébrique pour la Modelisation des
Données, Séme journées du LIPN, 6-7 septembre 1993, Univ. Paris13, France.
[LeSp91] S.K. Lellahi, N. Spyratos, Towards a Categorical Data Model
Supporting Structured Objects and Inheritance, in : proc. Next Generation
Information System Technology, Lecture Notes in Computer Science, vol.504,
(Springer, Berlin, 1991) 86-105.

[LeSp92] S.K. Lellahi, N. Spyratos, Categorical Modelling of Database Concepts,
Esprit BRA Project 3070, Technical Report Series, FIDE/92/38; University of
Glasgow, Dept. of Computer Science, also Research Report No 746, LRI, Univ.
Paris X1, Orsay, 1992.

[LeSp93] S.K. Lellahi, N. Spyratos, An Algebraic Semantics for Data Modelling
under Constraints, Research Report No 93-05, LIPN, Univ. Paris-Nord,
Villetaneuse, France, 1993.

DEDUCTION OVER GRAFPHS UNDER CONSTRAINTS ...

[MacL71] S. Mac Lane, Categories for the Working Mathematician (Springer,
Berlin, 1971)

[PoWe92] A.J. Power, C. Wells, A formalism for the specification of essentially-
algebraic structures in 2-categories, Mathematical Structures in Computer
Science Vol. 2 (1992) 1-28.

[TGP91] C. Tuijn, M. Guyssen, J. Paredaens, A Categorical Approach to Object-
Oriented Data Modelling, Research Report No 91-09, University of Antwerp
(UIA), Belgium.

[TuGu92] C. Tuijn, M. Guyssen, Views and Decomposition of Databases from a
Categorical Perspective, Proc. International Conference on Database Theory
ICDT 92, Lecture Notes in Computer Science vol. 646 (Springer, Berlin, 1992)
99-111.

[Ullm88] J.D. Ullman, Principles of Database and Knowledge-Base Systems, vol.
I (Computer Science Press, 1988).

[VaVa92] J. Van den Bussche, D. Van Gucht, A Hierarchy of Faithful Set
Creation in Pure OODB's, in : Proc. of International Conference on Database
Theory ICDT, Lecture Notes in Computer Science vol. 646 (Springer-Verlag,
1992) 326-340.

[Wedd92] G.E. Weddell, Resoning about Functional Dependencies Generalized
for Semantic Data Models, ACM Transactions on Database Systems vol 17, No 1
(1992) 32-64.

