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Abstract 

We introduce a notion of compilation and a notion of constraint over graphs, and we give 
an inference system for deducing new compilations or constraints from old. The graphs and the 
inference rules are interpreted in suitable enriched catégories, which allow to define the model of 
a graph under constraints. We prove that our inference system is sound and complète. 

Keywords: Categorical Semantics, Categorical Logic, Enriched Catégories, Graph-Based 

Modelling of Knowledge, Algebraic Spécification-

1 INTRODUCTION 

In advanced computer applications, such as multimédia applications, entities 
of différent Systems must cooperate together. Thèse entities hâve usually différent 
représentations and organizations, and they may corne from a functional, or a 
logic, or an applicative or an object-oriented programming language as well as 
from a data or a knowledge base. As a conséquence it seems necessary to hâve a 
uniform représentation of ail kinds of entities at conceptual level. Indeed such a 
représentation makes easier interfacing of the Systems concerned on the one hand, 

A.M.S. SUR CLASS. : 18 C10 ,68 C 99,18 D 20 

mailto:kl@lipn.univ-parisl3.fr
mailto:spyratos@lri.fr


DEDUCTION OVER GRAPHS UNDER CONSTRAINTS... 

and the compréhension of the behavior of the whole system on the other hand. In 
any case, in order to answer user queries, the system must be able to combine old 
entities of various kinds to deduce new entities. Therefore, the uniform 
représentation of entities should be equipped with constructs such that their 
instantiation in a given system provides constructs of that system. 

In récent years the database community and the knowledge base community 
hâve been faced with this kind of problems. Some researchers hâve argued that at 
conceptual level data should be structured as graphs, and several graph-based 
models hâve been proposed recently [CoMe90], [GPV90], [Wedd92], [VaVa92], 
[KaVa93]. Others hâve proposed second order signatures as a modeling tool 
[Guti93], and some authors hâve tried to use category theory for such a modelling 
[TGP91], [TuGu92]. In [LeSp93,92,91] we hâve proposed a data model in which 
the conceptual level is presented as a graph with constraints and in which data are 
organized as partial/mutivalued functions, or more generally as morphisms of a 
spécial category. However, the approach of [LeSp93, 92, 91] is a model theoretic 
approach. In this paper we présent a proof theoretic approach by introducing a 
system of effective inference rules, and we show how the déduction process, 
constructs a free adjoint functor. We prove soundness and completeness of the 
rules using the properties of enriched catégories [Gray74], [Kelly82], [PoWe92] 
and the Yoneda Lemma [MacL71], [BaWe90]. This may be seen as the main resuit 
of the présent paper. 

The rest of the paper is organized as follows. In Sections 2 we présent the 
notion of semantic universe and semantic fonction: a semantic universe is aV-
category, and a semantic fonction is a V-fonctor [Gray74], [Kelly82], when V is 
a category of spécial posets called well-behaved posets. In Section 3 we introduce 
the basic concepts of graph and interprétation of a graph in a semantic universe. 
We give a syntactic way that constructs a semantic universe over a graph. The 
arrows of this semantic universe are called computations. We prove that the 
'meaningfor computations with respect to a given interprétation for a given 
graph is a free construction in a comma category. In Section 4 we define the 
notion of constraint on a graph. Constraints are déclarations of the form p^e, 
where p is a path and e is an edge, which must be enforced between computations. 
We présent a set of inference rules which operate on a graph with constraints. 
Computations obtained by thèse rules are called computations under constraints. 
We introduce a notion of constraint satisfaction, a notion of model and a notion of 
constraint implication and we prove that the inference rules are sound and 
complète. This is the main resuit of the paper. In Section 5 we consider 
interprétations which are not models but are consistent with the constraints. Such 
an interprétation générâtes a canonical model and we prove that his model is 
constructed as a least fixpoint. We call this least fixpoint the fixpoint semantics. 
Finally, in Section 6, we offer some concluding remarks and suggestions for 
further research. 
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2 SEMANTIC UNIVERSES 

A subset of a partially ordered set (poset) is said to be consistent if it is 
bounded. A well-behaved poset, or wposet for short, is a non empty poset in 
which every finite consistent subset A has a least upper bound, denoted lubA. In 
particular, the empty subset has a least upper bound called the zéro of the wposet 
Clearly every upper semi-lattice is a wposet. A morphism between two wposets is 
a fonction which préserves consistency and lub. That is f is a morphism of 
wposets if for every finite bounded subset A, of the source of f, the subset f(A) is 
bounded, in the target of f, and lub(f(A)) = f(lubA). An équivalent way is to say 
that f is a morphism of wposets if f préserves zéro and whenever (a, b] is 
consistent so is (fa, fb) and f(lub[a, b)) = 1ub(fa, fb). Such a fonction f is 
monotonie. The category of small wposets is denoted by WS>. It is easy to see that 
this category is finite complète and finite cocomplete. Moreover, limits and sums 
in WP can be computed pointwise. 

Définition 1 A t^iP-category [Gray74], [Kelly82] is called a semantic universe. o 

In fact, semantic uni verses are spécial 2-categories [PoWe92]. More 
precisely, given an arrow u . A -* 6, call A the source of c/, denoted src(u), and B 
the target of c/, denoted tgt(u). Now, the category C is a semantic universe if 

• for ail objects A and B the set G(A, B) of arrows1 from A to B is a wposet; the 
zéro of this wposet is denoted 0(A, B), 

• 0(tgt(u), A)u = 0(src(u), A), and uO(A, src(u)) = 0(A, tgt(u)), for every 
arrow u and every object A, 

• for ail arrows x, y, z and t as in the following configuration 

if (y, z) is a consistent pair, then so are (yx, zx) and (ty, tz) and we hâve: 
- lubfyx, zx) = lub(yt z)x (left continuity) 
- lubfty, tz] = t lub (y, z) (right continuity). 

Let * dénote the partial ordering over arrows of 6. We can prove that 
composition of arrows defines a monotonie fonction with respect to the ordering, 
that is, in the above configuration: 

- if y ï z then yx i zx (right augmentation), and 
- if y £ z then ty i tz (left augmentation) 

From now on, in a semantic universe we shall write V instead of z. It is 
clear that the category *tâP is itself a semantic universe. Indeed, morphisms 

1 Ail semantic universes considered in this paper are small or localiy small catégories 
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between two wposets can be ordered pointwise and this ordering satisfies the 
above axioms. Other interesting examples of semantic universes are: 

• the category $U± of sets and partial fonctions with the usual ordering on 

partial fonctions, 

• the category mSU of sets and multivalued fonctions with pointwise inclusion, 

• the category Sbiel of sets and binary relations with the usual ordering on 

binary relations, and 

• the category Gp*oî continuous fonctions between complète partial orderings 

[GuSc90]. 

A semantic universe with only one object is a monoid equipped with a well 
behaved partial ordering satisfying continuity. More precisely, let M be a set 
equipped with an associative product, an identity élément e and a partial ordering 
V such that: 

• there is an élément e of M, called zéro, satisfying e $m and em = me = e for 
ail m in M, 

• for ail éléments m, and m2 if there is m 3 such that m, * m5 and m2 * m j , then 
1ub(mh m2) exists, and 

• if lub(m h m2) exists then so does lub(m5m h m5m2), for every m3 in M, and 
1ub(mj, m2)m5 = lub(m jm2,m ^m3) and 
mjlub(mh m2) = lub(m5mu m5m2) 

A sub-category & of a semantic universe Gis called a sub-semantic universe 
of G if & equipped with the restriction of the ordering of G becomes a semantic 
universe. 

A semantic universe G being a 2-category, G contains three category 
structures which cooperate together, as sated for gênerai 2-categories in 
[PoWe92]. Thèse three catégories are: 
The base category G, whose class of objects will be denoted G0 and whose class of 
arrows will be denoted Gh 

The vertical category, defined by the ordering f4f of G, whose objects are ail 
éléments of G, and whose arrows, called 2-cells, are pairs of parallel arrows f, g 
such that f $ g. Such a cell is seen as a vertical arrow from f to g, and the vertical 
composition is defined by the transitivity of the ordering. That is (f * g).(g * h) = 
(f $ h) corresponds to: if (fig and gib) then fi h. Moreover, in this category the 
coproduct of two objects f and g, when it exists, is lub(f, g). So, we use f e gas 
an alternative notation for lub(f, g). 
The horizontal category, whose class of objects is G0, and whose class of arrows is 
the class G2 of ail 2-cells. A 2-cell f $ gis seen as a horizontal arrow from A to B 
where A is the common source and B is the common target of parallel arrows f 
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and g. The horizontal composition is the composition in the category GxG, that is 
(h * k)o(f * g) = (hf * kg) if and only if src(h) - tgt(f) and src(k) = tgt(g). 
Thus, in a semantic universe, any pair a = (f, g) of arrows such that f * g, may be 
seen as a vertical or a horizontal arrow. We adopt the notation of [PoWe92] and 
we write a : f + g when a is seen as a vertical arrow, and we writeaf* g.A ->6 
when a is seen as a horizontal arrow. 
The interaction between thèse three catégories is expressed in the following well 
known proposition: 

Proposition 1 In a semantic universe G, for ail configurations of objects, 
arrows and cells as in Figure 1, the following holds: 

interchange law: (P'oa').(poa ) = (p'.p)o(a'.a). o 

Figure 1 

> C 

Intuitively, a morphism between two semantic universes is a functor which 
préserves at least ail thèse three structures. More precisely: 

Définition 2 A «MP-functor [Gray74], [Kelly82] is called a semantic function. o 

Thus, semantic fonctions are spécial 2-fonctors. More precisely a functor / 
from a semantic universe Gto a semantic universe G' is a semantic fonction if the 
following holds: 

• l(0(A, B)) « 0(1 A, IB) for ail objects A and B, and 
• for ail parallel and consistent arrows a and b in G, the arrows la and Ib are 

consistent in C'and l(a e b) = la e Ib. 
It is clear that such a fonctor is monotonie. We dénote by &m the category whose 
objects are ail locally small semantic universes and whose arrows are semantic 
fonctions. 

3 COMPUTATIONS OVER A GRAPH 

Graphs 
In this paper, by graph we mean a directed labelled multigraph. An edge 

from node / to node J with label e is displayed as e ; / -* J, or / -£-» J or leJ. 
The node / is called the source of e, denoted src(e), and the node J is called the 
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target of e, denoted tgt(e). We assume that edges hâve distinct labels. A séquence 
(e h e2,..., en) of edges in a graph G, is called a G-path of length n, if tgt(ej) = 
src(eh f) for every /, UHn- /. We dénote such a path by ete2...en. Morphisms of 
graphs are defined as usual, and the category of locally small graphs is denoted by 

Computations 

Given a graph G, we apply the recursive inference rules, of Figure 2 on G to 
obtain what we shall call G-computations. In thèse rules, a computation cp from A 
to B is denoted <p : A —~-> B, and 

means that " in any context, if we hâve already a premise O then we can construct 
the conséquence *F. 

Figure 2 : Inclusion 

identity 

Product 

Addition 

Parenthesis 

zéro 

(edçe) 

e : src(e)- tqt(e) 

(note) 
id(A):A-

y; A _£ y; d 
<p.y: A 

y; A- y; A- ifi-

q>+y/: A—** B 

<p : A JSL 

.&l;A; • e 
g (notes) 

zeroCAB): A • 

If we regard src, tgt, id, '.' and '+' as opérations, then G-computations can be 
seen as terms obtained by applying thèse opérations on the symbols representing 
nodes and edges of G. A G-computation of the form e, e2...en where ail e ; are 
edges is identified with the path e]e2....en. A G-computation of the form id(A) is 
seen as a spécial G-path of length 0 associated with A. Thus, there are several 
paths of length 0, one for each node. From now on by G-path we mean a path of 
length 0, or a path of positive length. Two G-computations are said to be parallel 
if they hâve common source and common target. 
Note: It is important to note that ail the above rules are syntactic rules. A 
computation may be seen as a program, and this is the reason why we dénote the 
product of two consécutive computations <p : A ——> B and y/ : B —~» C by q>.y/ 
and not by y/.<p (which is the usual notation in a category). 

Equivalent Computations 

Let P/, p2,... , pnbe parallel G-computations with source A and target 6. We 
say the G-computation p, +p2+... +pn is a G-expression if each p, is either a G-path 
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or the G- computation zero(A, B). In particular, every G-path is a G-expression. 
We shall see that expressions are canonical forms of computations. 

Now, with every G-expression e from A to 6 we associate a set A(e) of 
parallel G-paths, from A to B, as follows: 

• Mzero(A, B)) = 0, 
• /6(p) = (p), for every path p, and 
• Me+e') = /6(e)u/6(e'), for ail parallel G-expressions e and e'. 

The particularity of the set Me) is that it is a set of parallel paths, so it contains at 
most one computation of the form ld(A) and no computation of the form zero(A, B). 
We can extend the fonction /6 to ail G-computations using the following rules, 
where the extension is denoted M. 

For every expression e, ail parallel computations (p, <p', ail computations y/, and 
ail edges f with src(f) = tgt(ç) = src(yf), define: 

• M(e) = Meh 
• M(((p)) = M(<p.id(src((p))) = M(id(tgt((p)).ç) = M((p\ 
• M((p+ç') = M((p)vM(<p'), 
• ^Vçi f) - UgMw^Vflf. O, and 
• M(<p.yr) = u /M^*r<p.a 

Définition 3 Two G-computations ç> and i/fare said to be équivalent, denoted ç 
s y/, if they are parallel and /4 Yçtf =J*(yt). o 

For instance,/+/s/and/+g s g+ / Similariy,/+g+zer0fsrc(/;, *£*(/),) s /+g , and 
so on. The following proposition is an immédiate conséquence of définitions. 

Proposition 2 The relation s is a congruence relation for the opérations src, 
tgt, zéro, \ \ '+ ' and parenthesizing. That is, s is an équivalence relation and: 

• if (p s yfthtn src(ç) = src(y/) and tgt(ç) - tgt(yf), for ail parallel 
G-computations (p and y/, 

• if (p s yf then (<p) s (yr), for ail parallel G-computations <p and y/; 
• if (p s ynhen (p + £ s y/ + £, for ail parallel G-computations <p, yf and £ 
• if (p s y/then ç.Ç = y/.Ç and p.<p = p. yr, for ail parallel G-computations (p, y/, 

and ail G-computations p and Ç such that y>.£, y/:£, p.<p and p. y/" are well 
defined. o 

Let us dénote by [ç] the équivalence class of a G-computation ç>. Using the 
above proposition, the opérations [id], [zéro], [src], [tgt], [.] and /+7 can be defined 
on équivalence classes of G-computations as follows: 

• [IdKA) = [id(A)]f [zeroKA, B) = [zero(A, B)], 
• (src]((p) = src(cp), [tgt]((p) = tgt((p), 
• [<p][.][yr] = [ç.yr] and 
• [<p][+]fy]=[<p+yrL 
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Moreover, équivalence classes of G-computations can be ordered by: 
[<p] i [çf] if and only if M(ç) c M(<p') 

That is, [<p] ï [ç'J if and only if ç + y>' e (p1. Moreover, /y>+ç>7 - 1ub([q>], [<p'D, 
for ail computations <p and <p\ 
For simplicity we dénote the opérations [id], [zéro], [src], [tgt], £7and/+7by ld, 
zéro, src, tgt, '.'and +',respectively. 

Proposition 3 The équivalence classes of G-computations equipped with the 
opérations zéro, id and '.' , and the ordering %i% form a semantic universe, 
denoted cG. 

Proof The objects of cG are the nodes of G, the arrows of cG are ail 
équivalence classes of G-computations, and the composition of arrows is defined 
by: 

[y/][(p] = [<p][y/] if and only if src(ys) = tgt((p). 
The rest of the proof is obvious, but tedious, using the properties of union on sets 
and the définitions of /6* and s. o 

The fonction that associâtes each graph G with the semantic universe cG 
defines a functor c from the category tjt, to the category «&m. However, c is not a 
left free adjoint to the forgetfol fonctor U : Svm,—> tjt,. That is, there may exist a 
graph morphism / from G to a semantic universe G which cannot be freely 
extended to cG as a semantic fonction. Indeed for a computation <p which uses the 
addition rule, l(<p) may be 4meaningless' in the semantic universe G. However, we 
shall prove in the sequel, that / can be freely extended to a suitable sub-semantic 
universe of cG. 

The Meaning of Computations 

Recall that the ordering of a gênerai semantic universe is denoted '=>' and its 
lub opération is denoted '•'. 

Définition 4 Given a graph G, we say (G, I § ) is an interprétation of G, if C is 
a semantic universe and S S is a graph morphism from G to UG. o 

When G is given, U // is called a G-interpretation of G. Intuitively, for every 
node/edge x of G, //x^ is the meaning of x in the universe of discourse G. Now, 
the important question is: Can // § be extended to ail G-computations ? The answer 
to this question dépends on the semantic universe G. For example, let G be the 
graph with only two parallel edges e and e ', and let // // be an interprétation of G 
in the semantic universe su± (i.e. the universe of partial fonctions). Suppose that 
the greatest lower bound of the fonctions //e // and fle 'Il does not exist. Then e+e ' 
is a G-computation, but II II cannot be extended to e+e '. However, if we consider 
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g B as an interprétation in the universe of multivalued fonctions, then II can be 
extended to e+e'by ll(e^e'Xx) = le(x)lule'(x)l, for every x in src(lej). 
This example shows that, given an interprétation 11 of a graph, / I cannot 
necessarily be extended to ail computations. We call those computations to which 
I I can be extended meaningful computations with respect to I / . This partial 
extension of II, denoted Um, is defined as follows: 

Définition 5 Given an interprétation 11 of a graph G, 
• every G-node or G-edge x is meaningfol and lxlm = /xI, 
• id(A) is meaningfol and I id(A)lm = id(lA I), for every node A, 
• every G-path p = eje2...en of positive length is meaningfol and 

IPL= lenl...le2llejl, 
• zero(A,B) is meaningfol and lzero(A,B)lm = 0(1 Alm, lBlm), for ail nodes 

A and 6, and 
• a G-expression e = p, +p2

+... +Pn is meaningfol if //p, lmelp2Bm° • • -
*IIPnL exists in G, and then //e//m = //p, Hm*ip2lm* ... °BpnBm- <> 

Note that when the meaning fonction I Bm is applied to a path p = e ; e2... en it 
reverses the order of edges in the path. 

It follows from this définition that ail équivalent G-expressions hâve the 
same interprétation (if one exists). Now, let y>be a G-computation, let M(ç)= 
(P\> P2> -> Pnh and let eç = p ; +p2 + ... +pn . Moreover, let eoq> = 

PG( /ri>G(2)+ .+Parn> where cry> stands for a permutation of the indices /, 2, ..., 
n in eç,. Since e,, and eaç, are équivalent, if leçlm exists then Iea<pBm exists and 
//eç)//m= BeG<plm. The expression e^ is called the canonical form of ç. Now, we 
can define the meaning of a computation as follows: 

Définition 6 A computation (p is said to be meaningful, with respect to an 
interprétation 11, if ^ e ^ is defined; otherwise (p is said to be meaningless. If <p 
is meaningfol, then leçlm is called the meaning of y), o 

For example if a, P and c are edges then (a+b).c is meaningful if and only if 
h-clm*lb.clM= Ibllalelcllal exists. Moreover, l(a+b).clm = 
IbB lai*Ici lai. We note that (a+b).c may be meaningfol while (a+b) may not 
be meaningfol. 

It is not difficult to prove that: 
• if y> is meaningfol and (p s q>' then ç' is meaningfol and l<plm = I<p'Bm, 
• if (p and <p' are meaningful and (p. ç' is defined then y>. <p' is meaningful and 

h-<P'IL= h'ijçiïwznd 
• if <p and y>' are meaningful and if ll(plm* l<p'lm is defined then <p+ç' is 

meaningful and lq>+ç'lm = lq>lm*fo'lm. 

Thus we can state 
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Proposition 4 Let G be a graph. For every interprétation (G, II) of G, the 

équivalence classes of meaningfol G-computations, with respect to 11, form a 
semantic universe mG which is a sub-semantic universe of cG. Moreover, I lm is 

a semantic fonction from mG to G. o 

We shall prove that the semantic universe mG may be seen as a free 
construction over (G, II). Let us consider a category &ml in which the objects 
are semantic universes, and morphisms from Cto G1 are fonctors / such that the 
following holds: 

• / préserves zéro, and 
• for ail parallel arrows a and P in C, if laeib exists in C then a*b exists in G 

and l(a e b) = la 0 Ib. 

It is easy to prove that the semantic fonction I lmis also a morphism of 

Seml. A morphism / : G -> G' of Seml is not necessarily a semantic fonction nor a 

monotonie fonction. However, if a $ b and laolb exists (for instance, if la and Ib 
are consistent) then la *¥ Ib. Again we hâve a forgetful functor V : Seml -> ^*v. 
Let us dénote by j^t/Cthe category of objects over VG [MacL71]. An object of 
tji/Gis a pair (G, II) where 11 is a (^-interprétation of G. An arrow of $i/G 
from (G, 11) to (G', 11') is a graph morphism F : G -> G' satisfying //Fx//' = 
llxl, for every node or arrow x in G. We define Seml/G similarly, replacing 
graph morphisms by morphisms of Seml. The forgetful functor V defines a 
forgetful functor l//efrom Seml/G to $i/G. 

Theorem 1 Let G be a semantic universe. The fonction that associâtes each 
object (G, 11) of $i/G with the object (mG, //1^) of £emï/£, defines a functor 
™/C : §x/G -> Seml/G which is a left free adjoint to V/G : Seml/G -» §i/G. 

Proof Let rjc : G -> V(mG) be the inclusion graph morphism. As 1/(7/ llm^c = 

Il //, so 7]G is an arrow of $t/G from (G, // JO to V/G(mG, // / /m ; = M m G ; , 
Wl llm)). We shall prove that î]G is the unit of an adjunction. The notations in the 

proof are referred to Figure 3. In this Figure, dotted Unes represent objects and 
other Unes represent arrows of the catégories §t/G or Seml/G. 

Let (&, T) be an object of Seml/G and let F : G-> V& be an arrow of §i/G 
from (G, 11) to V/G(G', T) = (V(ff)9 V(T)). Let y) be a meaningfol computation 
with canoical form e« = p , + p 2

 + ... + pn. Thus, J ' y ) ^ = //e<p//m = 
Wpi\\m*le2Bm* ... *IPnlm exists in £ If p/ = e;7 ei2....ein(t define p,* = 

« e l n / ; F(eh)F(eiE). As 1/<TJ>F - | # wehave WDp/* - / / e , n / . J e , 2 / / / / e , J « 

//p,//m. So //y>//m = W D p , * e ... e V(T)pn* = Tp1*e ... e Tpn* We conclude 
that the arrow y>* = p ; * e ... e pn* exists in C'and 7Yy>*,) = Tp ;* e ... e 7pn* 
(because 7 is a morphism of Seml). If we define Wy>J = ç* then H is an arrow of 
Seml/G as it satisfies TH = // //m. Moreover, the équation V(H)ric = F is satisfied in 
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tjt/G and H is the unique arrow of Seml/G satisfying this équation. This complètes 
the proof. o 

Figure 3 r 

u-' 
m C 

x* 
Seml/Cv m/?r 

>V(mG) 

vl Im)/! 

Initial Semantics An immédiate conséquence of this adjunction is the 
following: Consider the category of V-objects under (G, II) [MacL71]; an object 
of this category is a pair (F, (G', T)) where (G', T) is an object of Seml/G and 
F ; (G, H) -> V/G(G', T) is an arrow of $i/&, an arrow from (F, (&', T)) to 

(F', (G", T')isa semantic fonction H satisfying F(V(H)) = F'. In this category the 
object (r\c, (mG, I lm)) is an initial object. Therefore, we may call (mG, // lm) the 
initial semantics of (G, II). 

4 COMPUTATIONS UNDER CONSTRAINTS 

Inference Rules 

Informally, constraints are 'relationships' that must be enforced on 
computations and the question is: what is the effect of constraints on computations 
? In other words, how do we compute under constraints? In this section we answer 
this and other related questions. 

Définition 7 A constraint over a graph G is any statement of the form <pi(p\ 
where (p and ç' are parallel G-computations and <p * <p'. A spécification G\K 
consists of a graph G and a set K of constraints over G (usually G and K arefinite). o 

Intuitively, a spécification G\K is a graph G under constraints K, so G\K can 
be read "G such that K1'. In order to extend the results of the previous section to 
computations under constraints we restrict our attention to a spécial class of 
constraints, called edge constraint, Such a constraint has the form m e, where n is 
a path called the body of the constraint, and e is an edge called the head of the 
constraint. From now on constraints in a spécification will be edge constraints. 

us u 
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Given a spécification G\K we define G[K-computations and their preordering, 

denoted iK using the recursive inference rules shown in Figure 4. It is important 

to note that G|/C-computations and their preordering iK are defined 

simultaneously. 

Figure 4: Constraint Inference rules 

Inclusion 

Reflexivity 
(and Identity) 

Transi t iv i ty 
(and Product) 

Addition 

Parenthesls 

Zéro 

Augmentation 

Dis t r ibut iv i ty 

me (constraint) 
**K e 

S&K-

9*K*0 

JS^KIÂ ll&K*Q 

<p+yf*K 0 Q*K P + V V*K P + V 

JBL-

zero(src(<p), tgt(<p))iK ç 

Computation 
Inference rules 

(edçe) 

K: src(e)- tgt(e) 
(node) 

id(A):A-

y;A-~ïd v;B-
<p.y/ : A — ^ C 

JXXÏ8L Jt&K-fL 

ç+y/: src(O)—* tgt(O) 

ç; A LÊ. 

(<p). A- B 
A B (nodes) 

zero(A, B)- A — » 

JSL. X(node) 

zero(X, src(<p))ç£K zero(X, tgt(ç)) 

g> X (node) 

<pzero(tgt(<p), XhK*zero(src(<p),X ) 

J&LKOJIL. Ê;WW-

&.K*UL-

<P-&K*V'Ç 

JL: A—ÏSCÇ(Ç) 

p.<piK*PV 

ÙBIML E: tçt(a>)-
(ç+\lf).Ç£K ç.ç+y.ç 

(ç+y) Q ; A srç(v) 
p.(<p+yr)£K PV+PV 

We note that ail G-paths and, in particular, ail G-edges are G\K-
computations. Thus the G-computations used in edge constraints are already G\K-
computations. We also note that the opération '*'of G|/<-computations is a 
restriction of the opération '+' for G-computations. Indeed, the application of '+' 
is now conditioned on the existence of a bound for the operands. 

We use the notation K>-y>'*y> (read K infers (pop' ) as an alternative notation 

for <piK<p'. In fact çiK(p' means that <p and <p' are G|K-computations and the 
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constraint <p*ç' is deduced from K using the inference rules of Figure 4. Given 
two sets of constrains K and K' over G, we write K H K' if K h- k for every k in K'. 

Now, two G|/<-computations (p and y>' are said to be équivalent, denoted y> &K<p\ 

iff <p*Kç' and (p'ïK<p- We extend the relation &K as follows: 

(p sK((p) sK id(src(<p)).ç sK (p. id(tgt(ç)), for every G|/C-computation (p. 

One can prove that this extended relation sK is actually a congruence relation and 
has ail properties seen earlier for the relation s. Therefore, the opérations src, 
tgt, '. ', zéro and id can be defined on équivalence classes of G|K-computations. 
Thèse opérations hâve the same properties as in Section 3. For example, from the 
addition rules, the opération V is idempotent and product is distributive with 
respect to addition. Moreover, the preordering *K induces an ordering on parallel 

G|K-computations, denoted iK, which has also the same properties as the ordering 
i defined earlier on G-computations. In particular, [q>] iK [ç'1 if and only if 
[<p] + Iç'] =K l(p'h i.e. if and only if <p + <p' sK cp\ In view of the above rules and 
définitions, Proposition 4 can be extended as follows: 

Proposition 4 (continued) The équivalence classes of G|/<-computations 
equipped with the opérations zéro, id and '.', and the ordering %ïK ' form a 
semantic universe, denoted cG\K. o 

The meaning of Computations under Constraints 

Clearly, every G|/<-computation is a G-computation. Thus as in the previous 
section one can define the meaning of a G|/<-computation with respect to an 
interprétation (G, // //; of G. We recall that not ail G-computations are necessarily 
meaningful, and thus not ail G|K-computations are necessarily meaningful. We 
also recall, however, that two meaningful and équivalent G-computations hâve the 
same meaning. This unfortunately, is not always the case for G|/<-computations, 
i.e. two meaningful and équivalent G|/<-computations may hâve différent 
meanings. For example let G = Set± and K = (eiel, where e and e' are edges. The 
computation e+e' is a Gl/<-computation obtained by addition and reflexivity rules. 
Now, if lubdlel, le'I) exists in G, but lub(hl, Ile'II) * le'B then le+e'lm= 
lub(Hel, Ile'H) *le'l = lle'lm. However, e + e'and e' are équivalent G\K-
computations. 

So the effect of constraints on computations is that the constraints may cause 
violation of our basic requirement, i.e. that two meaningful and équivalent 
computations must hâve the same meaning. Clearly, this is an undesirable 
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situation, and in what follows we characterize interprétations in which équivalent 
G|K-computations do hâve the same meaning, if they hâve a meaning at ail. 

Définition 8 Given an interprétation (G, 11 ) of a graph G, we say that 
• (G, 11) satisfies the constraint <p i ç', denoted II hs y*y>'> if <P and y>' are 

meaningful with respect to (G, 11) and l<plm * l<p'lm, 
• (G, I f) satisfies a set K of constraints, denoted / / Hc K, if (G, II) satisfies 

every constraint in K, and 
• (G, ll)isa model of the spécification G\K if BI he^ o 

To simplify matters we shall drop the index G when no confusion is possible. 
Clearly, in the absence of constraints, every ©-interprétation of G is a C-model of 
G. Note that if /r = e ie2-..en is a path then n is meaningful and lnlm= 
lenl len-jl... lej. Thus, (G, /JO satisfies the edge constraint me if 
InI $ leI. A spécification G\K has always at least one C-model, namely, any 
interprétation / such that l(e) = 0(src(le), tgt(le)) for every edge e présent in K, 
is a model of G\K. Such fî-models are called trivial ©-models. From now on by G-
model we mean a nontrivial ©-model. 

Let K be a set of constraints and let k be a constraint, which may or may not 
be in K. We say that K implies k denoted K |= k, if every interprétation which 
satisfies K also satisfies k. Given two sets of constraints K and K' over G, we say 
that K implies K', denoted K H K\ if K implies every constraint in K". 

Theorem 2 The constraint inference rules of Figure 4 are sound and complète. 
That is, for every spécification G\K, if k is a constraint over G then K |= k if and 
only if K h k. 

Proof Note that soundness means that the conséquences of any constraint 
inference rules are implied from its hypothèses. Let (G, 11) be an interprétation 
which satisfies a set of constraints K. Clearly the inclusion rule is sound. Since 4 is 
an ordering in the semantic universe, reflexivity and transitivity rules are sound 
too. To prove the soundness of addition rule, assume y>, y/ and 0 to be G\K-

computations and assume <p iKQ and \\fiKQ to be satisfied, and prove that (p+y/ïK6, 

y)̂ y>+yf and \ffiK(p+\ff are satisfied. The assumption means that <p, yf and 6 are 

meaningful and //<p//m^//0//m and ly/lm* llQllm in G. Thus, M/mW/W/m exists in 
G, llç/Loly/IL* BOlL, BçlL* IçB^llylLznd //^m^y>//m^/W/m.Thus,itis 
enough to prove that //<p//mW/ yfm= //y>+y//m- w ^ h earlier notations we can write 
f Ç* W/m = I v ^ m . //W/m = h Jim ™d Mm = / / ^ L - B u t / / « W ^ & the sum of 
paths in ̂ (qn-yr). Similarly, leçlm is the sum of paths in A*(ç) and //^^//m is the 
sum of paths in /6*(y/). As ^(ç+y/) = ^*((p)u/6*(y/) so //<p+y//m differs from 
Bçllm0! W/m by a permutation of its terms and by répétition of some of its terms. 
But e is idempotent, associative and commutative, so //yn-y/f m = //y>//mW/ y/V/m. 
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The proof of the soundness of the remaining rules is similar. In fact each rule 
reflects a property of the ordering of the semantic universe. Augmentation 
reflects the monotonicity of composition, zéro reflects the axiom of zéro and 
distributivity reflects continuity. 
To prove completeness we show that if a constraint k cannot be inferred from K 
using the rules, then there must be a nontrivial model (I, G) which does not satisfy 
k. We shall give such a model when ©is tâP, using the (enriched) Yoneda's 
Lemma [MacL71] as follows: 
Let X be a node in G and consider the graph morphism lx: G -> WP defined by : 

• for every node A, l/A) = cG\K(X, A), i.e. the well behaved set of ail 
equivalece classes of G|K-computations from X to A, and 

• for every edge u, lx(u) is the morphism from lx(src(u)) to lx(tgt(u)) that 
associâtes the class of xu with every class x. 

The graph morphism lx is a ttfiP-model. Obviously lx is a nontrivial 
interprétation. Moreover, if pie is in K then for every u : X -» src(p) we can 
write u.p iKu.e that is, lx(p)(u) <:Klx(e)(u). In other words lx(p)$lx(e) which 

means that lx satisfies pie. Now, assume that k = ac' and KM-k. The model 
lsrC(C) does not satisfy k, otherwise we must hâve l^(c) ̂  lx(c')- This rneans that 

/src^c/cXi/^ *KlSrc(c)(c'Xu) or> equivalently, 

u.c iKu.c', for every u : src(c) -> src(c). 

Taking u = id(src(c)) we must hâve c iKc' which contradicts Kw> k. This complète 

the proof. o 

Now, we shall prove the soundness and completeness of computation rules. 
Let us first define H and 1= notations for computations. We write 
K \- (p when y? is a G|/C-computation. That is, y) is a G-computation and cp can be 
obtained by a finite number of application of computation rules beginning with G 
and K. Similarly, K h y> means that y> is a G-computation and y> is meaningful with 
respect to every model (G, //1) of K. 

Theorem 3 The inference computation rules of Figure 4 are sound and 
complète, i.e. for each set K of constraints over G, and for each G-computation y), 
K \- (p if and only if K |= ç. 

Proof The proof of soundness of computation rules is already contained in the 
proof of Theorem 2. To prove completeness we use again the enriched Yoneda's 
Lemma. Let y) be a G-computation such that <p is meaningful with respect to 
every model (©, //1) of K. We must prove that y) is a G|/<-computation. Let X = 
src(cp) and consider the model (*B9, lx) constructed in the proof of Theorem 2. 
Thus, lx(<p) is meaningful in V#z>. In particular lx((p)(id(X)) = (p has a meaning in 
cG\K, that is K H (p. This complètes the proof. o 
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Corollary 1 If (G, II) is a model of the spécification G\K then any two 
équivalent G|K-computations hâve the same meaning with repect to 
(G, II). 

Proof if (G, 11 ) is a model then, by Theorem 2, ail G|/<-computations are 

meaningful. Moreover, if <psKy/ then if ç£Ky/ and y^y> then we can write 

hlm+Mm*Dà lvlm*l<ptmSO MmrMwr Otherwise, yhas the form (<p), 
id.<p or (p. id. In ail thèse cases we obviously hâve I y/^m= Içlm. o 

Spécifications are objects of a category Spec. A morphism of Speo from 
G i\K j to G^K2 is a graph morphism F : Gj —> G2 such that for every constraint 
eie2-.enie in K1 the constraint Fe ^Fe^.-.Fe^Fe is in K2. Let us see a semantic 
universe ©as a spécification (not necessarily finite) whose constraints are ail n$ e 
where n = e/.e^.-.en is a path and e = en1.en.j....eh As every semantic function 
is monotonie, so there is a forgetful functor U : Sem -» Spec. Let us dénote by 
Spec/G\hs category of objects over UG and by Sem/G the category of objects over 
G. We dénote by G-M*d the full sub-category of Spec/G whose objects are ©-
models. The functor U defines a functor U/G : Sem/G -> G-M*<£. Theorem 1 and 
its proof can now be extended as follows: 

Theorem 1 (continued) Let © be a semantic universe. The function that 
associâtes each object (G[K, 11) of G-M*d with the object (cG\K, 11^) of Sem/G 
defines a functor mK/G : G-M*d -> Sem/G which is a left free adjoint to the 
functor U/G : Sem/G -» G-M+d. 

Proof Since I //m is a semantic function I //m is a ©-model of cG\K, so 

U/G(cG\K, H In) is an object of G-M*A. Let î]^ : G\K -> U(cG\K) be the inclusion 
graph morphism. As U(l Bm^qic = // //, so 77 ̂  is an arrow of G-M*d from 

object (G\K, 11) to U/GfcG[Kf // / / j = U/G(cG\Kt // B J. We shall prove that î]^ is 
the unit of an adjunction (see Figure 5, with the same convention as in Figure 3). 

Figure 5 

'K 
TV 

# 

%IK 
-> tyfcC G \K) 

U(H) 

\U(T) 

U<*' 

'- 3 -T- . . . . . t 

Let (G\ T) be an object of Sem/G and let F : G -> UG' be an arrow of G-M+d 
from (G\K, II) to U/G(G', T) = (U(G'), U(T)). Let <pbe a G|/<-computation with 
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canonical form e^ = p ; + p2 + ... + p„. As BI is a model, y) is meaningful, that is, 
l<plm= IPilm0IP2lme ••• e P̂n im e x i s t s in & As y) is obtained by the addition 
rule, there is a computation n such that p, iKn for ail /, / i i in . But F is an arrow of 
Q-M+d, so F(pt) *KF(n) for ail /, lit in. This implies that y>* = Ffp ,; * ... * F(pn) 
exists in ©\ If we define Hfy>J = y>* then H is a semantic function and defines an 
arrow of Sem/G, as it satisfies TH - / ^m. Moreover, the équation U(H)r]G[K = F is 
satisfied in G-M&d and H is the unique arrow of Sem/G satisfying this équation. 
This complètes the proof . o 

Initial Semantics Similarly to Section 3 we can call (cG\K, 11^) the initial 
semantics of (G[K, 11) because it provides an initial object in the category of U-
objects under (G\K, II). 

5 CONSISTENCY AND FIXPOINT SEMANTICS 

Let G\K be a spécification and let B II be an interprétation of G in some 
semantic universe G. If B B is not a model of G\K then the question is: should we 
discard B B ? The answer is no, provided that // B is consistent with K because, as 
we shall prove, a consistent interprétation can be embedded in a model. 

Définition 9 Given a spécification G\K, we say that an interprétation 
f©, B II ) of G is consistent with K if every G|/<-computation is meaningful with 
respect to ////. o 

By Theorem 2, every model (G, B II) of G\K is consistent with K. 

Proposition 5 Let G\K be a spécification and let (©, // B ) be an interprétation 
of G\K. Then f ©, // ̂  ; is a ©-model of G\K if and only if 
(G, B B ) is consistent with K and any two équivalent and meaningful G\K-
computations hâve the same meaning with repect to // //. 

Proof The 'only if part is expressed by corollary 1 of Theorem 2. Conversely, 
assume that // // is consistent and that any two équivalent and meaningful G\K-
computations hâve the same meaning. Let me be an edge constraint in K. We can 
write ezKe by reflexivity, and then by addition rules, e+^is a G|/<-computation 

and e+mKeiKe+K. Thus, e+n sKe and we hâve / /e+n/lm= / /e / / m . That is 

# e f m « f * # m « l e f m or, equivalently, Inl^hl^. This means that BB satisfies 
me. This complètes the proof. o 
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Définition 10 Let G\K be a spécification. The derivative of a G-computation (p, 
denoted d(p, is defined recursively as follows: 

• d(id(A)) = zero(A, A) and d(zero(A, B)) = zero(A, B), 
• if y) is an edge of G then if <p is not the head of any constraint in K then d(p is 

zero(src(e), tgt(e)) else d<p is the sum of the bodies of ail constraints in K 
with head y>, 

• if (p = (q>j) then d(<p) = (à<pj), 
• if (p = y>/.y>2 then d(ç) = ç j.dç2

+(dç\).(p2
+d<pi-d<p2, and 

• ify> = <Pi+<p2 then <9(y>J = dçj+dç2. o 

Now, for every iïO and for every computation (p, define ^/;y> as follows: 
d(0>ç = y), <9nV = d(p, dMç = d(da'nç) 

* 
Lemma 1 If (p is a G|K-computation then so is c/l)(p and d'l)<piK<p, for ail HO. 

Proof It is enough to prove the proposition for i' = 1. We prove it by structural 
induction. If d(p = zero(src((p), tgt(q>)) then, by the zéro rule, d(p is a G\K-

computation and d<piK(p. If y) is an edge of G and dy> * zero(src(ç), tgt(<p)) then 

y) is the head of some constraint, d(p is obtained by the addition rule and d(p£Kq>. 

Now, let y? be a derived G|K-computation such that, for each component e of y>, de 

is a G|K-computation and de*Ke (structural induction hypothesis). If (p has the 

form u.i/ then du anddv are G|/<-computations and duiKu and dvïKv by the 

induction hypothesis. So by augmentation du.viKu.v, u.dviKu.v and du.dviKu.v. 

Thus, <?<p = u.dv + du.v + <?u.<?v is a G|K-computation and d(piKu.v = (p, by the 

addition rule. Similarly, if <p has the form u + v, where du and dv are G|/<-

computations satisfying duiKu and <?v:̂ v, then du <Ku£Kcp and dviKviK(p, sodcp = 

du+dv is a G|K-computation and dç£Ku.v = (pby addition rules. This complètes the 

proof. o 

Définition 11 An edge e in a spécification G\K is said to be non recursive if 
there is an integer k ï0 such that dfk+1)e = zero(src(e), tgt(e))\ otherwise e is 
called a recursive edge. A spécification with no recursive edges is called acyclic, 
otherwise is said to be cyclic. For a non recursive edge e the smallest integer /e 

satisfying àfie* ne = zero(src(e), tgt(e))\ is called the depth of e, and is denoted 
depthfe). o 
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We stress that acyclicity refers to constraints K and not to graph G. The way 
edges in K dépend on one another, may be represented as a graph 3C called the 
dependency graph. This graph is defined as follows: 

• the nodes of îft are the edges of G, and 
• there is an edge from f to e in 3C whenever e is the head of a constraint in 9C 

and f is the body of that constraint. 

Note that for every edge e of G the edges which appear in de are the 
immédiate sons of e in i t . In particular, leaves of 3C are those edges of G, which 
appear only in the body of constraints. This allows to state the following 
proposutions and lemmas which express important properties of cyclic 
spécifications. 

Proposition 6 G\K is cyclic if and only if its dependency graph is cyclic. 

Proof If the dependency graph 3C of G\K is cyclic then there is an edge e of G 
(i.e. a node of «%) such that à(0e contains e for some / (in fact / is the length of a 
cycle in Zfc traversing e). This means that d(k)e * zero(src(e), tgt(e)) for every 
k, that is G\K is cyclic. Conversely, if ifC is acyclic then an edge e of G cannot be a 
son of e in the graph 3C. Thus, for some k, d(k)e is formed by leaves of «%. This 
means that d(k+,)e = zero(src(e), tgt(e)). This complètes the proof. o 

Lemma 2 If G\K is cyclic then there is at least one edge e which is head of a 
constraint in K, and two paths le and re such that K H le.e.re <ze. Moreover, 1e and 

re are cycles of G, but /e and re are not necessarily unique nor with positive 
length. 

Proof Note that when we write K h- le.e re£ e, the paths 1e and re are cycles in 
G. Indeed, le.e.re and e are parallel so src(1e) = src(1e.e.re) = src(e) and tgt(le) 
= src(e) so 1e is a cycle. Similarly re is a cycle. Now, assume that the spécification 
is cyclic. From Lemma 2, there are edges e, e,, ..., en in G such that the 
constraints l0.e.r0 £ e7j /, .e,.r,* ehl (/ = /, 2, ..., n-/)and lnenrn £ eaieinK, 
where /, or r, may be the empty path for / = 0, 1, ..., n.lt follows that K\-Iee.re £ e, 
where re = r0r} ...rn_,rn and le = /n/n_; .../,/0. Of course, the paths le and re 

dépend on the given cycle c but the last equalities show how to construct them 
from K. o 

Now, if 1e and re in the above lemma are unique for every recursive edge e 
then G\K is said to be linearly cyclic. Note that uniqueness of 1€ and re means that 
they are formed by non recursive edges. Now the notion of depth can be 
generalized for recursive edges. 

Définition 12 The depth of a recursive edge e is the smallest integer le> I such 
that cft^e contains e. o 
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Lemma 3 In a linear cyclic spécification G\K, for every recursive edge e, and 
for ail integers n and k, if / <n and 0£k<depth(e) then 

#(nxdepth(e)+k)e = j n #(k)e r n /*\ 

Proof We shall prove (*) by induction on k and n. From the proof of Lemma 2 
we can see that d(depth(e))e = le.e.re. This means that the equality (*) stands for k=0 
and n= /. Assume that for a given n>l, equality (*) stands for 0£k<depth(e)-1 
(induction hyopothesis for k). As le and re are formed by non recursive edges, we 
can write 

d(nxdepth(e)hk+1)e = af//\a<*'e.re
n; = ^njk* 1)er^ 

Similarly, assume that for a given k, 0£k£depth(e), equality (*) stands for nA 
(induction hypothesis for n). We can then write, 

£((n*l)xdepth(e)+k)e = ^(deph(e))^(nxdepth(e)*k)j = ^(deph(e))/j n ^(k)Q r n* 

= le
n.d(depth(e)+k).re

n = le
n.(le.d

(k)e.re)re
n = le

n+1.d(k)e.re
n+1. 

This complètes the proof. o 

Lemma 4 For every edge e in an acyclic or in a linearly cyclic spécification and 
for every natural number iïO, the G-computation 

is a G|K-computation and Tf(e)£Ke. Moreover, 

Tt(e)'TM(e)^f^^erlf 

where Xj(e) = / div depth(e), r\j(e) = i mod depth(e). 

Proof The first part is an immédiate conséquence of Lemma 1 and addition 
rule. The second part is a resuit of Lemma 3. o 

An important remark at this point is that, even for iïdepth(e), the G\K-
computation Tf(e) uses only d(k)e, for 0£i<depth(e). Moreover, since the 
spécification is assumed to be linearly cyclic, the cycles le and re and ail d(k)e, 
0<k<dep th(e), do not contain any recursive edge. o 

Now, we shall prove that every consistent interprétation can be embedded in 
a model, and that this model can be constructed by a fixpoint operator. To this 
end, let us first define an ordering on the class of ail ©-interprétations of a given 
spécification G\K as follows: 

• B Ihll B 'if and only if 1) /M// = /M//'for every nodeA,and2) Bell £ Bell' 
for every edge e. 

Définition 13 Given a cycle u .• X -> X in a semantic universe, we say that u is 
finitely representable if there is integer n such that (u, u2, ... , un']) is consistent 
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and u1 £ u + u2 + ... + i/1"' for every Un. The least n satisfying this inequality is 
called the height of u and is denoted he ight(u). o 

For example, every finite multivalued function is finitely representable (see 
[LeSp93] for more détails). 

Let G\K be acyclic or linearly cyclic spécification. Let © be a semantic 
universe in which everv cycle is finitely representable. and let (G, Il) be a given 
interprétation of G which is consistent with K. Let S be the set of ail ©-
interprétations / which are consistent with K and 11£l. Each / in û can be 
extended to ail G|/C-computations. For simplicity, let us dénote the extension of / 
also by /. Then l(e+de) exists and is equal to l(e)*l(de), for every edge e in G. 
Now, we define T • ô -> ô by : 

• 1(1)(A) = I(A), for every node A, and 
• T(l)(e) = l(e)&l(de), for every edge e. 

Theorem 4 With the above hypothèses, ^is a wposet with least élément // //, 
and the function T is continuous and has a least fixpoint I ls which is a model of 
G\K. 

Proof From the définition of the ordering of â, it is clear that I // is the least 
élément of â. Moreover, â is a wposet, because the ordering of â is defined 
pointwise and ©is a semantic universe. Let lJt l2 be in âand assume that lubd h l2) 
exists in û. This means that for every edge e in G, lj(e)el2(e) exists in ©. Thus we 
hâve T(1ub(lltl2))(e) = lj(e) * i2(e) e it(de) el2(de) = T(lj)(e)<BT(l2)(e) = 
lub(T(lj), T(l2))(e). That is, the function T is continuous. 

As usual, the least fixpoint is obtained by iterating T on the least élément of â. 
That is, for every edge e, lels is the limit of the séquence (\\e\\, \\e\\®\\de\\, 
Il eB e BdeB e Bd2eB, ...). Using the above notation we can write Bell5 = 
ltm,lT,(e)l. 

We must show that //eBs can be computed in a finite number of steps. i.e. we 
must show that BeBsis bouded by an arrow of ©. Using the above Lemmas, if e is 
not recursive then Bells = Ile ll&lldeB... e//^eptnre;-/;e//. 
Otherwise, consider /e and re as in Lemma 2 and dénote 

he = max(height(Blell), height(BrJ)), 
Le= IlehllJh.-.ollle"-1!,^ 
Re = lrehlre

2h...0lre
nll. 

Now, for ail n>0 and ail k, 0£k<depth(e) we can write 
IUVI3k)ellreV=* Le//^e//Re for every i>0. (*) 

From Lemma 4 we can write 

T,(e) = rTf '*** + l ï I Ï T ' l / à«>e.rei 
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Now, from (*) and (**) we can write 

lel5£ edeTt'là(k)ell*Re( ^deToh1llà(k)el)L^ 

This inequality prove that leI is bounded which complètes the proof. o 

In [LeSp93] we show that I ls can be computed by an effective algorithm, in the 
semantic universe mSU. 

Fixpoint Semantics Using Theorem 1, the model / / s can be extended to cG\K 

as a semantic function 11^. This semantic function provides meaning for ail 

computations under the constraints of K. Let us consider the functor U : Sem -* 
Spec seen earlier and let us consider the full sub-category of the category of U-
objects under (G\K, 11), whose object are consistent interprétations. The pair 
(cG\K, I lsJ is an initial object in this sub-category, on the one hand, and is 

obtained by a fixpoint operator, on the other hand. We call (cG\K, 11%) the 

fixpoint semantics of (G\K, //1). 

6 CONCLUSION AND FURTHER RESEARCH 

We hâve considered computations over a graph as spécial subgraphs, and we hâve 
introduced a set of inference rules for deducing new constraints and new 
computations from old. Thèse notions received interprétations in an enriched 
category. We proved that the inference rules are sound and complète. 
One aspect of our approach that has not been developped hère is its possibility of 
incrémental spécification. This aspect, is of particular interest for modular 
spécification, especially in databases specifictaion. We are currently investigating 
this research direction. 
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