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DIAGRAMMES VOLUME 33, 1995

TOWARDS A SKETCH BASED MODEL
OF
SELF-INTERPRETERS

A. C. Reeves

Abstract

There has been a steady stream of research into compiler generation systems since the late
1960’s most of which has involved some sort of approach where the user specifies the source
language, the target language and the source — target relationship. This specification of the
source — target relationship is, in effect, a specification of the compiler and the correctness

of the generated compiler depends on the correctness of this relationship.

In this thesis we propose an approach, based on partial evaluation, which does not involve
the specification of the source — target relationship. Correctness of the generated compil-
ers therefore depends solely on the specification of source and target languages and upon
the soundness of the theory underlying the technique. The method requires the automatic
derivation of both a target partial evaluator and a source interpreter, expressed as a target
program. We attempt the development of a technique to calculate a self-interpreter, an c
interpreter which is itself an £ program, for an arbitrary language, £, as this represents a

significant step towards the goal of the automatic derivation of both partial evaluators and

interpreters.



Initially we examine an algebraic model of language which allows us to specify the function
which an interpreter for the language £ computes, solely in terms of the algebraic spec-
ification of the language £. The interpreter is described as the composition of a pair of
functions, learn : Semantics — Syntaz which forms part of the algebraic specification of L,
and eval : Syntaz — Semantics which arises naturally from the language specification due to

the properties of the category of algebras over a common signature.

Using the algebraic model of language the composition learno eval, which is the £ inter-
preter function, does not lie within the semantics of £ and therefore cannot easily be used to

construct the £ self-interpreter.

For this reason a category theoretic model of language based on finite limit sketches is devel-
oped. This model is similar to the algebraic model above and shares many of its properties
but has the advantage that learn is expressed as an indexed family of arrows from SET, the
category of sets, and that eval is a natural transformation whose components also lie within
SET. As a result of this the components of learn o eval can be brought within the seman-
tics of £. We can then use the structure of the natural transformation eval to construct an

implementation of learn o eval as an £ program.
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Chapter 1

A Brief Introduction and Guided

Tour

This dissertation describes a method for calculating self-interpreters for arbitrary program-
ming languages, i.e. an interpreter for the language £ which is an £ program. On the face
of it an L self-interpreter, £-self-int, is a singularly useless program, it cannot provide an im-
plementation of the language £ because an implementation of £ is required before L-self-int
can be run. Even then L-self-int can only make £ programs run slower by adding an extra
layer of unnecessary interpretation to the implementation. So what is the purpose of an £

self-interpreter?

The calculation of £-self-int is a step towards the ability to calculate an interpreter, int, for £
as a program in the arbitrary language 7. Calculation of £-self-intis also a reasonable starting
point if we wish to calculate the partial evaluator miz [Ersh82, Jone88] for the language L.
Given the ability to calculate int and miz for arbitrary languages we can construct a compiler
generation system which requires no user input other than the specifications of the source

and target languages.

In chapter 2 we set the scene by outlining the development of compiler-compilers and make
the distinction between a compiler specification language which requires the user to specify the
relationship between the source language S and the target language 7, and a true compiler

generation system which requires no such specification of the S — 7 relationship. We attempt



to show that a true compiler generation system can be constructed based on partial evaluation
and the ability to calculate the appropriate int and miz programs for the languages S and 7.
The main purpose of chapter 2 is to motivate the subsequent chapters which deal with the

calculation of L-self-int.

The algebraic model of language developed by Rus [HaRu76, Rus76, RuHe84, Rus85, Rus87,
Rus90, Rus92] is discussed in chapter 3. Using this model of language it is possible to
describe the function computed by L-self-int in terms of the specification of £. The function
interpreter, computed by L-self-int is described as the composition of certain functions which
form part of Rus’ algebraic model. There is no obvious way to turn the interpreter function
into an £ program because the functions used to describe it are not within the semantics of
L. In spite of this the algebraic approach is not a complete blind alley, it provides a gentle

introduction to the category theoretic approach used subsequently.

In chapter 4 we describe aspects of the theory of sketches [Ehre68] which are used in chapter
5 to construct a categorical model of language which has similar properties to Rus’ algebraic
model of language. For reasons of space we have assumed that the reader is familiar with
basic category theory, an understanding of (at least) the concepts of category, functor, natural
transformation, and adjunction are required before reading further. Readers unfamiliar with

category theory are referred to [BaWe90, Gold84, Macl71, RyBu88].

We describe a categorical model of language based on sketches in chapter 5 and discuss some

of its implications for the way in which we specify certain language constructs.

Chapter 6 concerns the derivation of a self-interpreter. Using the categorical model of language
the function computed by L-self-int is described as the pointwise composition of a pair of
indexed collections of arrows in the category of sets and functions. These collections can be
calculated from the sketch specification of the language £. This version of the interpreter
function also lies outside the semantics of £ but, because it is structured as a collection of
arrows in SET, we can construct an analogue of each component arrow of the interpreter
function which acts on a representation of the syntax of £ and is within the semantics of £.
This allows us not only to convert the interpreter function into an £ program but also, at
least partially, to formalise the notion of expressive power required for £ to express L-self-int.

We do not attempt to derive a representation of the syntax of £ as an £ datatype as this is



a relatively trivial problem.

The final chapter, chapter 7, re-examines the method used to calculate the self-interpreter,
points out some of its shortcomings, and suggests possible extensions to allow the calculation

of partial evaluators and interpreters.

Finally appendix A contains an example of the calculation of a self-interpreter.



Chapter 2

Compiler Generation: A Science

Fiction Story

The compiler generation system described in this chapter is a work of fiction but, in common
with many other science fiction stories, its roots are firmly planted in science fact. Since the
birth of formal language specification attempts have been made to produce systems which
generate compilers from formal descriptions of the source and target languages. A conven-
tional compiler generation system requires the user to specify the relationship between the

source and target languages ia addition to the source and target languages themselves, see
figure 2.1.
user specified

ST
relationship

source language
specification (S)

S — T compiler

Compiler-Compiler

target language
specification (7)

—

Figure 2.1: A conventional compiler specification system

Given this fact, conventional compiler generation systems could perhaps be more correctly

4



described as compiler specification languages. The major drawbacks of the approach are:

1. the specification of the & — 7T relationship requires a great deal of time and effort.

2. If the user incorrectly specifies the S — 7 relationship, the compiler-compiler will
usually generate an incorrect compiler. As a result if the user wishes to guarantee the
correctness of the generated compiler they must prove the correctness of their § — 7
relationship [BuLa69, Morr73, ThWW80, Wand80, Coll86]. This proof is likely to be
rather involved and just as prone to errors as the original specification of the S — T

relationship.

The process could perhaps be improved somewhat by providing machine assistance for the
correctness proof. but even then the process of compiler specification is still along and involved

task.

A true compiler generation system, in the opinion of the author, should require no user input

other than the specifications of the source and target languages.

source language
specification (S)

S — T compiler

Compiler-Generator

target language
specification (7°)

Figure 2.2: A True Compiler Generator

If such a system had a sound basis in mathematics it would not only provide considerable sav-
ings both in user time and effort but would also generate compilers which could be guaranteed

correct by construction.

The remainder of this chapter attempts to answer the question, “How could a true compiler

generation system operate?”



2.1 The factual basis of the story

Before attempting to answer the question above we should examine the main approaches to

the implementation of compiler specification languages which are currently available.

2.1.1 Syntax directed compiler generators

Probably the simplest form of compiler specification system is the syntax directed compiler
generator. Using this technique the source language is specified as a context free grammar. A
semantic action is associated with each production rule of the source grammar and the com-
piler is produced by generating a parser for the source language. The parser is constructed in
such a way that it executes the semantic action associated with a production rule whenever it
recognises a phrase generated using that production rule. One of the first attempts to produce
a syntax directed compiler generator was the STAGE2 system [Wait70]. Other examples of
syntax directed compiler generators include YACC [John78], DELTA [Lorh82], and SYNTAX
[Boul80]. Of these YACC is probably the most generally available as it is distributed as
part of the UNIX! operating system. The most obvious shortcoming of the syntax directed
technique is that the semantic action associated with a production rule does not describe
either the semantics of the source language phrase, or the target language construct used to
implement the source language phrase. In fact the target language of the generated compiler

is not specified at all using the syntax directed approach.

What the semantic action actually specifies is the action to be taken by the generated compiler
on recognising the source phrase associated with each action. This effectively obscures the
S — T relationship by hiding it within the implementation details of the compiler, making

its construction and correctness proof much harder.

Since the only objects which are formally specified are the source syntax and (in some cases)
the meta-language used to express the compiler specification, the correctness proof requires
a great deal of additional information: i.e. source semantics, target syntax, and target se-
mantics. The requirement for additional information also makes the correctness proof much

more difficult. It could be argued that the requirement for additional information makes the

1UNIX is a trademark of AT & T Bell Laboratories



syntax directed compiler specification technique a semi-formal compiler specification method

rather than a formal one.

2.1.2 Semantics directed compiler generators

A second approach to compiler specification is the semantics directed compiler generation
technique. Compiler writing using this approach is based on a formal description of the
source language as input data, and the target language as output data. Usually the source
language is described as a context free grammar where each source phrase has an associated

target language construction which describes its semantics.

The details of compiler specification vary from system to system but, in general, all semantics
directed compiler specification systems conform to one or other of the approaches given in

[Moss76).

“Choose a ‘universal’ object code with a well defined semantics. Then to
generate a compiler from a given denotational semantics for some programming
language. find code sequences which simulate the abstract meanings of the phrases

of the language. and construct a compiler which produces these code sequences”

or

“Take a more abstract view of compiling: instead of
Compiler : progs — code
consider
Compiler : progs — input-output-fns.

Thus an abstract compiler does not transform an (abstract) program text into
an (abstract) sequence of instructions; rather it transforms it into the abstract
input-output-fn represented by those instructions. The concrete version of such
an abstract compiler produces denotations (i.e. representations) of input-output-
fns from denotations of programs — it is just an implementation of a denotational

semantics.”



Although Mosses was referring specifically to semantics directed compiler specification sys-
tems based on denotational semantics the same thing applies to systems based on attribute

grammars [Boch78] or on algebraic semantics [Desc82).

Most commonly semantics directed compiler generators are based on the denotational ap-
proach to programming language semantics [ScSt71, Stoy77, Schm86], and there is a great
deal of literature dealing with this type of semantics directed compiler specification system,

for example: [Ganz79, Moss79, RaTu79, JoSc80, Schm85, Wand85, Roye86, Vick86).

Of these [Roye86] is of particular interest because it attempts to derive a target semantics
from a source denotational semantics in, “the most constructive way possible.” The technique
described by Royer is still a compiler specification technique rather than a true compiler
generation system because the user has to supply the S — 7 relationship in the form of a
collection of target domains which are used to implement the source domains, together with

a congruence relation for these domains.

In [Schm85] Schmidt also constructs a semantics directed compiler directly from the standard
denotational semantics of a programming language rather than a continuation style denota-
tional semantics as is more usual. This has the advantage that the semantics used to specify
the programming language is at a much higher level. The approach used is to transform the
semantics so that operational properties of the semantics become clearer. The transforma-
tions used are focussed on the operational properties of the particular reduction strategy used
to implement an interpreter for the denotational semantics definition. Using this technique
the implementor has to supply rather more information about the S — 7 relationship than
is the case if a continuation semantics were used. This may in fact be an advantage because
the user can use implementation “tricks” to produce a much more optimal implementation,

however; it also moves further away from the goal of this chapter.

The compiler specification system described in [JoSc80] consists of a back end compiler ¢ :
LAMC — STM which translates a dialect of the lambda calculus, (LAMC), into a language
of state transition machines, (STM). The front end is defined by providing a denotational
definition, A, of the source language, S, using the LAMC language, this defines a mapping
A :S — LAMC. The compiler is then specified as the function ¢ o A.

In general semantics directed compilers are specified as the composition of front and back



ends.

Source front end Intermediate back end Target

Language Language Language

This leads to a problem in the correctness proof because the intermediate language is not for-
mally specified as part of the generation process and must therefore be specified as additional

information during the correctness proof.

2.1.3 Algebraic directed compiler generators

The T.I.C.S. System developed by Rus [Rus83, RuHe84, Rus90, Rus92] is, to the best of
the author’s knowledge, the only working example of the third class of compiler specification
system, namely Algebraic directed compiler specification systems. The system is based on the
“commuting square” notion of compiler correctness [BuLa69, Morr73, ThWW8O0, Wand80],
and depends on an algebraic model of language also developed by Rus [HaRu76, Rus76,
RuHe84, Rus85, Rus86, Rus87].

This algebraic model of language is described in detail in chapter 3 but can be summarised

here as follows. A program aing language L is a triple
(Sem(Z), Syn(X),learn : Sem(X) — Syn(X))

where Syn(Z) specifies the syntax and is the word algebra generated by the signature L. The
semantics is specified by the similar algebra Sem(Z) and the Syntaz — Semantics associa-
tion is specified by the function learn : Sem(X) — Syn(Z) and by the initiality of Syn(X),
which gives rise to an homomorphism eval : Syn(Z) — Sem(X). KSisa programming lan-
guage specified over £; and 7 is specified over I; then a compiler C: & — 7 is specified as

a pair of homomorphisms, compile and encode, such that the equations

encode = evaly o compile o learn,

compile = eval; o encode o learn;

both hold in figure 2.3.



compile

Syn(Z,) Syn(Z,)
learn, | |eval; learn, | | eval,
Sem(X;) pr— Sem(Z,)

Figure 2.3: The algebraic directed view of a compiler

In the T.I.C.S. System the S — T specification takes the form of a set of parameterised macro
expressions, one for each operation in ;. Each macro expression is the target code to be used
to implement the source operation. Compilation begins by identifying patterns in the source
string which correspond to the generators of Syn(X;) and replacing them by their target
representations. On the subsequent passes through the source string the compiler attempts
to identify source operations whose arguments have already been replaced by their target
representations. When the compiler recognises such a source operation it uses the embedded
target representations to parameterise the associated macro operation and replaces the source
operation by the result of the macro expansion. Compilation is complete when there are no

source operations left to translate.

In [Reev87] Reeves attempts to show the relationship between this approach and the semantics
directed approach by using a tree of partially expanded macro expressions as the intermediate

language of a semantics directed compiler specification system.

The algebraic basis of the T.I.C.S. System makes the specification of T.I.C.S. generated
compilers particularly amenable to the usual methods for proving the correctness of the

S — 7T relationship.

2.1.4 Compiler generation by partial evaluation

Partial evaluation [Futa71, Ersh77] or mixed computation can be described informally as the
process of “doing as much evaluation as possible with, possibly, incomplete input.” If pis a
program whose input can be divided intc two classes: S - static i.e. input which is fixed at a

particular value, and D - dynamic i.e. input which is not fixed and may vary over all possible

10



values of the correct type, the program p can be evaluated fully only if it is given both S and
a particular value of D.

If only S is available the process of partial evaluation can be applied to p. The part of the
computation of p which depends only on S is performed. The result of this process is a new
specialised version of p whose input is the dynamic part of the input of p, D, and which, when

it is applied to D, produces the same output as p applied to both Sand D.

(S, D) = ps(D)

This specialised function pg is known as a residual program. For example consider the function

power

powerzn = 1, if n=0

= z*powerr(n-1), otherwise

This function raises z to the power of n. Suppose the value of nis fixed at 3 but the value of

z is dynamic. Specialisation of power to its static input n = 3 produces the residual program

power' z = rszr*xr*l

because all computation except multiplication by z, which is dynamic, can be performed at

partial evaluation time.

Beckmann et al [BHOS76] and Futamura [Futa82] describe some of the potential applications

of partial evaluation. These include:

e Automatic theorem proving. It is possible to use a partial evaluator to produce a
specific theorem prover by specialising a general theorem prover to a specific set of

axioms [Futa82).
o Construction of small specialised utility programs from more general routines [BHOS76).

o Construction of specific parsers from general parsing routines [Futa82]. If there is a

general parsing algorithm P : BN F_grammar X tezt — parse_tree, and S is the BNF

11



grammar of the language S. A specific S parser Ps can be produced by specialising P

to S by partial evaluation.

¢ Compilation and compiler generation. This use of partial evaluation is discussed in

detail below.

In general partial evaluation is a useful technique where there is a need to construct a fast,
specific, algorithm to do a particular job and a slower more general, data driven, algorithm

already exists.

Partial evaluation and compilation

The use of partial evaluation as a compiler construction technique is described in [FutaTl,

Ersh77, Ersh82, Futa82. JoSS85, JoSS89]. A brief overview of the technique is shown below.

Suppose that miz is a self-applicable partial evaluator for the target language 7, i.e. miz
is a 7 program which implements a partial evaluator for the language 7. Because mizis a
partial evaluator the following equation holds for all 7 programs t with static input igatic

and dynamic input gynamic

tﬂistatic, z.dynarmc]] = (mizﬂtn[[istatic]j)[[idynamicl]

where miz[[t][istatic] is the residual program produced from ¢ and isatic-

Now assume int is an interpreter for the programming langnage S and is written in the target

language £. If sis an S program which takes i as its input and produces o as its output then

sfif=o

represents running the program s on an S machine with input i. The same output can be

produced using a 7 machine by running int and giving it s and i as its input.

intfs.i = o



Since int is a 7 program and s is some of its input we can use miz to produce a specialised
version of int which can only interpret the program s by setting s as static input for int and

i as dynamic input.

int, = miz[[int][s]

Now using int, and a 7 machine we have

int, i = o

furthermore all the computation in int which applies only to the analysis of the program s
is done at partial evaluation time and does not have to be done when int, is executed. The
T program int, has the same input/output relation as the S program s and is, in fact, a

compiled version of s.

Since miz[int][s] is a compiled version of s and miz is a 7 program, an S to 7 compiler
can be produced using miz and int by regarding int as static input for miz and leaving s as

dynamic input.

comp = miz[[miz]|[int]

This is easy to verify because:

comp[[s] = (miz[miz][int])[s]
= miz[[int][s]

= 1int,

If we remember that the basic function of a partial evaluator is to eliminate redundancy from
a partially bound 7 program it is easy to understand how these results arise. By definition
an S interpreter, int, must contain the 7 expressions necessary to execute any S program
with any input data in addition to the 7 expressions necessary to parse an S program and
execute its static semantics. If the program argument of an interpreter is bound to a particular

S program, g, it is possible to execute the parsing and static semantics components of the

13



interpreter as they only depend on the § program text. The code segments of the interpreter
which actually simulate the run time behaviour of ¢ depend on the input data for g as well
as the program text and therefore become part of the residual program int,. This reasoning

extends to the construction of miz;,: in the obvious manner.

Partial evaluation systems

There is a large, and growing, body of literature on the subject of partial evaluation as a

compiler generation technique.

In [MaBe85] partial evaluation is used to derive a compiler and an object interpreter from an
operational semantics given using the V.D.L. specification language. However the approach
used needs to place several restrictions on the style of V.D.L. specification and does not appear

to generalise to the automatic generation of compiler generators in any obvious manner.

The first working version of a fully self-applicable miz was produced by Jones et al [JoSS85,
Sest85, JoSS87, JoSS89]. This project identified the process of binding time analysis as critical

to the effective operation of a partial evaluator.

To specialise the power function given above to some fixed value of n the partial evaluator
need only unfold recursive calls of power until the value of n falls to 0. Now consider the spe-
cialisation of power to some fixed value of z (say 5) rather than n. The obvious specialisation

is

power” n = 1, ifn=0

= 5=* power”(n — 1), otherwise

but this specialisation cannot be produced by repeated unfolding of recursive calls because
the value of n is dynamic and therefore never falls to 0. Specialisation by repeated unfolding
will actually cause non-termination of the partial evaluator as it attempts to produce the

infinite residual program shown below.
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power” n = 1, if n=20
= 5*1, ifﬂ-].:O
= 5x%x5#1, ifn-1-1=0

= 5x%---x5%1, otherwise

The problem arises because the expression power 5 n where n is dynamic is itself dynamic
and must not be unfolded at partial evaluation time. To overcome this problem a partial
evaluation system must perform a process of binding time analysis on the program to be
specialised to determine which sub-expressions in its body are static (reducible) and which

are dynamic (irreducible) at partial evaluation time.

In [JoSS85] the binding time analysis is done “by hand”, but in later versions the process is

automated, all be it in a fairly ad hoc manner.

The treatment of binding time analysis given by Launchbury [Laun88, Laun89, Laun90] using
a domain theoretic construction of dependent sums which allows aspects of binding time
analysis to be expressed as domain projections is particularly interesting but for reasons of

space cannot be discussed here.

Another interesting example of partial evaluation is the work of Turchin et al [Turc80,
TuNT82, Turc85, Turc86] on the supercompiler concept. A supercompiler is a generalised
from of partial evaluator. Supercompilation consists of a process called driving in which a
T program, p, is run in a generalised form (with unknown values for some of the variables
of p) to produce a graph of states and state transitions of the possible configurations of the
computing system specified by p. To keep this driving finite the supercompiler examines the
configurations of p and generalises them until a set of generalised configurations are produced
which are capable of describing the whole of the computing system, p. This generalisation
process replaces the binding time analysis of the more traditional partial evaluation system.
Because the driving and generalisation process has access to more information than a simple
partial evaluator a supercompiler can carry out transformations to the program p which are
not possible using partial evaluation alone. On the other hand self-application is much harder

to achieve because of the increased complexity of a supercompiler.

Other work on partial evaluation includes: compilation of pattern matching [Bond88. Jorg90]
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by partial evaluation. The extension of partial evaluation to lazy functional languages

[Bond90bj and partial evaluation of higher order languages [Goma89, Bond90a, Cons90).

Compiler generation by partial evaluation is included as an example of a compiler specification
system where the S — 7 relationship is specified as an S interpreter expressed in the language
T. To be a fully formal compiler specification technique we require formal specifications of
the § and 7 languages and a formal description of the process of partial evaluation, in order
to prove the correctness of miz. In reality the technique is much more powerful than simple
compiler generation, it is probably better described as a program transformation technique
but in its guise as a compiler specification system it provides the inspiration for the fictional

true compiler generator described below.

2.2 A true compiler generation system

By making two, rather large, assumptions we can now take a look inside the “compiler
generator~ box in figure 2.2 and speculate about its internal workings, based on a partial

evaluator.

Assumption 1. there is a technique which allows us to examine the specification of a com-
puter language, 7, and from this specification, calculate a 7 program which implements

miz for the language 7.

Assumption 2. given the specifications of two languages, S, and 7, it is possible to derive

an implementation of S in the form of an interpreter expressed as a 7 program.

By allowing assumption 1 only, we could implement a compiler specification language in the

following way:

1. examine the target language specification, 7, and compute the implementation of miz

for this language.

2. Accept a source interpreter, int, written as a target program and compute the value

miz[miz, int].
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3. Output the value miz[[miz,int] as the generated compiler.

This system is still a compiler specification system rather than a compiler generation system
because the user has to supply the S — 7T relationship in the form of the source interpreter,

int.

If we also allow assumption 2 we can implement a true compiler generator system by calcu-
lating the source interpreter from the specifications of S and 7, rather than accepting it as

input.

The proposed overall structure of the “compiler generator” box in figure 2.2 is shown in figure

2.4.

source language int

specification (S) calculate int _L

S—-T
compiler

compute miz[miz, int]
target language

specification (7)

calculate miz ———T

miz

Figure 2.4: The anatomy of a true compiler generator

The boxes labelled “calculate miz” and “calculate int” are implementations of assumptions
1 and 2 respectively. The last box, labelled “compute miz[[miz,int]” is a parameterised

simulator which accepts the following inputs:

1. a language specification 7.
2. A T program which implements miz for the language 7.
3. A 7 program, int, which is a programming language interpreter.

When given the specification of the language 7 the “compute miz[[miz,int]” component

becomes a 7 interpreter and computes the value miz[miz,int] which it constructs from its
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remaining inputs. This last component is relatively trivial to construct as it is basically an

interpreter for the meta-language used to specify 7.

2.3 Fiction to fact: the requirements

How unreasonable are the assumptions in section 2.2? The short answer to this question
is currently very unreasonable. Taking each assumption in turn, for assumption 1 to be

reasonable we need to be able to:

1. construct a representation of the syntax of an arbitrary language 7 as a data type of
the language 7. This is required because miz must have some way of representing the

7T programs it processes.

2. Construct a binding time analysis phase from the specification of the semantics of an

arbitrary language 7.

3. Construct the function specialisation phase for an arbitrary language 7. This is proba-
bly the easiest of the three requirements necessary to justify assumption 1. The function
specialisation phase of a 7 partial evaluator is very closely related to the evaluation func-
tion of the programming language 7 and is basically a 7 program which reduces other
T programs to their canonical form with respect to the static input and binding time

analysis.
The requirements necessary to justify assumption 2 are:

1. given arbitrary programming languages S and 7 we must be able to construct a 7
data type which represents the syntax of S. Here again this is required because the

interpreter, int, must be able to represent any S program to process it.

2. The ability to derive an S interpreter, int, as a 7 program. To derive an S interpreter as

a 7 program we must be able to implement the S evaluation function as a 7 program.

We will concentrate on the development of a technique which allows us to calculate a self-

interpreter for the arbitrary language 7, i.e. an interpreter for the language 7 which is itself
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a 7 program. The reason for this is that the calculation of a self-interpreter is a reasonable
step on the road to both the calculation of an § interpreter as a 7 program. and toward the

calculation of a function specialisation phase for the language 7.

The problem of constructing a 7 data structure to represent the S programs can be redueed
to the problem of implementing binary trees in 7, since any tree structure can be transformed
into a binary tree and any S program can be represented as its derivation tree. A less efficient
but more straightforward representation technique could be constructed by implementing n-
ary trees in 7, where n is the largest number of subtrees possible for a node in the derivation
tree of an S program. From this point on we will assume that one or other of these techniques
is used to construct a representation of S programs as a data type in the arbitrary language
T. This will be required for the construction of a self-interpreter, (both S and 7 are the same

language for a self-interpreter).
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Chapter 3

An Algebraic Approach to a
Self-Interpreter

The algebraic model of language developed by Rus [HaRu76, Rus76, RuHe84, Rus85, Rus87,

Rus90, Rus92] can be used to specify a programming language as a triple
L = (Sem,Syn,learn: Sem — Syn)

where Sem and Syn are algebraic structures over a common signature and learn is function
which associates an expression in Syn with each meaning in Sem. There is an associated
homomorphism eval : Syn — Sem which defines the evaluation of expressions in Syn. The
model is described in section 3.1 and in section 3.2 we show how the properties of the model

can be used to construct the function computed by a self-interpreter.

3.1 An algebraic model of language

Rus describes an algebraic model of language based on two properties of many sorted algebra.

Given the category of ¥ algebras C(X):

1. the word algebra W is unique up to isomorphism and coincides with the initial algebra

in C(X).
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2. Any function defined on the generators of W returning values in the carrier of a similar

algebra A extends to an unique homomorphism £ : W — A.

The construction of the model is shown below.

3.1.1 The specification basis

The three components of the specification basis are:

1. a set of names of the abstract objects specified in the language, denoted by I
2. A finite set of reserved words denoted by S.

3. A finite set of operation schemes £. The operation schemes, o € T specify operations

on families of sets (indexed by I) and are denoted by a triple.
0= (N,581...8n,01...1n1)

The components of the triple are:

e n > 0, the arity of the operation.
e The operation symbol sgs; ...8y,, s; € S.

o The operand sorts ¢ ...%,, ¢; € I and result sort of the operation ¢ € I.

A proof that every context free grammar generates a basis B and every finite basis B generates

a context free grammar is given in [Rus87].

3.1.2 The semantics algebra

The semantics of a programming language is given as an algebra specified by some ba-
sis B over a family of sets A= {A;,As,...}. The family A represents the collection
of abstract objects which are denotable within the language semantics. The algebra

Sem(B, A) = (Sem(I), Sem(S),Sem(X)) is constructed as follows:
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1. Sem(ix) = Ak.ix € I. Sem([I) is then a family of sets chosen from A4 and indexed by /,

allowing Sem(B, A) to be constructed as a many sorted algebra.

2. Sem(S) = S. The purpose of this set is to fix the symbols used to express constructions

over Sem(I).

3. The set of operations on Sem([) is denoted by Sem(X) and Vo € £,0 = (n, 5051 - -$n,

1 ...int), Sem(o) is an operation
Sem(o): Sem(iy) X ... x Sem(in) — Sem(i)

The tuple (so,$1,--.,5,) is used as the operation symbol and for ax € Sem(ix), k =
1,...,n Sem(o) applied to appropriate ax is denoted spa;s1az...Sn-1GnSn and is of

sort 1.

This construction of Sem(B, A) as a many sorted algebra with operation symbols which
distribute over their operands provides a very natural association between the semantics

algebra and the phrases of a context free grammar.

3.1.3 The syntax algebra

The set W(X,Z) = {W;(X,Z),i € I} is the family of well formed expressions freely generated
from the family of finite symbol sets X = {X;,i € I'} by the signature X. Details of this con-
struction are given in [Higg63, Rus90]. The algebra Syn(B, W) = (Syn(I), Syn(S), Syn(L))

is constructed as follows:
1. Syn(I) = {Wi(X,X),ie I}

2. Syn(S) = §.

3. The set of operations on Syn(I) is denoted by Syn(X) and Vo € X,0 = (n, s0s1 .. .55,

i) ...1n1), Syn(o) is an operation
Syn(o) = Syn(i1) X ... x Syn(in) = Syn(i)
defined by the rules for well formed expressions in Wi(X,X) as
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Vu; € W.'J(X,E),j =1,...n,Syn(c)(wi,. .., Wn) = SoW1S] - - .Sp—1WnSs, € Wi(X,X).

Note that for any context free grammar G, the language generated by G is the set of words

W (90, B(G)) where B(G) is the basis generated by G [HaRu76].

3.1.4 The learn and eval functions

Given a basis B = (I, S,X), a family of abstract objects A = {4;,...,4,}, and a family of
symbol sets X = {X;,i € I}. Syn defines an algebra of words on W(X,X) and Sem defines a
similar algebra on A.

A = ({Ai,i € I}, , Sem(E))
W = ({Wi(X,Z),i€ I}, 5, Syn(%)}

The triple £ = (Sem(B, A), Syn(B,W(X,X)),learn: Sem(B,A) — Syn(B,W(X,X))) spec-
ifies a programming language with semantics Sem(B, A), and syntax Syn(B, W(X, X)).

The purpose of the learning function is to specify the process of sentence construction carried
out by a sender communicator using the language £. The other communication process,
understanding, is modelled by the eval : Syn(B,W(X,X)) — Sem(B,A) homomorphism
given by property 2 above. A construction for the eval homomorphism is given in [Rus92].
For the sake of clarity we shall give a simpler, and less general, construction here, by assuming

learn to be injective!.

1. Let Syno = {Syniy,io € I} be the indexed family of free generators of the algebra
Syn(B,W(X,Z)). For each w € Syn;,, 0 = (0,w,ip) € L is an operation scheme
and a € A;, a unique value with learn(a) = w. Define evalp : Syny — Sem(B, A) as

evalo(w) = a. For any o’ = (0, w’,i) # o such that Sem(o’) = a, set evalo(v') = a.

2. Extend evalp homomorphically to eval: Syn(B,W(X,X)) — Sem(B, A).

When the algebras Syn(B, W(X,X)) and Sem(B, A) are finitely generated, i.e. when X and

A are finite collections, learn and eval are constructed such that eval o learn = idgs.m(B, 4),

1This assumption is not unreasonable as we would not expect more than one meaning to be expressed by

any single programming language sentence.
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where o denotes function composition. In the case of a conventional programming language

both A and X are finite.

3.1.5 Example: a language of numbers and addition

The algebraic model of language described above provides a formal definition of the three
components of a programming language (Syntaz, Semantics, and the Syntar — Semantics
association) within the single framework of universal algebra. This section illustrates the
model using a simple expression language of natural numbers with an addition operator.

Expressions in the language are generated according to the BNF grammar.

(Ezp) — 0
(Ezxp) — succ({Ezp))
(Ezp) — (Ezp)+(Ezp)

The semantics of this language are the expected semantics for natural numbers and addition:
0 is the syntactic expression denoting the number 0, succ denotes the function Az.z + 1, and

the symbol + is the addition operator.

Specification basis

To specify this language algebraically we must first define the basis B. The language contains
only one abstract object, namely Ezp, so the set I = {Ezp}. There are four reserved words:
‘0’, ‘succ(’, ‘)’, and ‘+’, together these reserved words form the set S. Each of the three BNF

rules adds the operation scheme shown below to the set I.

BNF rule operation scheme

(Ezp)— 0 (0,0’, Ezp)
(Ezp) — succ((Ezp)) | (1,'sucec(™)’, EzpEzp)
(Ezp) — (Ezp)+(Ezp) | (2,€'+’¢, EzpEzpEzp)

Note that the operation symbol for the third operation scheme contains two occurrences of

the empty string e. The specification basis B is the triple:
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B = (I={Ezp},S={0,8ucc(,),*},
T = {(0,'0’, Ezp), (1,‘succ(*)’, EzpEzp),(2,€'+’c, EzxpEzpEzp))

Semantics algebra

To specify the semantics algebra Sem(B, A) we must first define the family of abstract objects
A. The only object required for the semantics is the set of natural numbers, Nat, constructed

by the signature below:

zero : — Nat

succ : Nat — Nat

the family A is therefore A = {Nat}. The construction of Sem(I) is Sem(I) =
{Sem(Ezp)} = {AEzp} = {Nat}, and Sem(S) is constructed as Sem(S) = {0,succ(,),+}.
We can now construct Sem(Z). The set of operations of the algebra Sem(B,A), i..

{Sem(c),0 € T}, is constructed by the assignment shown in the table below.

operation signature operation
Sem((0,'0’, Ezp)) — Sem(Ezp) zero
Sem((1,'succ(*)’EzpEzp)) | Sem(Ezp) — Sem(Ezp) succ
Sem((2,¢'+’e. EzpEzpEzp)) | Sem(Ezp) x Sem(Ezp) — Sem(Ezp) f

where the operation f : Nat x Nat — Nat is defined as addition on natural numbers.

f(zero,z)
f(suce(z), y)

I

succ(f(z,y))

Using this assignment the set Sem(Z) is defined as Sem(Z) = {zero, succ, f }, this completes
the definition of Sem(B, A).

Syntax algebra

Since the expression language is generated by a context free grammar, the family W(X, )

for the syntax algebra is freely generated from the family of symbol sets X = {0} by the
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signature L. Following the rules for the construction of W(X,X) in [Rus90] we obtain an

unchanged set £ (X is the family of empty sets). The set Wg,,(X, L) is described below.

WEIPQ(X‘ S) = {0}
WEzpa(X.E) = Wggp, (X, E)U{ succ(w): w € Wgqy,_,(X,X)}
U{ew; + wae : (w1, w2) € WEzp,_, (X, Z) X WEgzp, (X, Z)}

Wep(X,Z) = UWEgpa(X,Z),n€{0,1,2,...}

So W(X,X) = {WEzp(X,Z)}. The family Syn([l) is defined as {Wg,p(X,XZ)} and the set
Syn(S) is {0,succ(,),+}. The elements of the set Syn(X) are described in the table below.

operation signature operation

Syn((0,'0’, Ezp)) — Syn(Ezp) 0
Syn((1,'succ(’*)’, EzpEzp)) | Syn(Ezp) — Syn(Ezp)
Syn((2,€¢'+’e, EzpEzpEzp)) | Syn(Ezp) x Syn(Ezp) — Syn(Ezp) | h

The operations g: Wgzp(X,Z) = Wgp(X,E) and h @ Wgzp(X,E) X WEL(X,Z) —
WEzp(X, X) are defined as:

g(w) = succ(w)

h('wl,‘U)2) = €witwre€

Syn(X) is therefore defined as Syn(X) = {0,9,h} and the definition of the algebra of words
Syn(B,W(X,X)) is complete.

The learn and eval functions

The function learng : Semqo(B, A) — Syno(B,W(X,X)) is defined as: learng(zero) = zero.

This function can be extended through the signature £ as follows:

learn(zero) = zero
learn(succ(a)) = succ(learn(a))
learn(f(ai,a2)) = elearn(a;) + learn(az)e.
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Since the value f(a;,a2) is constructed by the operations zero and succ for all values a;,a; €

Sem(A) this definition simplifies to:

learn(zero) zero

learn(succ(a)) = succ(learn(a)).

We can now define the eval homomorphism as follows:

1. define evalp : Syno(B,W(X, X)) — Semo(B, A) as: evalp(zero) = zero.

2. Extend evalp homomorphically to eval.

eval(zero) = zero
eval(succ(w)) = succ(eval(w))
eval(ew; + wze) = f(eval(w,),eval(wy))

3.2 The interpreter function

The conventional definition of an £ interpreter is a program which, when given an £ program
l and input i for the £ program as its input, produces the same output as / produces when
given input i. If the interpreter is itself an £ program it is called an L self-interpreter. For

the purposes of the algebraic model above this definition must be made a little more precise.
Definition: An L self-interpreter.

An L self-interpreter is a term int such that:

1. eval(int) is a function interpreter : Q — Q, where W(X,X) C Q.

2. For every term w € W(X,X), eval(w) = eval(interpreter(w)) and no further reduction

of interpreter(w) is possible. o

In other words an L self-interpreter is an £ program which takes £ syntactic terms as input
and delivers maximally reduced £ syntactic terms as output while preserving the meaning of

these terms during the reduction process.
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The algebraic model of language outlined above can be used to describe the interpreter func-

tion.

Proposition 3.2.1 If L is a programming language:

L = (Sem(B,A),Syn(B,W(X,X)),learn: Sem(B,A) — Syn(B,W(X,X)))

with evaluation homomorphism:

eval : Syn(B,W(X,X)) —» Sem(B, A).

The interpreter functions for L is defined as

interpreter = learn o eval

Proof: The eval homomorphism defines an equivalence relation on Syn(B,W (X, X)).

Vwy,wp € Syn(B,W(X,X)): w; = wp & eval(w) = eval(w,)

This relation can be used to construct a quotient algebra Syn(B,W(X,X));= where each
element of Syn(B,W(X,X))/z is not an L program but the complete collection of all £
programs which have a given meaning. For example, in the expression language above, the
equivalence class which contains the term esucc(0) + succ(succ(0))e will also contain the

term succ(succ(succ(0))), and all other terms which evaluate to succ(succ(succ(zero))).

This suggests a mechanism for the computing the interpreter function.

1. Identify the equivalence class containing the term to be specialised.

2. Select a pre-determined term from this equivalence class and use it as the result term.

There is an isomorphism between Syn(B,W(X,Z))/z and Sem(B,A) so if a term w €
Syn(B,W(X,X)) can be uniquely identified as the preferred syntactic representation of each
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element of Sem(B, A) the interpreter function can be described using the eval homomor-
phism. The learn function from the definition of £ performs exactly this task and so the

function computed by a self-interpreter can be described as: interpreter = learnoeval. O

The effect of proposition 3.2.1 is to define a family of functions F, on the syntax algebra

which correspond to the operations Sem(o) of the semantics algebra, for each o € L.

Theorem 3.2.1 For each operation scheme 0 = (n, 8081 ...5n,11...int) € L the function

F, : Syn(4;) x ... x Syn(in) — Syn(i)

defined as

F, = interpreter o Syn(o)

has the same behaviour on syntactic objects as Sem(c): Sem(iy) X ... x Sem(in) — Sem(i)

has on semantic objects.

Proof: F, is defined as:
Fy(wy,...,wn) = (learnoeval)(Syn(o)(w1,--.,wn))
= learn(eval(Syn(o)(w,...,wn)))

= learn(Sem(c)(eval(wy),...,eval(w,)))

for each 0 = (1,081 - ..5n,%1...ini) € , n > 0. F, is defined as:

F, = (learno eval)(w)

for each o = (0, w,%) € Z. O

Returning to the example from section 3.1.5 the interpreter function can be defined as:

interpreter = learn o eval. Using theorem 3.2.1, this definition can be expanded as:
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as indexed collections of arrows whose components can be brought within the semantics of

the specified language.
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interpreter(zero) = (learno eval)(zero)
= learn(zero)

= Zero

interpreter(succ(w)) = (learno eval)(succ(u))
= learn(succ(eval(w))
= succ((learn o eval)(w))

= succ(interpreter(w))

interpreter(ew; + wae) = (learno eval)(ew; + wae)

learn( f(eval(w;), eval(wz)))

= F(g,t_,,('g,p};,pgzp)(interpreter(wl ), interpreter(wz)).

The function F3 c4¢,EzpEzpEzp) Syn(Ezp) x Syn(Ezp) — Syn(Ezp) given by theorem 3.2.1

is the syntactic equivalent of the semantic operation f : Nat x Nat — Nat and is defined in

figure 3.1.

F(wy,ws) = learn(f(eval(w), eval(wy)))
F(zero, w) = w
F(succ(w;),w;) = succ(F(w;,ws))

Figure 3.1: The operation F(3 c4¢ EzpEzpEzp)

Although the interpreter function is completely described in terms of the definition of the
programming language £ it is not a description of a self-interpreter for the simple reason
that it is not an £ program. In fact the interpreter function is not actually an element
of the algebra Sem(B, A) and so there is no guarantee that an £ program to compute the
interpreter function actually exists. The following chapters describe a categorical model of
language based on finite limit sketches [BaWe85]. The categorical model of language exploits
the fact that finite limit sketches modelled in the category of sets and functions (SET) exceed
the expressive power of many sorted algebraic theories and have all the properties used above.

Using finite limit sketches we can therefore construct analogues of the learn and eval functions
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Chapter 4

Sketches

The concept of a sketch originates with Ehresmann and is described in [BaEh68]. Sketches
have been studied extensively by several groups worldwide, mainly in France and Canada, and
a general introduction to the work can be found in [Ehre68, BaEh68, Lair75, GuLa80, CoLa84,
BaWe85, Gray87, WeBa87, BaWe90]; this list of references is by no means complete. The
formalism used here most closely follows that of Barr and Wells [BaWe85, BaWe90, WeBa87]

as these are more widely distributed than the majority of the other references.

4.1 Definitions

Sketches provide a formal specification technique based on graphs and, “as such are the intrin-
sically categorical way of providing a finite specification of a possibly infinite mathematical

object or class of models” [BaWe90] (pp161). The definition used in [WeBa87] is given below.

Definition: Directed Graph.
A directed graph, G, is a pair of sets Go — nodes, and G; — edges, together with two
functions: sr¢ : G — Gp, which returns the source node of a given edge, and function

trg : G — Go maps the edges to their target nodes. o

For example:
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with Gg, G4, src, and trg defined as:

Go = {0,670} G, = {f,g,h}

sre(f)=a  trg(f)="
sre(g) =b trg(g)=c
sre(h) = ¢ trg(h) =c.

The definition of a sketch requires the definition of a diagram. To define a diagram we must

first define a graph homomorphism.

Definition: Graph Homomorphism.
A graph homomorphism H : G — E is defined as a pair of functions H;: G; — E;,i=0,1
such that the following properties hold:

Ve € Gy : Ho(src(e)) = src(Hy(€))
Ve € G : Ho(trg(e)) = trg(Ha(e)).

That is to say H preserves the connectivity of the graph G. O

A diagram can now be defined.

Definition: Diagram.
If d and G are graphs, a diagram of shape d in G is defined as a graph homomorphism
D:d-G. a

«
)

€
8

au
]
-
<
Q
I
—
)

sc.n
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D:d“G:(DQ,D])

where Dy and D; are defined as

Do(u‘) = DQ(I/ e
Do(y) = Do(2) = ¢q

Di(f) = D1(j) = s
Dy(g)=r
Dl(h) =1

A directed graph and a set of distinguished diagrams in that graph form two of the components

of a sketch. The remaining two components are a set of cones and a set of cocones, defined

below.

Definition: Cone.

A cone in a graph G consists of:

1. a diagram of shape din G, D : d = G. This diagram is called the base of the cone.
2. A node v of G, called the verter of the cone.

3. A family of projection edges p = {p; : v — D(i)} indexed by the nodes of d.

A cone with vertex v and base D is referred to as a cone from vto Doras conep:v— D. O

Any cone p: v — D can be indicated by a diagram of the form

v

pl/"" pn

/
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In the category C, a cone p:v — D is a limit cone if it has two additional properties:

1. for every arrow a : i — j of d, D(a) o p; = p; where o is the composition operator of C.

A cone with this property is called a commutative cone.

2. If ¢: s = D is a different commutative cone there is a unique arrow u : s — v such that
pi o u = ¢; for all nodes i of d. In the category of commutative cones over diagram D,

the limit cone is the terminal object.

A limit cone over a discrete diagram, in any category, is called a product cone and its vertex
is known as the product of the objects in its base. In SET, the category of sets, for example,
the vertex of a limit cone over a discrete diagram is the cartesian product of the sets in its

base.
A cocone is defined to be the dual of a cone.

Definition: Cocone.

A cocone in a graph G consists of:

1. a diagram of shape din G, D : d — G. This diagram is called the base.
2. A node v of G, called the vertez.

3. A family of injections in = {in; : D(i) — v} indexed by the nodes of d. o

The colimit cocone over diagram D in the category C is defined as the initial object in the
category of commutative cocones over diagram D. That is to say, if j : D — v is the colimit
cocone over diagram D :d — G and k: D — s is another commutative cocone over D there

is a unique arrow u : v — s such that k; = uo j;.

In any category the colimit cocone over a discrete diagram is the sum (coproduct) of the
objects in its base. In SET, for example, the vertex of the colimit cocone is the disjoint union

of the sets in its base.

These definitions of directed graph, diagram, cone, and cocone are combined to give the

definition of a sketch.
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Definition: Sketch.
A sketch is a 4-tuple (G, Di,C,Co) consisting of a graph G, a set Di of diagrams on G, a se:

C of cones on G, and a set Co of cocones on G. C

Definition: FP Sketch.
A sketch is called an FP (finite product) sketch if it contains no cocones and all cones are

over finite discrete diagrams. C

Definition: FL Sketch.
A sketch is called an FL (finite limit) sketch if it contains no cocones and all cones are over

finite diagrams. Clearly every FP sketch is also an FL sketch. C

Definition: Sketch Morphism.
If $; =(G1,Di,,C1,Co) and S; = (G, Diy, C2,Co;) are sketches then a sketch morphism
F : S, — S, is a graph homomorphism such that:

1. for each diagram D :d — G, in Di;, Fo D :d — G is a diagram in Dsi,.

2. For each cone p: v — D in C4, the cone F(p) : F(v) — F o D belongs to Cj.

3. For each cocone j : D — v of Coy, the cocone F(j) : F o D — F(v)is a cocone belonging

to Cos. C

That is to say that F : §; — S, takes the diagrams of S; to diagrams of S;, the cones of §;

to cones of S, and cocones of S; to cocones of 5;.

Given any category C, there is a sketch underlying C defined as (G, Di,C,Co) where G is the
underlying graph of C, Di is the set of all commutative diagrams of C, C'is the set of all limit
cones of C, and Co is the set of all colimit cocones. This leads to the final definition in this

section.

Definition: Model of a sketch.

A model of a sketch, S, is a sketch morphism M : § — |D| where |D| is the sketch underlying
some category D (typically SET). It follows that the diagrams of S will be taken to com-
mutative diagrams of D, and the cones (cocones) of S will be taken to limit cones (colimit

cocones) of D. C



Although M : § — |D| is actually a graph homomorphism, it is sometimes convenient to

regard it as a functor M : § — D where S is the free category generated by the sketch S.

The models of a sketch Sin category D, M : § — D also form a category denoted Modp(S5).
The objects of this category are the models A and the arrows are natural transformations.
The category Modyp(S) is a full reflective subcategory of the functor category [S,D]. The
category of models of Sin SET is denoted by Mod(S).

4.2 Example: lists

Currently, interest is growing in the use of sketches as a tool for the specification of abstract
data types. Sketches offer a specification tool which is far more powerful than any which is

currently available. Two reasons for this are:

1. the diagrams of a sketch contain no variables and become commuting diagrams (equa-
tions) when the sketch is modelled in any category, D; equational reasoning is therefore

greatly simplified for the model of a sketch.

2. The existence of a set of cocones in a sketch allows the user to specify sorts as sums,
this can drastically reduce the complexity of a sketch. To quote from Wells and Barr
[WeBa87].

“Having the ability to form disjoint unions makes it easy to define op-
erations ...which are undefined on part of the datatype. We don’t need to
give it some artificial value such as ‘error’ — we just don’t define it on the
embarrassing part of the datatype, and in any model it is then not defined

there and thus gives no trouble.”

Gray [Gray87] shows how sketches of simple datatypes may be combined to form more complex
datatypes such as: SETofNAT, and SETofSETofNAT, and is currently developing a tech-
nique for implementing sketches using the computer algebra package Mathematica [Gray?).

A simple example, a sketch of lists of natural numbers with a distinguished error number,

is included here to give a flavour of the use of sketches in the specification of abstract data
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types.

The sketch of the abstract data type List has seven operations:

empty : — List
cons : Data x List — List

head : List — Data

tail : List — List.
which operate on lists and
zero : — Data
error : — Data
succ : Data — Data

The operations empty and cons are constructors, head : List — Data and tail : List — List

are described by the functions below.

head(empty) = error

head(cons(d,l)) = d
tail(empty) = empty
tail(cons(d,l)) = 1

For the sake of simplicity the ta:l function is defined so that the tail of an empty list is the
empty list rather than an error. Defining tail in this manner is done to avoid the need include

cocones in the sketch.

To force the Data sort to contain a unique error element we also require:

succ(error) = error.

4.2.1 The sketch of lists

The sketch List comprises a graph G with four nodes, and nine edges. There are two cones

and five diagrams.

38



Graph - G

The graph of the sketch of lists contains a node for each sort and an edge corresponding to each
operation mentioned in the signature above. The nodes of the graph are: Data, List, T, Datax
List and the edges are empty : T — List, cons : Data X List — List, head : List — Data,
and tail : List —» List. In addition to the edges above the graph of the sketch also contains
edges: error : T — Data, zero: T — Data, and succ: Data — Data. The complete graph

is represented pictorially below.

Data x List
head

tail ( List Data ) succ
em Z%
T

The construction of the objects T, and Data x List, and arrows prrs; and prpa:, is described

below.

The set of cones - C

The cones for the sketch List are:

the cone over the empty diagram. For any model, M, in category C, M(T) will be the vertex
of the limit cone over the empty diagram, so M(T) must be the terminal object of C. The

second cone is used to specify the object Data x List as a product.
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Data x List

Data List
Any model. M, in category C, will take this cone to the product cone

M(Data x List)

M (proa/ w’u,:)

M(Data) M(List)

so the presence of this cone specifies that M (Data x List) = M(Data) x M(List) with the
arrows M (prris:) and M(prpata) as the coordinate projections. It should be emphasised that
the node Data x List in the graph G is not a product, in spite of its name, it is merely a node

of the graph.

The set of diagrams - D

The sketch of lists requires five diagrams: two to specify the behaviour of head : List — Data,

and two to specify tail : List — List.

head Data x List
List Data ,
cons PTData
empty error
T List head Data
(a) (b)

Together these diagrams specify the behaviour of head since any model, M, will force the
diagrams (a) and (b) to commute. By (e} we obtain the equation M(head) o M(empty) =
M(error) and (b) gives rise to the equation M{head) o M(cons) = M(pTpata). The diagrams
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_ tail i Data x List
List List

cons DT List
emply empty

List List

T tail

(c) (d)

specify the behaviour of tail. Again because any model, M, forces (¢) and (d) to
commute, we obtain the equations M(tail) o M(empty) = M(empty), from (c), and
M(tail) o M(cons) = M(prList), from diagram (d).

One final diagram is required to specify the behaviour of the succ operation:

succ
Data Data
error error
T
(e)

which gives rise to the equation M (succ)o M(error) = M(error). This diagram will be used

to force the Data sort to contain a unique error value. The sketch contains no other diagrams.

Since the sketch List is an FP sketch it contains no cocones and is fully described as the

4-tuple

List = (G, D,C,0).

4.2.2 The semantics of List

A set valued model of an FP sketch Sis called a term model if it is the initial object in the
category Mod(S). FP sketches always have a term model [Barr86] as do FL sketches. To
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provide a semantics for the sketch List we take its term model. I : List — SET. To do this

we must first define a congruence relation.
Definition: Congruence relation.

A congruence relation ~ is an equivalence relation on the arrows of a category C such that:

1. if f ~ g, then fand g have the same source and target.

2. In the diagram:

if f~g,then foh~gohandkof~kog.

The congruence class containing the arrow fis denoted [f ). o

In [BaWe90] Barr and Wells give a set of rules for the construction of the term model I : § —
SET for the FP sketch § = (G, D,C,0). The terms are constructed as congruence classes of
strings of tuples of composable arrows from the graph G and the rules recursively construct
terms from an alphabet which consists of: the arrows of G, and all finite length tuples of these

arrows. For each cone ¢ € C of the form:

q
pr1 pri PTn
a; e a; N a,

1. If f : @ — b is an arrow of G and [z] € I(a), then [fz] € I(b) and I(f)[z] = [fz).

2. If (f1,.--»fm) and (g1,.-.,9n) are paths, a —* b, in a diagram d € D and [z] € I(a),
then

(I(fr)o..-o I(fm))z] = (I(g1) o .- 0 I(gn))[z]

in I(b).
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3. Iffori=1,...,n,[z;] € I(a;), then [¢(z,,...,2,)] € I(q) is a congruence class of strings
consisting of the cone, c, followed by a tuple of arrows, so if n = 0 there is only one

element [c()] for the empty product.
4. If fori =1,...,n, [z,],[%:] € I(a;) and [z;] = [%:], then ¢(z1,....2,) = ¢(v1,-- -, ¥n)-
5. Fori=1,...,n, [pic(z1,...,24)] = [zi]-
By rules 1 and 2 each I(f) : I(a) — I(b)is forced to be a function which respects the diagrams
D. From rule 3 the vertex I(q) of a cone is forced to contain an element corresponding to each

tuple (I(a,),...,1(ays)). Rule 5 forces I(p;), i = 1,...,n to be the coordinate projections and

from rules 1 and 5 we obtain

I(pi)[e(z1y. ..y 20)]) = [2i],Vi=1,...,n.

Rule 4 extends the congruence relation to cover tuples.

We can now construct the term model, I : List — SET. The alphabet is constructed as:

A1 = {empty, zero,error, succ,cons, priis, Prdata, tail, head}
A, = Ar={{(a1,...,an):0a; € A1,i=1,...,n}
A = UA,n€e{l,2,..}.

Together rules 1, 3 and 5 define I(Data x List) as the set I(Data) x I(List), and I(prr;s),
I(prpata) are the coordinate projections giving I(List) and I(Data) respectively. The func-
tions I(prList) and I(prpats) cannot construct any elements of I(List) and I(Data) and will

be ignored below, except where they form part of a diagram.

By rule 3, I(T) is a singleton set, I(empty) is an element of I(List) which we shall name nil,
while I(zero) and I(error) are elements of I(Data) which we name 0 and err respectively.

From rule 1, the set I(Data) is inductively defined as:
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I(Data)y = {0,err}
I(Data), = {succ(z):z € I(Data),1} VU {head(z):z € I(List)}
I(Data) = UI(Data)n,n € {0.1,2,...}.

Notice that from rule 2 and diagrams (a) and (b) we obtain:

I(head) o I(empty) = I(error)and
I(head) o I(cons) = I(prpata)

so the set {head(z),z € I(List)} adds no new elements to I(Data), and can be ig-
nored. Similarly, by rule 2 and diagram (e), I(succ)o I(error) = I(error) so I(Data) =
{0, suce(0), suce(suce(0)),...} U {err}, i.e the set of natural numbers with a distinguished

error element.

By rule 1, the set I(List) is constructed as:

I(List)y = {nil}
I(List), = I(List)p1U

{cons(z,v): (z,y) € I(Data) x I(List)n-1} U {tail(z): z € I(List)p-1}
I(List) = UI(List)n,n€{0,1,2,...}.

From rule 2 and diagram (c), we obtain I(tail) ¢ I(empty) = I(empty), therefore tail(nil) =
nil. Similarly rule 2 and diagram (d) produce I{tail)o I(cons)=1 (prList), so the set
{tail(z),z € I(List)n—1} adds no new elements to I(List),. The description of I(List) can

therefore be simplified to

I(List)o {nil}
I(List), = I(List)n-1 U {cons(z,y):(z,y) € I(Data) x I(List)n—1}

I(List) = UI(List)n,n € {0,1,2,...}

the set of sequences of elements of I(Data) terminated by the value nil, i.e. Lists of natural
numbers with a distinguished error number. The operation I(head : List — Data) is specified

by the equations generated by diagrams (a) and (b) as:
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(a) I(head)(nal) = err
(b)  I(head)(I(cons)(z,y)) z, V¥(z,y) € I(Data) x I(List)

and I(tail : List — List) is specified by (c) and (d) as:

(¢) I(tail)(nil)
(d)  I(tail)(I(cons)(z,y))

nil

y, V(z,y) € I(Data) x I(List).

In other words, the expected head and tail operations.

4.3 Sketch morphisms and induced functors

In this section we examine some of the properties of sketches and their models. The construc-

tion of the categorical model of language in chapter 5 is based on these properties.

Property 4.3.1 Ifh: S — T is a sketch morphism it induces a functor between the categories
of models of S and T, h~ : Mod(T) — Mod(S$).

Proof: h* : Mod(T) — Mod(S) is defined as

Moh
fh:h*(M) — h*(N)

h*(M)
h*(f: M — N)

a

We can use property 4.3.1 to construct models of a sketch, S, which play the role of datatypes

with hidden sorts and operations.

Proposition 4.3.1 Let § = (G,D,C,) be an FL sketch, T = (G', D',C’,C0) be a sketch,
and h : S — T be a sketch morphism. For each model, M : T — SET, of T, the datatype
h*(M): S — SET has the same behaviour as M ezcept that each object n' € Gy which is not
the image in h of some object n € Go becomes a hidden sort of h*(M) and each edge €' € G}

which is not the image in h of some edge e € Gy becomes a hidden operation.
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Proof: If n € Go then h(n) € Gg and from property 4.3.1 h*(M)(n) = M (h(n)) are the same

sort. If n’ € G} and there is no n € Go such that h(n) = n’ then h*(M)(n) is undefined so
the sort M(n’) is hidden.

Similarly if e € G, then h(e) € G} and from property 4.3.1 h*(M)(e) = M(h(e)) are the same
operation. If ¢’ € G} and there is no e € Gy such that h(e) = €’ then h*(M)(e) is undefined
and the operation M(¢€’) is hidden. a

A second property allows us to map the initial model of S to the model h*(M).

Property 4.3.2 If S is an FL sketch then for any sketch, T, and sketch morphismh: S - T
we have a unique natural transformation, e : Is = h*(M), where Is : § — SET is the initial

model of S and M : T — SET is any model of T

Proof: Is: S — SET is initial in Mod(5). o

For FL sketches S and T and sketch morphism h: S — T the construction in Mod(S) is

shown in figure 4.1

Figure 4.1: The category Mod(S)

where Is : S — SET is the initial model of S, M : T — SET is a model of T, and h* :
Mod(T) — Mod(S) is given by h : § — T and property 4.3.1. The natural transformation
e : Is = h*(M) is given by property 4.3.2. Our intention is to use Mod(S) to construct a
model of language where Is models language syntax, h*(M) models language semantics and

e : Is = h*(M) models the evaluation of programs.
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To construct this model of language with properties similar to Rus’ model of language we

need to establish:

1. that I's can be used to model a language syntax.
2. That h*(M) can model a language semantics and

3. the conditions under which we can construct an arrow learn : h*(M) — Is.

We will leave 1 and 2 for the next chapter and concentrate here on 3, the construction of

learn.

To discuss the conditions sufficient to allow the construction of learn we must first define
what sort of object learn is. In order to impose as few conditions on §,T,and h: § — T as

possible we define learn as a transformation [Copp80].

Definition: Transformation.
Let F:C — D and G : C — D be functors. A transformation ¢t : F — G is defined as any
collection of arrows f. : F(c) — G(c) indexed by the objects, ¢, of C. o

This definition is simply a much weaker form of the definition of natural transformation where
the naturality condition has been completely removed. The composition of transformations

we require is the horizontal composition given in [Copp80] and is defined below.

Definition: Composition of transformations.
Let F,G,H : C — D be functors and s : F — G, t : G — H be transformations. The
composition of ¢ and s is defined as the transformation t o s: F — H given by the collection

of arrows t. o s, : F(c) — H(c) indexed by the nodes, c, of C. 0

If learn : h*(M) — Is is a transformation then to construct and analogue of Rus’ learning
function we require that e o learn = 1.(»7). To be able to construct learn we require a

relationship between S and T which is illustrated in figure 4.2

In the situation where the arrow g € T is not the image in h of an arrow from § it must be
the case that the arrow M(g) adds no new elements to the set M(k(y)). Additionally we also

require that the set M(h(y)) contains no elements which are not constructed by some arrow
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s x ~y
h()
T Y09 p— 10
g

Figure 4.2: Generalised arrows in sketches § and T.

M(p) where p is a path in T, i.e. we can ensure this by insisting the M : T — SET is the
initial model I7: T — SET of T.

When the sketches S and T have the relationship described above we will say that § is
learnable from T. That is to say we can construct the sketch S by deleting parts of T' without
removing elements from the sets constructed by models of T from objects of T which are
common to both § and T. We can now describe the construction of the transformation

learn: h*(IT) — Is.

Proposition 4.3.2 If S and T be an FL sketchesand h: S —T isa sketch morphism such
that S is learnable from T. We can construct a transformation learn : h*(IT) — Is where

Is:S — SET and I : T — SET are the initial models of S and T respectively.

The natural transformation e : Is = h*(Ir) given by property 4.3.1 defines an equivalence

s on the set Is(s) for each node s € §S.

Vr.y€Is(s): 2=,y ¢ es(z) = es(y)

We can therefore construct a quotient set Is(s)=, where each element [z] € Is(s)z, is the
class of terms t € Is(s) which are equivalent under =,. Since S is learnable from T there is an
isomorphism between the sets Is(s)=, and h*(I7)(s) so to construct an arrow ls: h*(IT)(8) —

Is(s), set I,(z) = y for each z € h*(IT)(s) where y is a member of the equivalence class, [y]

such that e,(y) = z. The arrows I, form the transformation learn : h*(It) — Is. o
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Obviously the arrows I, are not unique as we can choose an arbitrary y from [y] but regardless

of the choice of y we know, by construction, that e, 0l, = 1;+( I7)(s) and therefore e o learn =

1h°(IT)'

We now have all the components necessary to construct a categorical model of language with

similar properties to the algebraic model of language discussed in chapter 3.
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Chapter 5

A Categorical Model of Language

The categorical model of language described in this chapter is a development of the model
discussed in [ReRa89), and is used to construct a category Mod(S), where Sis an FL sketch
describing the syntax of a programming language. The category, Mod(S), is generated by
an FL sketch and, as a result, has properties similar to those of the category of I-algebras,
C(XZ). The category of X-algebras is actually equivalent to the models of FP sketches, so by
using the FL class of sketches (which includes all FP sketches) we can increase the power
of the model of language. The model of language described therefore has similar properties
to Rus’ algebraic model of language discussed in chapter 3 while having a greater expressive

power.

5.1 Using sketches to model language syntax

To model the syntax of a programming language, £, we construct a sketch which describes
the abstract syntax trees of £ programs. To define the abstract syntax trees of £ we will

assume that the syntax of £ is described by a context free grammar, CFG.

Definition: Context Free Grammar.

A context free grammar, CFG), is defined as a 4-tuple {N,T, P, S) where:
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1. the set N, called the set of nonterminal symbols, is a set of names used to name the

types of phrases of the language, L(C FG), described by the context free grammar.

2. The set T, of terminal symbols, is the set of symbols which may appear in a sentence

of the language, L. The set of strings of terminal symbols is denoted by T+.

3. P, called the set of production rules, is a non-symmetric, non-transitive binary relation,
P : N —RHS, where RHS is the set of strings which can be constructed from the set
NUT.

4. The start symbol S € N is a distinguished nonterminal symbol such that:
Vs € Tt :sisasentencein L S —% s

where — 1 is the transitive closure of P.

The set, L(CFG) = {z :2 € Tt AS —* z}, describes the language generated by the context
free grammar, CFG. o

Using this definition of context free grammar the abstract syntax trees generated by CFG are

defined below.

Definition: Abstract syntax tree.

An abstract syntax tree is a labelled, ordered, rooted tree such that:

Abs-1. if tis a string in 7% and there is a production rule, p: N — t, then tis an abstract

syntax tree describing a phrase belonging to type N.

Abs-2. Let p: N - ¢p...cz, z > 0, be a production rule such that, c;,...,ck....,¢j, 0 <

i < k < j < z, is the sequence of nonterminals from the string cg...c;. If

t; is the abstract syntax tree of a phrase of type c;,
tx is the abstract syntax tree of a phrase of type cx, and

t; is the abstract syntax tree of a phrase of type c;,

an abstract syntax tree, t, rooted by pis constructed by setting ¢;,...,%,...,t; in order

as the children of node p. The abstract syntax tree, t, describes a phrase of type N.
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Abs-3. Nothing else is an abstract syntax tree. o

Theorem 5.1.1 shows that we can construct an FP sketch, S, which describes the abstract

syntax trees of the language generated by the arbitrary context free grammar. CFG.

Theorem 5.1.1 For every contezt free grammar, CFG, there is an FP sketch. S, such that
each node, n, which is not the verter of a cone, is mapped to the set phrases of type n € N of
L(CFG) by the initial model, Is : S — SET, in Mod(S).

Proof: The FP sketch, S, describing the abstract syntax trees of L(C FG) is constructed as:

1. set § = (G,0,C,0) where G is the graph containing exactly one node, T, and no edges,

and Cis the set of cones containing just the cone over the empty diagram.e: T — G.
2. For each nonterminal symbol, n € N, add a node n to the set of nodes, Gj.

3. For each production rule, p: n — t,t € Tt add an edge, p: T — n, to the set of edges,
G;.

4. For each production rule, p: n — cg...cz, where¢;,...,¢k,...,¢,, 0< i<k <j<zis

the sequence of nonterminals from ¢g...cz:

(a) if i # j, add a node named. ¢; X ... X ¢x X ... X ¢j, to Go.

(b) fi# j,add acone pr:c¢; X...X ¢k X ...x ¢; = D over the discrete diagram
T T
to the set of cones, C.

(c) ¥i=j, add the edge p: c; = n to G;.
If i # j add theedge,p:¢i X ... X g X ... X ¢j - n to G;.

5. Nothing else belongs to S.

We must now show that each set Is(n), n € Go, where n is not the vertex of a cone is the set

of phrases of type n € N of L(CFG).
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From Abs-1 we know that each phrase of type n, t, which has no subtrees is generated by
a rule of the form p: n — t. Rules 1, 2, and 3 above ensure that the sketch, S, has an edge
p: T — n corresponding to each production rule p: n — t. Since S contains no diagrams we
know that the arrow Is(p) : Is(T) — Is(n) uniquely identifies a term in Is(n), corresponding

to the phrase, t.

From rule Abs-2 we know that each phrase, ¢, with subtrees t;,...,%,...,t, is constructed
by a production rule p : n — ¢g...c; where ¢;,...,¢ky...,¢;, 0 < 21 < k < j <z are
nonterminal symbols such that: ¢; is a phrase belonging to type ¢;, tx is a phrase be-
longing to type ck, and t; is a phrase belonging to type c¢;. Rule 2 ensures that the
sketch, S, contains a node, n, while rules 4a, and 4b ensure that Is(ci,...,ck,...,C;)
is the product Is(e,) X ...x Is(ex) X ...x Is(c;). By rule 4c we obtain an edge in G,
PiCi X ...XCkX...%Xc, — n,corresponding to each production rule p: n — ¢o...c;. Since,
S, contains no diagrams the arrow Is(p): Is(¢;) X ...x Is(ck) X ... % Is(c,) — Is(n) con-
structs terms such that for each y = (ti,...,t%,...,t;) € Is(ci) x ... x Is(ex) X ... X Is(cj),
Is(p)(y) is uniquely identified as a term in Is(n) and has subterms, in order, t;,...,%,...,;.

The term Is(p)(y) corresponds to the phrase, t.
From rule 5 we know that each Is(n) contains no other terms. m

The simple expression language in chapter 3 with syntax:

(Ezp) — 0
(Ezp) — succ({Ezp))
(Ezp) — (Ezp)+(Ezp)

has the abstract syntax trees shown.

ezp-treesy = {0}
exp-trees, = {succ(z):z Eezp-trees,_1}U

{+(z,y): (z,y) Eezp-trees,_1 X ezp-trees,_; }
erp-trees = |Jezp-trees,.n € {0,1,...}

53



The sketch, Ezp, which describes this set of abstract syntax trees has 3 nodes, T. ezp. and,

ezp X exrp. and 5 edges:

0 : T—ezp
succ : erp — exp
Pr1 : eTp X exp — exp
Pr2 : €Ip X exp — exp
+ : erpXezxzp— ezxp

The edge, 0 : T — ezp arises from the production rule (Ezp) — 0, because of rule 3. The
production rules (Ezp) — succ((Ezp)). and (Ezp) — (Ezp)+(Ezp), together with rule 4
force the existence of the edges succ : ezp — exp and + : ezp X ezp — exp respectively. The
edges pry : exp X exp — expand pry : €xp X exp — ezp arise solely because of rule 4b, as they

are the projection edges of a cone.

There are just 2 cones:

the cone over the empty diagram, and
exp X exp

pm pr2

ezp ezp

which is forced to exist by rules 4a and 4b and, when modelled in SET, forces M(ezp x ezp)
to be the product M(ezp) x M(ezp). The sketch is represented pictorially below.

M
succ
T exp + ezp X exp
pr2
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The sketch, Ezp contains only one node which is not the vertex of a cone, namely ezp. Using
rules for constructing the term model, Iz, : Ezp — SET, of Ezp given in section 4.2.2 we

obtain the set, Igzp(ezp), shown below.

Igzp(ezplo = {IE=p(0)(0)}
Igzp(ezp)n = {IEzp(succ)(z): z € Igzp(ezp)n-1}U
{IEzp(pm1)(z) : z € IE:p(ezP)n-l}U
{IEzp(pra)(z):z € Igzp(ezp)n-1}U
{Igep(+)(2.9) : (2,9) € IEzp(€2P)n-1 X TEzp(€ZP)n-1}

IEzp(ezp) = Ulgzp(ezp)n.n € {0,1,...}

The sketch contains no diagrams and so IEzp(0), IEzp(suce), I Ezp(+) uniquely construct terms
in Igzp(ezp). The arrows Igzp(pry) and [ Ezp(pr2) are forced to be the coordinate projections
of the product Jg-p(ezp x ezp) and as a consequence do not construct terms in Igzp(ezxp).

The description of Igzp(ezp) can therefore be simplified to:

Igzp(ezplo = {0}
Igzp(ezp)n = {succ(z):z € Ipzp(ezp)n-1}U
{*(I, y): (.’L’, y) € IE:p(ezP)n—l X IE:rp(ezP)n—l}

Ipzp(ezp) = UIEzp(€xp)n,n € {0,1,...}

and so Ig;p(ezp) = ezp-irees.

In section 5.4 we will show that by using FL rather than FP sketches to model language
syntax we can simplify the process of language specification by capturing the static semantics

of a programming language within the specification of the syntax.
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5.2 Using sketches to model language semantics

In this section we show how a sketch can be used to construct the semantics of a programming
language. To describe the semantics of a programming language we must actually describe
the computational universe in which the language exists. To describe this universe we simply
view it as a complex abstract data type and construct an FL sketch, Sem, which has this

datatype as its initial model.

The semantics of the simple expression language is given by an FP sketch, Nat, which describes
the natural numbers with an addition operatiou. This sketch has nodes, T, nat, and nat x nat,

and edges:

0 : T- nat

dispose : nat— T

suce : nat — nat
pr1 : nat X nat — nat
pr2 : nat X nat — nat
+ : nat X nat — nat
z : nal — nat
tdpa: : mat — nat
(z.1dnat) : mnat — nat X nat
succ X idp,: :  mnat X nat — nat X nat.
There are two cones:
T
and
nat X nat
P pra2
nct nat
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These cones force the objects, M(T), and M(nat x nat) to be the sets, {0}, and M(nat) x

M (nat) respectively. The graph of the sketch is shown below.

(Z, idnat)
PT1
0 succﬂl + ] suce X tdpqs
dispose nat nat X nat /O
idmt(z 1 P2 l

We require six diagrams to complete the specification of the semantics.

nat nat

dispose 0/ H tdpat
/ nat
T

(a) (5)

From diagram (a) we obtain the equation
M(z) = M(0) o M(dispose)

For the initial model of Nat, Ing: : Nat — SET, this equation forces In,:(z) to be the func-

tion, £ — Inat(0)(INat(T)), i.e. £ — 0. Diagram (b) forces Inq¢(idnot) to be the function

IIN.,,(nat)'

nat

z (Z, idnat) idnat

nat «————— nat X nat ————nat

m pr2
(c)
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The equations:

M(prl)oM((zaidnat)) = A’I(Z)
M(pr2) ° M((Z, idnat)) = M(id'nat)

are obtained from diagram (c). Together, these equations force Ing:((2,idnq:)) to be the

function: z — (Inai(2)(Z), INat(idnat)(2))-

PT1 PT2

nat «———— nat X nat ———nat

succ suce X idyg; idyat

nat «———— nat X nat ————natl

pry pra

(d)

From diagram (d) we obtain the equations:

M(pr1) o M(suce X idngt) = M(succ)o M(pry)
M (pr3) o M(succ X idpqt) M(id,qt) o M(prs)

$0 INat(Succ X idnqe) is the function, (z,y) — (INat(suce)(z), INai(idnat)(y)).

(29 idnat) +

nat ——— > nat nat X nat nat
idnat + suce X tdngy suce
nat nat X nat nat
+
(e) (f)

The final two diagrams (e), and (f) provide the equations:
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M(+) ° M((Z,ian)) M(idnat)
M(+) o M(suce X idnqt) = M(succ)o M(+4)

which force Ing:(+) to be addition on natural numbers. The sketch, Nat, is discussed in
greater detail in [BaWe90], chapter 7, and In,; describes the semantics of the simple expres-
sion language of natural numbers and addition. In section 5.3 below we show how to combine

the sketches Ezp and Nat to produce a complete description of this language.

5.3 A categorical model of language

5.3.1 A categorical specification of language

Recall that Rus’ algebraic model of language specifies a language as a triple
(Sem, Syn,learn: Sem — Syn)

where Syn is the initial algebra over signature ¥ and Sem is a similar algebra. The
function learn: Sem — Syn is defined on the carrier sets of Sem and Syn such that, if

eval : Syn — Sem is an homomorphism given by the initiality of Syn then evalolearn = 1gem.

To construct a categorical model of language with properties similar to Rus’ algebraic model

we specify it as a 4-tuple
(Sem, Syn, E : Syn — Sem, learn: E*(Msem) — Isyn)

where Sem and Syn are FL sketches, and E : Syn — Sem is a sketch morphism such that Syn
is learnable from Sem. The transformation learn : E*(Isem )(Sem) — Isyn(Syn) is constructed
by following the procedure given in the proof of proposition 4.3.2 and is described in greater

detail below.

By theorem 5.1.1 we know that for every context free grammar, CFG, we can construct an
FL sketch (actually an FP sketch but the extra power of FL sketches can be used to describe

the static semantics) whose initial model in SET describes the abstract syntax trees of the
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language, L(CFG). The sketch, Syn, is just such a sketch and we take its initial model in
SET, Isyn : Syn — SET to be the abstract syntax of the language, L(C FG).

The semantics of L(CFG) is specified by the sketch, Sem. but we do not regard the
initial model, Is.n : Sem — SET, as the semantics because there is no obvious way to
describe the evaluation of programs if Ise,, is the semantics. To construct the seman-
tics of L(CFG) we use property 4.3.1. The sketch morphism E : Syn — Sem in-
duces a functor E* : Mod(Sem) — Mod(Syn), and so by proposition 4.3.1 the model
E*(Isem) : Syn — SET€ Mod(Syn) specifies a datatype which is equivalent to Isem with
hidden sorts. We use the model E*(Iser) € Mod(Syn) as the semantics of L(CFG).

The evaluation function, eval : Isyn -+ E*(Isem), is the natural transformation which is

known to exist because of property 4.3.2.

To complete the specification of L(C FG) we specify learn : E*(Isem) — Isyn as a transfor-
mation such that, eval o learn = 1g«(y,, )s where o is composition of transformations. Since
Syn, Sem, and E : Syn — Sem are such that Syn is learnable from Sem proposition 4.3.2

guarantees the existence of learn. The 4-tuple

(Sem, Syn, E : Syn — Sem, learn : E*(Isem) — Isyn)

therefore completely specifies the syntaz, semantics and syntaz «— semantics association of

the language, L(CFG).

5.3.2 The language of natural numbers and addition

We have already constructed sketches, Ezp, and Nat, which we will use to specify the syn-
tax and semantics of the simple expression language from section 3.1.5. To complete the

specification we must:

1. construct a sketch morphism E : Syn — Sem such that Ezp is learnable from Nat.

2. Construct the transformation learn : E*(Ingt) — IEzp-
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The construction of E : Syn — Sem follows a fairly simple procedure. We simply map
elements from the syntax (the sketch Ezp) to the corresponding elements from the semantics
(the sketch Nat) which we wish to use to express the meanings of the syntactic objects. In

this way we can construct E : Syn — Sem as:

E(T) = T

E(ezp) = nat

E(ezp x ezp) = nat X nat

E(0:T — ezp) = 0:T — nat
E(succ: exzp — ezp) = succ: nat — nat
E(pr,:ezp X ezp — exp) = pr;:nat X nat — nat
E(pry:ezp X ezp — exp) = prp:nat X nat — nat
E(+:ezpx ezp — exp) = + :nat X nat — nat.

This leaves us with the following edges of Nat which are not the images in E of edges of Ezp.

dispose : nat— T

z : nat— nat
tdnet : nat— nat
(2,idnqat) : nat— nat X nat
succ X tdpay : nat X nat — nat X nat

To show that Ezp is learnable from Nat we need to show that none of these arrows construct

elements of the sets Ing:(T), INat(nat), or Ing¢(nat X nat).

We know that except for dispose : nat — T, the model In,: maps each of the above edges to
functions which are defined in terms of Inga:(0), Inae(succ), and 1 Ine(naty- As a result none
of these functions produce elements of Ing¢(T), Ingt(nat), or Inge(nat X nat) which are not
constructed by some combination of In,:(0) and In:(succ). Since we also know that Inq(T)
is terminal we know that Ing¢(dispose) : INge(nat) — Ing:(T) can only be the function z — @
so it cannot construct elements either. We therefore know that Ezp is learnable from Nat.

We must now construct the transformation learn : E*(Inqt) — IEzp.
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The component arrows of learn are constcucted so that they are right inverses of the eval

natural transformation. Obviously to speciy learn we must first calculate eval.

The etval natural transformation

From property 4.3.2 we know that eval i the unique natural transformation eval : Igzp, —

E*(Ingt) given by the initiality of Igzp. We therefore know that the diagrams below commute.

Ir.,(0
IE(T) £:5(0) Igzp(ezp)

evalT evalezp

E*(INgt)(T) E*(INgt)(ezp)

E*(Ivqt)(0)

(2)

From the definitions of Ig;, and Ing: we know that Ig;,(T) = E*(INa:)(T) = {0} and so

evalt = 1yp

From diagram (a) we obtain the equation

evalezp 0 IEzp(0: = E*(INat)(0) o evalry.

We know from the definitions of Jgzp, and Ing: that Igzp(0)() = O where O is a syntactic

term, and E*(In,:)(0)(@) = 0, i.e. the number 0, so from the equation above we obtain

evalezp 0 Ig(0) = (0 — 0) 0 1(q)
evale,p o (@ — O) =0+~ 0.

From this final equation we can partially cefine evalczp as: evalezp(0) = 0.
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Ig ., (succ)
IE:p(ezp) = Ig-p(ezp)

eval.;, eval.zp

E*(Inat)(ezp) mE'(INu)(ezP)

(b)

From diagram (b) we obtain

evalerp 0 Ipzp(suce) = E*(Inat)(suce) o evalesp

By the definitions of Ig;p, and Ing: we know that Igzp(succ), and E*(Inqe)(succ) are respec-

tively the functions z — succ(z) and z — z + 1. From this we obtain:

evalesp 0 (z — succ(z)) = (z — z + 1) o evalezp

which allows us to partially define evalerp as: evalezp(succ(z)) = evalesp(z) + 1.

Igzp(pr1)
Igzp(ezp X ezp) = Igzp(ezp)
eval”pxezp evale.‘:p
E*(INat)(ezp X ezp E*(INat)(ezp)
o) ) B ) orn) N
(c)

The commutativity of diagram (c) gives us the equation:

eval.zp 0 Igzp(pr1) = E*(INat)(PT1) © €valezpxexp
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while commutativity of diagram (d) gives us:

evalezp 0 Igzp(pr2) = E*(INgt)(pr2) o evalezpx ezp-

Igzp(pr2)
Igzp(ezp X exp) 7 Igzp(ezp)
evalezpxezp evalezp
E*(INat)(ezp X ezp) E*(Inat)(ezp)
™ E*(Inat)(pr2)
(d)

Since Igzp(pr1) and IEzp(pr2) are the co-ordinate projections for Igzy(ezp) X IEzp(ezp) and
E*(Ing:)(pr1) and E*(Inat)(pr2) are the co-ordinate projections for Ingi(nat) x Inqe(nat),

diagrams (c) and (d) define evalezpxerp: evalezpyezp(Z,Y) = (evalezp(z), evalezp(y)).

IE: (+)
Igzp(ezp X exp) i Igzp(ezp)

evalezpxezp eval.zp

E*(INat)(ezp X ezp) T(_Im E*(INat)(ezp)

(e)
This final diagram adds one last equation which allows us to complete the definition of eval,,.
evalezp 0 IEzp(+) = E*(Inat)(+) o evalezpxerp-

From the definition of gz, we know that Ig.,(+) is the function (z,y) — +(z,y) which con-

structs syntactic expressions involving the plus operator from pairs of expressions. Similarly
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we know from Ing: that E*(Ing)(+) is addition on natural numbers. Using diagram (e) we

can derive the equation

evalezp(+(z,y)) = evalerp(z) + eval.zp(y).

By collecting the various parts of the definition of the eval natural transformation together

we construct the following:

evalp = 00

evales, = f where f(0) = 0
f(suce(z)) = f(z)+1
f+(z,9)) = f(z)+ f(y)

eValezpxezpy = (Z,¥) — (evalesp(z), eval.p(y))

Having calculated the evalnatural transformation we can now specify learn : E*(Inat) — IEzp

so that

Vn € Ezp:eval, olearny, = 1gs(1y, . )n-

The components of learn : E*(Inqt) — IEgzp are specified as:

learnT = 0~0
learnes, = | where i(0) = 0

l(z+1) = succ((z))
leaTnezpxesy = (Z,y) — (learn.zp(z),learn. p(y)).

The language of natural numbers and addition is therefore completely specified by the 4-tuple:

(Nat, Ezp, E,learn)
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where Nat is the sketch from section 5.2, Ezp is the FP sketch given in section 5.1. E : Syn —
Sem and learn : E*(Inai) — Igzp are, respectively, the sketch morphism and transformation

shown above.

In the remainder of this chapter we discuss some of the implications the sketch based model
of language has for the way in which we specify certain language features while in chapter 6
we will discuss the process by which we arrive at a self-interpreter for the arbitrary language

L specified using this model.

5.4 Describing language features using the model

The categorical model of language described above allows the language specifier to use limits
which are not simple products in a language specification. The use of such constructs can

drastically simplify the specification of certain types of language construct.

In [KoQu92] Kortas and Quatrain use the categorical model of language described above to
specify a subset of the pascal programming language. The specification that they provide is
interesting because it uses these features to construct a specification which is both clear and

less complex than can be achieved using conventional methods.

In this section we show how the model of language can be used to construct a specification

of the type scheme for a simple FP [Back78] like language.

The specification that we construct demonstrates some of the extra power which is available
within the categorical model of language, and shows that while the model has a great deal in

common with Rus’ algebraic model it is significantly more powerful.

5.4.1 A simple type scheme

The language we describe here constructs programs as the composition of functions. The

language has two basic types: num and char and two basic operations:

1. ord which returns the ordinal number of a given character.
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2. chr which will return the character with the ordinal number of its argument.

We also have one structured type constructor, list, which allows us to construct lists of any

depth. The function map takes a function £ of type

f:% — %+

and constructs a function of type

map f: * list — ** list.

Functions are composed using the o operator. This operator is a partial operator since the

composition f o g is only defined if the source type of the function f is equal to the target

type of the function g.

We can describe this aspect of the semantics of our language using a very simple sketch whose

graph contains only 4 nodes: T, ezp, type,

ord
chr

map

num
char
list

STC

to produce the graph shown pictorially as:

and ezp X ezrp. we require 12 edges:

T — ezp

T — ezp

ezp — ezp

ezp X erp — eIp
T — type

T — type

type — type

ezp — type

exp — type

ezp X .ezp — erp
ezp X exp — type

€zp X erp — eIp
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PT1

map ()
ord J' °
T ezp eIp X erp
chr
l Pr3
char\\num src| |trg
pr2
type
list
We require four diagrams to describe the src arrow:
rd chr
T ° ezp T ezxp
char src num src
type type
(a) (b)

which give us the equations:

M (src) o M(ord) = M(char)
M(src) o M(chr) = M(num)

In other words the source type of the function ord is char and the source type of the function

chr is num. From diagram (c)
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map o

€zp €erp €Irp X exp ezp
src sTrc pT3 src
type Tist type ezp e type
(c) (d)

we obtain the equation:

M(src) o M(map) = M (list) o M (src).

This tells us that the source type of the expression map f is * list where * is the source type

of £, while diagram (d) gives us the equation:

M(src) o M(o) = M(src) o M(pr3)

which states that the source of the composition £ o g is equal to the source of g. Four similar

diagrams are needed to describe trg.

We now have only the partial nature of the o operator left to describe. This is done using the

cones. There are two cones. Firstly the cone over the empty diagram

T

and secondly the cone

ezp X ezp

pm pra pT3

ezp

STC type €Ip

trg

When this cone is modelled we obtain an equation

69



M(src) o M(pr1) = M(prz) = M(trg) o M(pr3)

and the cone becomes a new kind of limit known as a pullback. In SET the vertex of this
cone is a restricted form of product containing only those pairs which conform to certain
properties. In this case the restricting property is given by the commutativity of the cone so

we know that the set M(ezp x ezp) is

{(z,9): (2,9) € M(ezp) x M(ezp) A M(src)(z) = M(trg)(y)}-

This allows us to specify o as a total operator since the only members of the set M(ezp x ezp)

are those pairs of functions whose types make them composable.

Contrast this with a specification given using FP sketches or using Rus’ algebraic model. In

the case of an FP sketch the node ezp x ezp would be defined by the cone

ezp X ezp

erp ezp

and so M(ezp X ezp) would contain very many pairs of non-composable functions. We would
need to add several diagrams to the sketch to describe the behaviour of o when applied to
these pairs, which would need to be mapped to a new expression value type-error. We
would then need to add a new arrow type-error: T — ezp and several more diagrams to
describe the behaviour of src, trg, and map applied to this value. We would also need to add
another arrow error-type: T — type so that we could define the source and target type of
the expression type-error. The result is a sketch (or an algebraic specification) which is
drastically more complicated than the one given above and in which the simplicity of the
type scheme we are trying to specify is consequently obscured. The inclusion of a cone which
is modelled as a pullback allows us simply to ignore incorrectly typed programs because our

syntax cannot contain them.
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5.4.2 The semantics

The simple language described here is a higher order language which presents us with some-
thing of a problem since we cannot use any type of sketch directly to describe a higher
order construct. We can, however, still describe the semantics of our language indirectly by

describing the effect of applying programs to data objects.

To explain: we construct a node, data, whose model Is.n(data) contains all well formed (i.e.

type correct) data objects which can be processed in our language. We also define an edge
typ : data — type

with appropriate diagrams so that the function Ig.,(typ) returns the type of any element of

Isem(data) to which it is applied.

Using the data node and the typ : data — type edge we can construct the cone

ezp X data

exp pr type TP data

whose vertex Isen(ezp x data) contains all pairs of programs and the data objects to which

they can be applied.

If we now add an edge
run : ezp X data — data

we can construct diagrams which describe the effect of applying programs to data objects and
thus describe the semantics of the language. The resulting sketch is, however, rather complex

and there is little to be gained by showing it here.
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Chapter 6

A Categorical Approach to a
Self-Interpreter

So far we have constructed a model of language based on FL sketches which while it has
many properties in common with Rus’ algebraic model of language is, as we demonstrated
in section 5.4, significantly more powerful. In this chapter we use the properties which our

sketch based model of language shares with Rus’ model to construct a self-interpreter.

6.1 Construction of the self-interpreter

It was shown in section 3.2 that using Rus’ algebraic model of language, the function computed

by the interpreter for the programming language
L = (Syn(B,W(X,X)),Sem(B, A), learn : Sem(B, A) — Syn(B,W(X,X)))
is defined as

interpreter = learn o eval.

This is also true for the categorical model of language.
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Proposition 6.1.1 If L is specified using sketches

L = (Sem, Syn, E : Syn — Sem, learn : E*(Isem) — Isyn)

the interpreter function is described as

interpreter = learn o eval.

Proof: Since Sem, Syn, and E : Syn — Sem are such that Syn is learnable from Sem we
know that for each object S € Syn there is a quotient set Isy,(S5)=; defined by evals and that
Isyn(S)=5 = E*(Isem)(S). From the construction of learns we know that for each meaning
m € E*(Isen)(S), m 2 [z], where evals(z) = m, learns(m) € [z] is the preferred syntactic
representation of m. The function interpreter = learn o eval therefore maps programs to their

preferred syntactic form (whilst preserving their meaning) and is an £ interpreter. a

Proposition 6.1.1 is an exact analogue of proposition 3.2.1 stated in section 3.2. We also

obtain an analogue of theorem 3.2.1 shown below

Theorem 6.1.1 For each edge, f : a — b, from the graph of the sketch Syn, the function.

Ff:o-b : ISyn(a) - Isyﬂ(b)

in SET, defined as

Fy.4— = interpreter o Isyn(f)

has the same behaviour on syntactic objects as E*(Isem)(f) : E*(Isem)(a) = E*(Isem)(b) has

on semantic objects.

Proof: Fj.,—p is defined as:

Fj.ap = interpreter o Isyn(f)

]

learn;, o evaly 0 Isy(f)
learny 0 E*(Isem )(f) 0 eval,
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This theorem can in fact be generalised to include all arrows g : E(a) — E(b) from the graph
of Sem where E : Syn — Sem is the sketch morphism, given in the language specification,

and defines E~.

FE@)—~E}) = learny o E*(Isem )(g) o eval,

This generalisation allows us to construct arrows which correspond to the hidden operations

defined on the objects of E*(Isem )(Syn). o

In the example language given in chapter 5 the interpreter function for the language:

L = (Nat,Ezp,E : Ezp — Nat,learn : E*(Ing) — Igzp)

is therefore specified as:

interpretery = learnT o evaly
= 0~0
interpreter,,, = learnesp o evalezp
= f where f(0) = 0
f(suce(z)) = succ(f(z)
f(*#(z,9)) = Frizpxezp—ep(2:9)
interpreter, zpyerp = learn zpxerp © €Vlezpxesp

= learnezpxerp © (Z,Y) = (evalezp(z), evalezp(y))
= (z,y) — ((learnezpo evalezp)(z), (learnezp o evalezp)(y))

= (z,y) — (interpreter,,,(z), interpreter,,,(y))

The function, Fy.ezpxezp—ezp : Isyn(€ZP) X Isyn(ezp) — Isyn(ezp), used in the definition of

interpreter.s, above is given by theorem 6.1.1 and is defined exactly as in figure 3.1.

F+:csz ezxp—ezp = leamerp o+o evaleszczp
F+:e:pxezp——ezp(o, y) = ¥
F+:e.rpxe::p—»e:p(5ucc(3)’y) = succ(F-l-:e:pXezp—vezp(I’ y))



As with the algebraic description of a self-interpreter in section 3.2 the components of the
interpreter function above lie outside the semantics of the language £. The remainder of this
chapter deals with the process by which the interpreter transformation is converted into an

L program.

6.2 Moving into the semantics

The first step in the process of converting interpreter into an £ program is to construct a
datatype which exists within the semantics of £ and is capable of representing the abstract
syntax trees of £ programs. Although the construction of this representation is not addressed
in this thesis we still need to provide a definition of such a representation since we require

certain properties for the construction of the self-interpreter.

Definition: A representation of syntax.

Given a language specification

L = (Sem, Syn, E : Syn — Syn,learn: E*(Isem) — Isyn)

a representation of the syntax of £ is defined as a pair of transformations

encode : Isyn — E*(Isem)
decode : E*(Igem) — Isyn

such that decode o encode = 1 Isyn- o

Each object, Isya(t), of the syntax must be taken to an object, rep;, of the semantics. The
objects rep, and rep; need not be distinct if they represent different objects from the syntax.
The only restriction required is that where a semantics object represents more than one syntax
object the representations form disjoint subsets. In this way the syntax of £ is represented
in the semantics of £ with no loss of information. The choice of these arrows is dependent on
the exact representation chosen for the syntax of £ and is outside the scope of this discussion.

An example representation may be found in appendix A.4.
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Once the representation of the syntax has been constructed the interpreter function can be

moved within the semantics of £ by composing it with the encode and decode transformations.
rep_interpreter = encode o interpreter o decode

For each function Fy.q—p : Isyn(a) — Isyn(b) we can also construct the function rep_Fj.o—p

by composition with encode and decode.
rep_F.a—.p = encodey o Fy.q_p 0 decode,

We can now formalise a notion of a language with sufficient power to express its self interpreter.

The language £ is powerful enough to express its self-interpreter if the following holds:
Vt € Gsyno : rep-interpreter, € E*(Is.m)(Syn).

Less formally, the language £ can express its self-interpreter if its semantics contains the

arrow rep.interpreter, for every node, ¢, from the graph of Syn.

We should note that rep_interpreter is defined in terms of the rep_Fy.,_.; functions so if the
semantics of £ contains the arrows rep.interpreter, for each node t it will also contain the

arrow rep_Fy.,. for every arrow f :a — b of Syn.

The predicate above is really too abstract to tell us much about the nature of the language £
because it does not relate to any language features. We would, however, expect £ to provide

methods of constructing:

Binary trees: Which are necessary to represent £ programs as data objects.

Conditional: We require some form of conditional in order to be able to select the correct

code segments to simulate a particular syntactic construct in an £ program.

Recursive functions: These are necessary to enable us to form the code segments necessary

to simulate the behaviour of the syntactic constructs of the language L.



These requirements may be met directly by £, as is the case for the Toy language defined in
appendix A, or indirectly as would be the case if £ were, say, an assembler language. In this
second case £ does not provide either binary trees or recursive functions but is sufficiently

powerful to be used to construct implementations of both.

6.3 The self-interpreter

For a suitable language, £ = (Sem, Syn, E : Syn — Sem, learn : E*(Is.m) — Isyn), the cate-
gory E*(Is.m)(Syn) contains the arrows, {rep_interpreter, : t € Gsemo}, which are the func-
tions the £ self-interpreter, L-self-int, computes. To complete the construction of L-self-int

we must convert these functions into an £ program.

To perform this conversion we require an algorithm which generates an £ program, £-self-
int, such that eval(L-self-int) = rep_interpreter,, where s is the node of Syn which denotes
complete £ programs. Provided we make the, not unreasonable, assumption that the notation
used to represent the rep_interpreter function has a fixed syntax and semantics, this algorithm
is, in fact, a parameterised compiler. The extra pieces of information which we must supply

as parameters of the compiler are:

1. the syntactic construct which £ uses to define functiouns.
2. The £ syntactic construct corresponding to a function call.

3. The form of conditional used by L.

These parameters are required because the rep_interpreter function is structured as a set of
functions which perform re-writes of the encoding of the syntax of L. We therefore need to

be able to:

1. define functions in L-self-int which perform these re-writes.
2. Generate calls of these re-writing functions.

3. Generate conditionals to decide which re-writing function to call in a given situation.



In appendix A we define Toy, a simple, typeless, first order functional language. Functions in
Toy can only be defined at the top level and have one implicit argument, named arg in the
body of the function. The only data objects in Toy are natural numbers and binary trees.
We can test natural numbers for equality using the = operator and construct and destruct

binary trees using the (_,.) and fst, snd operators respectively.

The function which our Toy self-interpreter computes is shown in appendix A.5.2. Below we
outline the final stage of the construction of the self-interpreter. Note that for the sake of
clarity we have used arabic numerals and meaningful identifiers rather than the Toy syntactic

constructs.

The node of the sketch Toyg,, which corresponds to complete Toy programs is named pry.
We can use this information to index the component of rep_int corresponding to the top level

of the self-interpreter.
rep-intprg = (10,(9, (e ,d))) — rep-there:ezp x decs—wrg(e9 d)

This allows us to construct the top level of the self-interpreter as a call to the function *where.

»where(arg) where

We now use the definition given by theorem 6.1.1 of rep_F' . re:czpxdecs—pry ShOWD below

mp-there:eqxdccsqprg(e7d) = (iob(g’(rep-Fapply:eszdeca-ocq;(x, y),(3,(0,0)))))

to add the definition of *where to the self-interpreter.

*where(arg) where *where = (10,(9, (*apply(arg),(3,(0,0))));

Since rep_F yhere:ecpxdecs—prg 15 defined in terms of rep_Fappiy:ezpxdecs—prg, We must use its

definition
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rep-FappIy:e.rpxdccs—»exp((4’ (0,0)). d) = (4,(0,0))
rep-Fapply:c:pxdeca—»erp((4b(oli))’d) = (4,(0,1))
mp-FappIy:c:pxdeca—»czp( (4,(1,n)), d) = (4,(1,n))

mp-F“PP'W”PXdeC&—»g:p( (4 ’ (2 ’ e) ) ’ d)
mp'F“PPIyic:pxdcca—.ezp( (4 ) (3 ’ e) ) N d)

rep-Fjat:u-y—vc:p(rep-Fapply:eszdeca—»exp(e’d))

mp-Fand:e:p—ezp(rep-Fapply:e::pxdecs—oezp(e’d))

rep-Fapply:e:pxdeca—vezp( (4,(4,(5,(z ’y) ))) ’ d)

= (4,(4, (mpjapply:eszdec:—»ezp('r! d) ’ rep-FappIy:expxdecs—oezp(ya d)) ))

mp‘Fapply:wpxdecs-up( (4,(5,(5,(z, y) ) y d)

= repj::eszczp—oe:p(mp-FappIy:cszdeca—»ezp(z’d)’ rep-Fapply:eszdecs—»ezp(y’d))

rep-Fapp]y;eszdec,_.ezp( (4’ (6: (63 (I ’ (y,Z) ) ))),d)

= repjapply:e:pxdecs—»cz'p(rep—Fij:c:pxc:rxe.rp—oc:p(rep—FappIy:eszdecsﬂe:rp(z!d)’ y,z),d)

rep-FappIy:e:pxdeca—»ezp( (4 ’ 7 ’ G ’ €))) ’ d)

= repjapply:e:pxdecs—oezp(repjnplace:esz u'p—oc:p(bOdy’ mp-Fapply:eszdecs-erp(ev d))’ d)

where body

rep-Ffetch:identx decs—ezp (i’ d)

to construct the definition of *apply which we then add to the self-interpreter.

*apply = if fst(fst(arg)) = 4 then

if fst(snd(fst(arg))) = O then fst(arg)

else

else

else

else

else

if
if

if

if

if

fst(snd(fst(arg))) = 1 then fst(arg)

fst(snd(fst(arg))) = 2 then

*fst (*xapply((snd(fst(arg)),snd(arg)))

fst(snd(fst(arg))) = 3 then

*snd (*apply((snd(fst(arg)),snd(arg)))

fst(snd(fst(arg))) = 4 then

(4, (4, (*apply((fst(snd(snd(snd(fst(arg))))),snd(arg))),
*apply((snd(snd(snd(snd(fst(arg))))),snd(arg))))))

fst(snd(fst(arg))) = 5 then

*=(*apply((fst(snd(snd(snd(fst(arg))))),snd(arg))),
*apply((snd(snd(snd(snd(fst(arg))))),snd(arg))))

else if fst(snd(fst(arg))) = 6 then

*apply ((*if ((*apply((fst(snd(snd(snd(fst(arg))))),snd(arg))),

(fst(snd(snd(snd(snd(fst(arg)))))),
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snd(snd(snd(snd(snd(fst(arg))))))))),
snd(arg)))
else if fst(snd(fst(arg))) = 7 then
*apply ((*replace((*fetch(fst(snd(snd(fst(arg))))),snd(arg))),
*apply((snd(snd(snd(fst(arg)))),snd(arg)))))

else error

else error;

Each clause of the definition of rep_Fgypiy.czpxdecs—erp 2dds 2 conditional branch to *apply
and to complete the definition of this function we must construct implementations of the
functions: rep_Ffstecp—esps T€D-Fand:erp—erps T€P-Fiezpxerpmerps T€P-Fifiezpxeepxep—ezp:
r€D_F replace:ezpx exp—ezps rep-F fetch:identxdecs—ezp- LheSE functions implement the language
operations: fst, snd, =, if, and call, where call is actually implemented using apply, replace,

and fetch.

rep-Ffst:e:p—vc:p('r) = (4,00,1)), z=(4,(0,1))
= I T= (4:(1;!/))
= a, z = (4,(4,(5,(a,0)))

= (4,(2,7)), otherwise

This function gives us the definition of *£fst.

*fst = if fst(arg) = 4 then
if fst(snd(arg)) = O then
if snd(snd(arg)) = 1 then (4,(0,1))
else error
else if fst(snd(arg)) = 1 then arg
else if fst(snd(arg)) = 4 then fst(snd(snd(snd(arg))))
else (4,(2,arg))
else (4,(2,arg));
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mp'Fmd:czy—vexp(I) = (4.(0,1)), I = (4,(0,1))
= Z, I = (4)(1sy))
= b, z = (4,(4,(5,(a,b))))

= (4,(3,z)), otherwise

The function repF,,4..rp—. .-, Provides the implementation of *snd shown.

*snd = if fst(arg) = 4 then
if fst(snd(arg)) = O then
1 then (4,(0,1))

if snd(snd(arg))

else error

else if fst(snd(arg)) = 1 then arg

else if fst(snd(arg)) = 4 then snd(snd(snd(snd(arg))))
else (4,(3,arg))

else (4,(3,arg));

The function rep_F_..;pxezp—ezp is defined as

rep-Fz:e.rp X exp— ezp (z,9)

= (4,(1.T€P-6qual(a,b))), I = (4:(1’a)) A y= (4:(1sb))

= (4,(0,1)), r=(4,(4,0)) Vy=(4,(4,b)) Vv
z=(4,(0,1)) Vy=(4,(0,1))
= (4,(5,(z,¥))), otherwise
where rep_equal((2,0),(2,0)) = (2,0)
rep-equal((2,z + 1),(2,0)) = (2,1)

rep-equal((2,0),(2,z + 1)) = (2,1)

rep_equal((2,z + 1),(2,y+ 1)) rep_equal(z,y)

and adds *= to the self-interpreter.

*= = if »and((fst(fst(arg))=4,fst(snd(arg))=4)) then
if *and((fst(snd(fst(arg)))=1,fst(snd(snd(arg)))=1)) then
(4,(1,*rep_equal ((snd(snd(fst(arg))),snd(snd(snd(arg)))))))
else if *or((*and((fst(snd(fst(arg)))=4,fst(snd(snd(arg)))=4)),

81



*and ((*and((fst(snd(fst(arg)))=0,
snd(snd(fst(arg)))=1)),
*and ((fst(snd(snd(arg)))=0,
snd(snd(snd(arg)))=1)))))) then
(4,00,1))
else (4,(5,arg))

else error;
Since the definition of rep_F=.ezpx erp—ezp is given in terms of the function rep_equal we must

also construct *rep-equal. In addition, for the sake of readability, we have defined the

functions *and and *or.
*rep_equal = if *and((fst(fst(arg))=2,fst(snd(arg))=2)) then
(2,snd(fst(arg))=snd(snd(arg)))
else error;
*and = if fst(arg) then snd(arg) else fst(arg);

*or = if fst(arg) then fst(arg) else snd(arg);

The definition of rep_Fif.ezpx ezp x ezp—ep Shown below requires no auxiliary functions.

mp-Fij:eszeszwp-»e:p(za y,z)

= (4,(0,1)), z = (4,(0,1))
= y, z = (4,(1,0))
= 2z, I=(4.(1;y+1))Vl'= (4:(430'))

= (49(6:(6)(33(3/,2)))))- OtherWise

We therefore only need to add *if to the self-interpreter to implement it.

*xif = if fst(fst(arg)) = 4 then
if *and((fst(snd(fst(arg)))=0,snd(snd(fst(arg)))=1)) then
(4,(0,1))
else if *and((fst(snd(fst(arg)))=1,snd(snd(fst(arg)))=0)) then
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fst(snd(arg))
else if *or((fst(snd(fst(arg)))=1,fst(snd(fst(arg)))=4)) then
snd(snd(arg))
else (4,(6,(6,(fst(arg),(fst(snd(arg)),snd(snd(arg)))))))
else (4,(6,(6,(fst(arg),(fst(snd(arg)),snd(snd(arg)))))));

The operation rep_F repiace:ezpx exp—ezp also becomes a single Toy function in the implementa-

tion.
mp-Frcplacezuwxcn-cn((4’(o’o))’r) =T
rep-Frcplace:u-pxezp—ezp((4v(0’1))ar) = (4,(0,1))
rep-anlau:u_-PXu-p_.m((4»(1nn)), 7') = (4:(1nn))

nep-F,.,,,m:,,,x,,,_,,,,(G, (2,e)),r) =
1ep_F 431 e2p— exp (T€P-F repiace:erpx erp—ezp(€:T))
rep_F roplace:erpx erp—erp((4,(3,€)),1) =
1ep_F nd:ezpx erp—ezp (TeP-F replace:erpx ezp—ezp(€5T))
1€p_F repiace:epxerp—ezp( (45 (5,(5,(2,9)))),7)
= 1€p-F_..rpx erp—ezp (TP -F replace:ezpxerp—erp (21 T)s Freplace:expx ezp—ezp (Y5 7))
rep-F opiace:erpxerp—ezp((45(4,(5,(z,9))),7)
= (rep-F rplace:ezpxespoerp(TrT) s T€PF roplace:eopx ezp—ezp (Y5 T))
1ep-F roplace:erpx erp—erp ((4,(6,(6,(z,(y,2))))).1)

- 1o
- rep-Fif:enxc:pxezp—oczp(m 'Y 92)

o

where =z = mpfnplace:cnxa:p-e:y(zvr)
/ —_

y = repfrcplnce:e:pxup—-c:p(yv 1‘)
! =

z = mP—FrepIace:c:rxe:p—oe:p(zvr)

mp-Freplace:mxwp—ou-p((4s(7p(7;(i:e)))),"‘) =
(4,(7.(7.(i."ep.F,.,ﬂ“,:mxw_,m(e, T)))))

sreplace = if fst(fst(arg)) = 4 then
if fst(snd(fst(arg))) = O then
if snd(snd(fst(arg))) = O then snd(arg)
else (4,(0,1))
else if fst(snd(fst(arg))) = 1 then fst(arg)
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else

else

else

else

else

else

if

if

if

if

if

if

fst(snd(fst(arg))) = 2 then

*fst(*replace((snd(snd(fst(arg))),snd(arg))))

fst(snd(fst(arg))) = 3 then

*snd (*replace((snd(snd(fst(arg))),snd(arg))))

fst(snd(fst(arg))) = 5 then

*=((*replace((fst(snd(snd(snd(fst(arg))))),snd(arg))),
*replace((snd(snd(snd(snd(fst(arg))))),snd(arg)))))

fst(snd(fst(arg))) = 4 then

(*replace((fst(snd(snd(snd(fst(arg))))),snd(arg))),

*replace((snd(snd(snd(snd(fst(arg))))),snd(arg))))

fst(snd(fst(arg))) = 6 then

*if ((*replace((fst(snd(snd(snd(fst(arg))))),snd(arg))),
(*replace((fst(snd(snd(snd(snd(fst(arg)))))),

snd(arg))),
*replace((snd(snd(snd(snd(snd(fst(arg)))))),
snd(arg))))))

fst(snd(fst(arg))) = 7 then

(4,(7,(7,(£st(snd(snd(snd(fst(arg))))),
*replace((snd(snd(snd(snd(fst(arg))))),

snd(arg)))))));

In the definition of rep_F,episce:ezpx czp—erp We ODly encounter one function for which we do

not already have a Toy implementation, namely rep_F'fe(ch:identx decs— ezp

reP-Ffetch:idcntxdcc:-»e:p(za(3n(oaO))) = (4,(0,1))
rep-chtch:idedeecn—oe:p(I’(3: (1,(8,(y, (e,d))))))

= rep—cht:identxuumxcrpxdecs—»c:p(zv rep-Fume:ichxident—mum(z? y)’ €, d)

We implement this function as *fetch.

*fetch = if fst(snd(arg)) = 3 then
if fst(snd(snd(arg)j) = 0 then (4,(0,1))

else if fst(snd(snd(arg))) = 1 then

*get ((fst(arg),
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(*same((fst(arg) ,fst(snd(snd(snd(snd(arg))))))),
(fst(snd(snd(snd(snd(snd(arg)))))),
snd(snd(snd(snd(snd(snd(arg))))))))))

else error;

else error;

The rep_Fj.ch:identxdecs—ezp function is defined in terms of two new functions

rep_F g,1:ident x numx ezp x decs —exp(25(1,0), €,d) = e

rep_F gotiident xnumx ezpxdecs—ezp(T:(1,m+1),6,d) = 1ep_Fppchiidentxdecs—exp (25 @)
and

rep-F yume:identxident—num ((1,0),(1,0)) = (1,0)

rep.F ,umecidentxident—num( (1,2 +1),(1,0)) = (1,1)

rep-Fumeidentxident—num((1,0),(1,2 + 1)) = (1,1)

rep-F jumecidentxident—nam((1,2 +1),(1,y+ 1)) = rep_F imeiidentxident—num (T Y)-

These definitions provide us with the last two functions definitions we need to add to the Toy

self-interpreter to complete it.

*get = if fst(fst(snd(arg))) = 1 then
if snd(fst(snd(srg))) = O then fst(snd(snd(arg)))
else *fetch((fst(arg),snd(snd(snd(arg)))))

else error;

ssame = if *and((fst(fst(arg))=1,fst(snd(arg))=1)) then
(1,snd(fst(arg) )=snd(snd(arg)))

else error;

The complete text of the Toy self-interpreter is shown in appendix A.6.

For this process to be completely automatic we need to be able to recognise the Toy syntactic
forms of function definition, function application, and conditional. The algorithm to perform
this analysis must be sufficiently general to recognise these forms however they manifest

themselves. The reader should bear in mind that if Toy were, for example, an assembler
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language then the features we would need to recognise could in fact be: labels, and conditional
goto. At this time we are unable to construct such a recognition algorithm and as a result
the precess described here still requires considerable input from the user. We will return to

this problem in section 7.1.2.
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Chapter 7

Concluding Discussion

In the preceding six chapters we propose and construct an alternative framework for con-
sidering the source — target relationship in the specification of compilers. The approach is
centred upon partial evaluation and the framework is categorical in nature and based on
the theory of sketches. Inevitably, this work reveals a number of new lines of research and
identifies a variety of interesting open problems as well as providing useful experience, and
experimental data, on the theoretical and practical usefulness of sketch theory in a large and
important area of computing science. In section 7.1 we review the model of language and self-
interpreter construction method developed in this thesis. Section 7.2 deals with some of the
extensions necessary to convert the construction technique so that it becomes a true compiler
construction method. In section 7.2 we also address some of the questions of practicality,
both of the true compiler construction technique outlined in chapter 2, and of fully automatic
compiler construction in general. In the final section, 7.3, we speculate about some methods

of removing the more obvious shortcomings of the sketch based model of language used here.

7.1 Summary

The work in this thesis falls roughly into two interrelated sections. The bulk of the work deals
with the construction of a categorical model of language based on sketches. This model of
language is, however, not the main aim of the thesis as its construction is motivated by the

desire to develop a technique for the calculation of a self-interpreter. Accordingly this section
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is split into two parts: in section 7.1.1 we critically appraise the categorical model of language

while in section 7.1.2 the discussion focusses on the self-interpreter construction technique.

7.1.1 The model of language

The categorical model of language describes a language, £, as a 4-tuple

L = (Sem,Syn, E : Syn — Sem, learn : E*(Isem) — Isyn).

Sem and Syn are FL sketches, and E : Syn — Sem is a sketch morphism such that Syn is
learnable from Sem. The syntax and semantics of £ are both constructed as models of Syn,
where the syntax is constructed as the initial model: Is,, : Syn — SET. We use property

4.3.1 to construct the semantics of £ as the model

E*(Isem): Syn — SET

where Ig.m : Sem — SET is the initial model of Sem in SET.

The construction of eval as the natural transformation

eval : Isyn = E*(Isem)

arises from property 4.3.2. Since Sem, Syn, and E : Syn — Sem are such that Syn is
learnable from Sem we can use proposition 4.3.2 to construct the components of the learn

transformation

learn : E*(Isem) — Isyn

such that eval o learn = 1g+(j,, ) and the language £ is fully specified.

The extremely abstract nature of the language specification enables very general properties

of languages and classes of languages to be studied and understood. Since the category
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Mod(Syn) is a full reflexive sub-category of [Syn,SET] we can obtain a great deal of in-
formation about any class of languages without ever having to consider the details of an

individual language, simply by studying what is known about the category [Syn,SET)].

An example language specification using the sketch based model of language is given in
appendix A. The sketch describing the semantics of Toy is an extremely large and complex
object, much more so than, say, a domain theoretic semantics for the same language. The
complexity arises in a number of ways. Firstly it is due to the fact that every object used in a
sketch must be described ezplicitly from a few basic constants and operations, we cannot for
example simply assume the existence of a particular product, we must construct that product.
To paraphrase Barr and Wells [BaWe90] pp 172, “when all the girders and braces are exposed
the true complexity of an object is revealed.” This may be no bad thing as it forces the
language specifier to consider exactly what properties he or she requires of each “girder”, and
certainly it is what allows us to define models of a sketch in an arbitrary category. Secondly
the model of language based on sketches is essentially context free and programming languages
are not. To explain, the meaning of the expression z + 1, where z is an identifier, depends on
exactly what value z is bound to when it is evaluated. In other words, in different contexts or
environments, z + 1 will have different meanings and so the language has a context sensitive!

aspect.

Since the categorical model of language describes the evaluation function of a programming

language as a natural transformation we know that the diagram below commutes.

Isyn
Isyn(A) snlf) Isyn(B)

eval 4 evalp

E*(Isem)(A) E-Usem)(J) E*(Isem)(B)

The fact that evaly is a function, combined with the commutativity of the diagram above

forces evals(z), where z € Igy,(A), to have a constant value even when the term r is

!This use of the term contezt sensitive refers to the semantics of the language and should not be confused
with the term context sensitive as used to describe a language whose grammar falls into type 1 of the Chomsky

hierarchy.
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embedded in the larger term Isy,(f)(z). This forces z to have the same meaning regardless
of its context and thus forces the model to be essentially context free. To overcome this
problem we have to introduce more cones and auxiliary operations to put terms like z into a
correct context and then determine the value of this context, rather than just the value of z.
This can add a great deal of complexity to the sketch as illustrated by the semantics of Toy

in appendix section A.2. We shall return to this problem in section 7.3.

As it stands at the moment the model of language is unrealistic as it does not constrain the
evaluation order of the language. In appendix A, for example, the semantics of Toy does not
state whether Toy uses call-by-value or call-by-need semantics. This is a serious deficiency in
any language specification method, but is potentially disastrous if the specification method is
used to specify the semantics of a functional language like Toy. This information is missing
because we use SET to model the sketch specifying the semantics of a programming language.
Since we can construct our categorical model of language in any category we could rectify
this omission by constructing a sketch of the semantics of Toy to be modelled in DOM, the
category of domains and continuous functions. In moving to DOM we would, however, add
to the complexity of the sketch without gaining any new insight into the technique for the
construction of the self-interpreter. For this reason the work in this thesis has centred on

models in SET only.

A third criticism of the model of language concerns the nature of the learn transformation.
Since learn lacks any form of naturality condition its usefulness is strictly limited. There have
been a number of attempts to weaken the naturality condition from the definition of natural
transformation. Several such weaker conditions are contained in [Copp80] and these should

certainly be explored.

In spite of these disadvantages the model of language we have constructed is not without
merit. As we illustrated in section 5.4 we can include limits which are more complex than
simple products. These limits can be included in both the syntax and the semantics, allowing
us to capture the static semantics of a language in the specification of its syntax if we wish.
This is a considerable enhancement over the algebraic model developed by Rus. At the cost
of moving away from initial models of the semantics we could also include colimits in the
models of programming language semantics and further simplify the specification of language

semantics as Kortas and Quatrain demonstrate in [KoQu92].
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Finally, in [BaWe90], pp 171, Barr and Wells state:

“A deeper difference is that there are no distinguished nodes or operations in
a sketch. The graph of the sketch for semigroups, for example, has three nodes,
no one singled out, whereas in the usual definition of semigroup, the underlying
set S ... is singled out and other things are defined in terms of it. Similarly in

the graph there are various arrows; c is just one of them.”

In other words, “all the objects and operations specified by a sketch have equal status.” This
can cause a problem if we have something complex to specify. Just as it can be useful to have
hidden sorts and operations in an algebraic specification it can also be useful to conceal parts
of the inner structure of a sketch, either to specify the interface to a data sort or to formally

draw attention to specific parts of a specification.

Although Barr and Wells are quite correct when they state that there are no distinguished
nodes (or operations) in a single sketch, proposition 4.3.1 which is used here to specify the
semantics of a programming language, in effect, provide a mechanism by which any nodes or

edges of a sketch can be distinguished from the remaining parts of the sketch.

To explain, when we construct the sketch morphism E : Syn — Sem what we are actu-
ally doing is picking out some of the nodes and edges of Sem as being of special interest.
Formally, because E : Syn — Sem allows us to use property 4.3.1 to construct the functor
E* : Mod(Sem) — Mod(Syn) we can use E* to construct a model of Syn. From proposi-
tion 4.3.1 we know that this model of Syn, E*(Is.m) : Syn — SET has the properties of the
given model of Sem, Is.,, : Sem — SET, and can be used to specify the external interface
of an abstract data type. We can therefore use proposition 4.3.1 to provide a mechanism to

distinguish elements of a sketch as being of special interest.

7.1.2 The self-interpreter construction technique

Suppose we have a language

L = (Sem, Syn, E : Syn — Sem, learn : E*(Isem) — Isyn)
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specified using the categorical model of language above. We can describe the function which

an interpreter for this language computes using the expression

interpreter = learn o eval

where eval is the evaluation natural transformation

eval : Isyn = E*(Isem)

used in the construction of learn.

If we then take a pair of transformations

encode : Isyn — E*(Isem)
decode : E*(Isem) — Isyn

which describe an encoding of the syntax of £ within the semantics of £ we can construct a

family of arrows

rep_interpreter = encode o learn o eval o decode

which may also lie inside the semantics of £, if £ is powerful enough to describe its own
interpreter. It is then a fairly simple matter to use the structure of rep_interpreter and theorem
6.1.1 to construct an £ program, L-self-int, which computes the function rep_interpreterg,
where Sis the start symbol of the grammar of £. The program £-self-int is the self-interpreter

for the language L.

This is the case because the specification of a programming language, however given, must
in some sense be the description of an interpreter for that language. In the case of our
categorical model of language this description is relatively clear as it exists in the form of
the eval and learn transformations. As a result of this we have a fairly straightforward,
if time consuming, process of symbol manipulation by which we can produce the function

rep_interpreter. To transform the description of rep_interpreter into a self-interpreter is still,
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unfortunately, something of an art form. We rely on a programmer’s intuition for the last

step in the derivation of the self-interpreter.

As shown in section 6.3 the programmer is needed to supply the £ syntactic forms of function
definition. function application, and conditional. This is because there are simply too many
different ways of providing these constructs in a programming language. For example, con-
ditional can be realised as: if ...then, if ...then ...else, case, pattern matching, computed

goto, etc.

These constructs all generate significantly different structures within the semantics of a pro-
gramming language. To make matters worse there are very many different mechanisms that
the language specifier may use within Sem to specify the semantics of any single one of these
constructs, particularly if we allow the specifier to work with models of Sem in categories
other than SET. This makes the construction of a general analysis procedure to recognise

the structure of conditional at least extremely difficult. It may even make it impossible.

This begs the question: “ of what value is the self-interpreter construction technique described
here?” In my view it is not likely to lead to a completely automatic process, but it still has
value because it does produce a complete description of the £ self-interpreter as a function
within the semantics of £. Even if we cannot use the self-interpreter derivation process to
construct the actual program code we can still use it to construct a design of this code which
is so highly detailed that any programmer who knows how to define and call functions and
express conditionals in £ can write the code for £-self-int with little need for extra intellectual

effort.

7.2 Partial evaluators and interpreters

The true compiler generator system discussed in section 2.2 depends on a pair of assumptions,

re-stated below.

Assumption 1. there is a technique which allows us to examine the specification of a com-
puter language, 7, and from this specification, calculate a T program which implements

mir for the language 7.
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Assumption 2. given the specifications of two languages, S, and 7, it is possible to derive

an implementation of S in the form of an interpreter expressed as a 7 program.

The self-interpreter calculation technique was originally proposed as a useful first step towards
justifying these assumptions. In sections 7.2.1 and 7.2.2 we discuss exactly how large this

first step is.

7.2.1 Partial evaluators

There are two distinct problems which need to be solved before a technique for deriving a

self-interpreter can be converted into a technique for deriving a partial evaluator.

Firstly, we must develop a method which allows us to derive the binding time analysis phase
of the partial evaluator. The work of Launchbury [Laun90] using dependent sums to factorise
domains into their static and dynamic values offers a promising starting point as it is a
significant step towards the formalisation of the process of binding time analysis. It is,
however, not at all clear how to incorporate this work into the categorical method developed

here.

The second problem is the transformation of a self-interpreter into the function specialisation
phase of a partial evaluator. In principle it should be possible to modify both the syntax and
semantics of £ by adding elements to represent dynamic values. Since dynamic values are
not reduced by the function specialisatior phase of a partial evaluator we would not need to
alter the diagrams in the sketch describing the semantics of £. The process used to derive the
self-interpreter with the original semantics should now construct a function specialiser when
applied to the altered semantics. This is because a function specialiser behaves ezactly like an
interpreter when it is working with static values, and suspends evaluation when it encounters
a dynamic value. The original diagrams of the sketch of the semantics are therefore sufficient
to deal with static values, and since dynamic values are not reduced, no new diagrams are
required to describe their reduction. Unfortunately, without a complete description of the
binding time analysis phase, we cannot begin to solve this second problem because we would
have no clear idea of where a dynamic value could occur and so do not know where we need

to add new values to the syntax and semantics of L.
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Clearly, there is still a very long way to go before the automatic derivation of a partial
evaluator is a practical proposition. This is not the case with the second assumption as we

explain below.

7.2.2 Interpreters

The fact that Assumption 2 fairs rather better than Assumption 1 is almost certainly due to
the fact that the generalisation from self-interpreter to interpreter is much smaller than that

from self-interpreter to partial evaluator.

Because of the close relationship between an interpreter and a self-interpreter the techniques
used here to calculate a self-interpreter for language S can also be used to calculate an S

interpreter in language 7 given sketch specifications of both S and 7.

The extra generality of the technique arises because the composition of learn and eval specifies
the function to be computed by an S interpreter, not the S interpreter itself. To get from the
function to the actual interpreter we need to construct a representation of the syntax of S as
a data object within the semantics of S. The interpreter is then produced by implementing

the function rep_interpreter.

To recap: to represent the syntax of S within the semantics of S we require a pair of trans-

formations

encode : I, — E*(I3,,,)

decode : E*(I3,,) — I§,,

with the property that decode o encode = 1 15, - The interpreter function is then embedded
yn

within this representation as
interpret = encode o learn o eval o decode

to move it within the semantics of S.

To construct an S interpreter in the programming language 7 we can replace the represen-

tation functions encode and decode by a pair of transformations which represent the syntax
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of S as a datatype within the semantics of the arbitrary language 7

encoder : I§,, — E*(IL, )

decoder : E‘(I_gm) — I“Sgy".

This allows us to move the S interpreter function into the semantics of 7
interpret = encoder o learn o eval o decodet

provided that 7 is sufficiently powerful to express the interpreter for the language S.

The remainder of the interpreter calculation process then proceeds ezactly as before. The only
extra requirement necessary to use the technique for the calculation of a general S interpreter

is that we can construct a representation of the S syntax within the semantics of 7.

7.2.3 The true compiler generator

The true compiler generator system discussed in section 2.2 is it seems still a long way off.
We are still unable to derive the actual program code of miz for the target language and we
cannot derive the code for int, the source interpreter, either. So have we actually advanced

towards this goal at all? The answer to this question is, I believe, yes!

While we cannot, as yet, derive a £ self-interpreter we can at least derive a definition of the
function which an £ self-interpreter computes. In section 7.2.2 above we indicated that we can
even generalise this derivation process to derive the interpreter function for an § interpreter
as a 7 program. To construct a true compiler generator of sorts we need only accomplish one

more task.

We need to be able to derive the binding time analysis for the language 7. If we can achieve
this we can construct a true compiler generator because we can at least derive the two func-

tions below.

1. rep_mizr the function which a 7 partial evaluator computes.

2. rep_int the function which a 7 implementation of an S interpreter computes.
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Provided we use a standard language, R, to describe these functions we can construct the

compiler generator shown in figure 7.1.

user specified
R-T
compiler

source language
specification (S)

S — T compiler

Compiler-Generator

target language
specification (7')

Figure 7.1: A different true compiler generator system

This system accepts as input: the specification of the source language S, the specification
of the target language 7, and a compiler which translates from the internal representation
R to the target language 7. The process discussed in the preceding chapters can then be
used to derive the R representations of rep_miz and rep_int. The given R — 7 compiler is
used to generate miz and int as 7 programs. We can then realise the S — 7 compiler as

miz[miz, int].

While this is not the compiler generation system envisaged in chapter 2 is is still an improve-
ment over the current situation because we do not need to specify the S — 7 relationship.
The burden of proof on the compiler writer is therefore reduced since they only need to prove
the R — T compiler correct rather than having to prove a different & — 7 relationship for

each language S.

Even without the ability to calculate the binding time analysis for the language 7 we can
construct a compiler generator (shown in figure 7.2) which does not require the user to define

the S — T relationship.

The operation of this system is similar to the system shown in figure 7.1 except that miz is
supplied by the user rather than calculated as part of the generation process. With this last
system the compiler writer’s proof obligations are again increased as they must now prove

miz correct in addition to the R — 7 compiler, but once again these proofs need only be
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user specified
R—-T
compiler

source language
specification (S)

S — T compiler

Compiler-Generator

target language
specification (7)

user specified 7
implementation of
miz

Figure 7.2: A final true compiler generator

carried out once for each target language 7.

There is an interesting parallel between the approach that both compiler generation systems
above use to construct the & — 7 relationship (encoded in the program int) and the usual
construction of a semantics directed compiler. Typically a semantics directed compiler is
factorised into a front end which translates source language sentences into some universal
intermediate language and a back end which translates from the intermediate language to the

target language.

Source front end Intermediate back end Target
Language Language Language

With the compiler generation systems outlined in this section we factorise the construction of
the S — 7 relationship into a front and back end. The back end of this process is the R — T
compiler provided by the user. We use a universal intermediate language R to describe the
S — T relationship. The front end is the process for calculating the rep-int function described

in this thesis.

Source front end Description R — 7 compiler  Description
Lax.lgua.g.e of rep-int of intin
Specxf‘iscatlon inR
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In spite of these similarities there are two striking differences between the approach we propose

and that of a semantics directed compiler.

Firstly a semantics directed compiler factorises the actual process of translating individual
sentences from S into 7. Our approach operates as a higher level and factorises the construc-

tion of the S — T relationship.

Secondly, with a semantics directed compiler the front end is specific to a particular source

programming language S. In our approach the front end is universal.

7.2.4 Open questions

Here we examine some open questions about the true compiler generation technique. With
the exception of question 4, all the questions below are related to the single question, “Do we

really want compilers which are produced without human intervention?”

1. How much static computation is there in miz(miz,int) when both miz and int are

machine generated?

This is a very important question since the power of partial evaluation depends on the

ability to eliminate static computation. Consider the function
flz,y) = z+1+y

Partial evaluation of the expression f(4, y), where y is dynamic, produces the function

fay) = 5+y

because the expression z + 1 is static if z is static. If, on the other hand, fis expressed

as
f(z,y) = z+y+1

then there is no static computation because z + y is dynamic, unless both z and y are
static, and so partial evaluation gives no improvement in the cost of computing f4. In

other words, the improvement gained by partial evaluation of a program depends on
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the style in which that program is written. We currently do not know whether the style
of a machine generated int and miz will be “partial evaluation friendly” or not. The
problem of transforming “partial evaluation unfriendly” functions into “friendly” ones
is addressed in [HoHu90] where the technique of obtaining “free theorems” from a func-
tions polymorphic type, developed by Wadler [Wad189), is used to derive transformation
rules. This technique is still in its infancy but seems like a good starting point for the
related problem of synthesising “partial evaluation friendly” implementations of int and

miz from language specifications expressed as sketches.

2. Can we ensure that a machine generated compiler will generate good quality object

code?

In some respects this question is related to the previous one. The more static compu-
tation contained in the expression miz(miz,int) the better the object code generated
by the compiler is likely to be. This, however, is not the only issue in the efficiency
of the generated target code, for example, a compiler generated from an interpreter
written using labels and “goto” to express its control flow is likely to generate better
target code than the code generated if the interpreter uses recursion exclusively. This
issue will need to be examined in detail before the proposed true compiler generation

technique becomes viable for the generation of “industrial quality” compilers.

3. Is the technique applicable to imperative languages?

The assumption that we are dealing with functional languages has been implicit through-
out the preceding chapters. Although the categorical model of language is capable of
specifying an imperative language in theory, this has not been done yet. In [KoQu92]
Kortas and Quatrain give a specification of a subset of the pascal language, however the
subset that they use avoids having to specify the store. It is in the specification of the
store (and of assignment) that the most serious problems are to be encountered so whilst
this work provides a useful insight into this use of sketches it leaves several questions
unanswered. Any problems encountered in the synthesis of miz and int for a func-
tional language are likely to be at least an order of magnitude worse for an imperative

language. This question cannot be answered without a great deal more work.

4. Can sketches be implemented on a computer?
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By using the techniques for constructing implementations of categorical constructs given
in [RyBu88] we can certainly construct implementations of graph, diagram, cone, co-
cone, and model (functor) which would allow us to implement a specific sketch. This,
however, is not what we mean by implementation of sketches on a computer because for
each sketch we would need to construct its implementation by hand. When we ask “can
sketches be implemented on a computer” we mean: can we construct an computer pro-
gram which will, given an arbitrary sketch, automatically generate an implementation

of the datatype specified by that sketch?

The answer to this question has to be a qualified no. Work has been undertaken
in this area, for example Gray’s work using Mathematica [Gray?], and the work of
Yusop [Yuso91] using prolog. There are some quite serious problems with implementing
sketches because, as with algebraic specifications, it is possible to use sketches to specify
objects which are simply unimplementable on a computer, or to write sketches in a
style which is non-constructive therefore not directly implementable on a computer.
The problems above are fairly general problems with the implementation of formal
specifications. Of the problems specific to the implementation of sketches the most
obvious ones are caused by the fact that sketches can be modelled in an arbitrary
category and do not always have an initial model. This problem even arises in SET.
It is true that every FL sketch has a term model but this is not the case for every
class of sketch. These problems will have to be addressed before a useful technique
for the implementation of sketches can be developed. As a starting point we suggest
the technique of dynamic evaluation developed by Duval and Raynaud [DuRa91] which

provides an interesting and promising approach to this problem.

. Do we really want compilers which are produced without human intervention?

This question is basically impossible to answer. In [Schm85] Schmidt briefly argues that
a compiler generation system which requires more decisions from the implementor than
is normal can be an advantage as the extra freedom of choice allows the implementor
to orient the implementation towards the specific hardware and software available. It is
indubitably true that when the user has to provide the implementation relationship such
orientation is possible; what is less clear is that such orientation is not possible when
the implementation relationship is automatically produced from the specifications of the

source and target languages. Sketches would seem to be an ideal method of representing
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the source and target languages in this context since. by their very nature, every detail
in a language specification must be stated explicitly and is therefore readily available
to any software for calculating an implementation relationship. Due to the categorical
nature of sketches this software could also have some extremely powerful analytical tools
available to it. To the best of my knowledge nobody has examined these issues in any

detail.

7.3 More science fiction: a better model of language?

There is one fundamental problem with the categorical model of language discussed above.
The language specifications developed using this technique are far too large and unwieldy.
The result of this is that a language specification using sketches is almost impossible to work
with. The reasons for this complexity are illustrated in section 5.4.2, explained in section

7.1.1 and can be summarised in one sentence.
Sketches cannot be used to specify functions as objects.

If we could describe higher order objects using sketches, or some related tool, we could
drastically reduce the complexity of the sketch describing the semantics of a programming
language. A function is an extremely natural way to describe context sensitivity within
a formal system. The context sensitive object becomes a function and its context can be
passed into it as its argument. It is using this technique that a denotational semantics
typically handles context sensitivity, the typical evaluation function for an expression looking

something like
£ : Ezpression — Environment — Value.
So the meaning of an expression, ezp, is the function
&(ezp) : Environment — Value

which expects its context (the environment) and will only produce an actual value when given

this context.
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There are a number of extensions to the concept of a sketch which could possibly be used to
solve this problem. The first of these extensions is the form which is described by Wells in
[Well90]. A form is essentially a sketch but we have the additional ability to require diagrams
to become instances of any essentially algebraic categorical construction when modelled. Al-
though there is insufficient space to describe the approach in any detail here the basic idea
is to provide a uniform method for defining the primitive types and operations on which the
constructors specified within a sketch can operate. This allows the introduction of objects
other than limits and colimits within the model of a sketch, in particular function object§
can be specified for forms modelled in a cartesian closed category. Using this technique Wells
hopes to be able to specify functional programming languages using sketches. A second ex-
tension to the concept of sketch which may allow function objects to be introduced is the

& trame> described by Lair in [Lair87b).

The model of language developed in this thesis exists within an extremely general framework
and is, as a result, easy to extend. The model is not tied to any specific procedure for
the calculation of models of Sem so we can easily incorporate developments like dynamic
evaluation [DuRa91] to increase the power of the model by allowing the sketch Sem to be
modelled in new ways. We can even replace the sketch Sem, describing the semantics of a
programming language by any graph theoretic structure, X', containing cones and diagrams.
This is because the key components on which the model of language is based are property 4.3.1
and the notion of learnability. Provided we can define a graph homomorphism E : Syn — X’
which preserves diagrams and cones we know both that property 4.3.1 holds and that the
notion of learnability is still applicable. Extension of the model of language to use either

forms or < trames>> is as a result not likely to present too many problems.

Finally, sketches themselves should not be dismissed. We have been able to construct a model
of language which exceeds the power of Rus’ algebraic model of language, which is itself a
powerful language specification tool with an impressive compiler technology of its own. This
technology is now available for study in a categorical universe. There are likely to be many

useful discoveries still to be made. This dissertation has only scratched the surface.
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Appendix A

Example: A Toy Self-Interpreter

Toy is a typeless first order functional language. Functions can only be declared at the top
level and have one implicit argument, named arg within the body of the function. Function
names are therefore the only type of identifier which can exist in a Toy program. The only
data objects which can be processed by a Toy program are natural numbers and binary
trees. Natural numbers can be tested for equality using the = operator. Binary trees may
be constructed using the (_,-) constructor and dismantled using the fst and snd operators.
This restricted language is specified because it is amongst the simplest languages which are

capable of expressing a self-interpreter.

A.1 The syntax of Toy

Using conventional methods the syntax of the Toy programming language is described by the

following set of production rules:

(ident) — x

(ident) — x(ident)

(num) — 0

(num) — succ((num))
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(decs) — ¢

(decs) — (ident) = (ezp) ; (decs)

(ezp) — arg

(ezp) — error

(ezp) — (num)

(ezp) — f£st((ezp))

(ezp) — snd((ezp))

(ezp) — ((ezp),(ezp))

(ezp) — (ezp) = (ezp)

(ezp) — if (ezp) then (ezp) else (ezrp)
(ezp) -+ call {ident)(ezp}

(prg) — (ezp) where (decs)

The corresponding sketch Toysyn, which describes the phrases of the Toy language is shown

below.
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A.1.1 A sketch of the Toy syntax — Toys,,

ident
z_
succ CZ num ident X exp
z b '
. ezp X decs where prg
0 is_num
call
fst
arg ﬂ if
T $ €IP exp X exp X exp
error U
snd
GY|=
empty erp X exp
decs - ident X ezp x decs

Note: projection arrows omitted for clarity.

Cones — Csyn

The six cones shown below are required in the sketch Toysy.. These cones are required to

construct the production rules:

(ident) — x
(num) — O

(decs) — ¢
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) — arg

(ezp) — error

(ezp) —  ((ezp),(ezp))

(ezp) — (ezp) = (ezp)

(ezp) — if (ezp) then (ezp) else (ezp)
(ezp) — call (ident)(ezp)

(decs) — (ident) = (ezp) ; (decs)

(prg) — (ezp) where (decs)

exp X exp

ez; ezrp
erp X exp X exp ident X ezp x decs
pr13 PT14 PTis pra7 pras Prag

ezp ezp ezp ide’:t ezp decs

exp X decs ident X ezp

7o 0N

ezp decs ident ezp

Diagrams — Dgy,

Since the sketch T'oysyn describes the syntax of a programming language and does not attempt

to capture its static semantics the set of diagrams, Dgyn, is empty. Dsyn = 0.
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A.1.2 The initial model Isy, : Toysyn — SET

Isyn(T) = {0}
Isyn(num) = Ulsyn(num)n,n € {0,1,2,...}
where Igyn(num)o = {0}
Isyn(num), = {succ(z):z € Isyn(num)n_1}
Isyn(ident) = Ulsyn(ident)n,n € {0,1,2,...}
where Isy.(ident)y = {x}
Isyn(ident), = {xy:y € Isyn(ident)n_}
Isyn(ezp) = Ulsyn(ezp)n,n € {0,1,2,...}

where Isyn(ezp)o {arg,error} U {isnum(z): z € Isyn(num)}
Isyn(€zp)n =

{£st(z): T € Isyn(€zp)n-1} U {snd(z): z € Isyn(€zp)n-1}U

{(z,y): (2,9) € Isyn(ezp)n-1 X Isyn(ezp)n-1}U

{=(z,9): (2,y) € Isyn(ezP)n-1 X Isyn(eZp)n-1}U

{if(z,y,2): (2,9,2) € Isyn(€zp)n-1 X Isyn(€ZP)n-1 X Isyn(€Tp)n-1}V

{call(z,y): z € Isyn(ident),y € Isyn(€xp)n-1}

Isyn(ident x ezp) = Igyn(ident) x Isyn(ezp)
Isyn(ezp x ezp) = Isyn(ezp) x Isyn(ezp)
Isyn(ezp X exzp X exp) = Isyn(ezp) X Isyn(ezp) X Isyn(ezp)
Isyn(decs) = UlIsyn(decs)n,n € {0,1,2,...}
where Isyn(decs)g = {empty}
Isyn(decs), =

{vind(z,y,2): z € Isy(ident),y € Isyn(ezp),z € Isyn(decs)n-1}

Isyn(ezp x decs) = Isyn(ezp) X Isyn(decs)
Isyn(ident x ezp x decs) = Isyn(ident) x Isyn(ezp) X Isyn(decs)
Isyn(prg) = {where(z,y):(z,y) € Isyn(ezp) X Isyn(decs)}

0

Igyn(succ: num — num) = z — succ(z)
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Isyn(z : T — ident) = Q0—x

Isyn(z-:ident — ident) = y— xy
Isyn(arg : T — ezp) = 0+ arg
Igyn(error : T — ezp) = (> error
Isyn(is-num : num — erp) = z — isnum(z)
Isyn(call : ident x ezp — ezp) = (z,y) — call(z,y)
Isyn(fst:ezp — ezp) = z — fst(z)
Isyn(snd : exp — ezp) = 2z — snd(z)

Isyn(if : exp X exp X ezp — ezp)

Isyn(=: ezp X exp — ezp)

(z,y,2) — if(z,y,2)
(z, y) — =(z,y)

Isyn((,) : €zp X ezp — ezp) = (z,y)— (z,y)
Isyn(pri1 :ezp X ezp — ezp) = (2,y)— 2
Isyn(pr12 : €zp X ezp — ezp) = (z,9)— Y

Isyn(pr13 : €xp X €zp X exp — ezp) =

Isyn(pris: ezp X ezp X exp — ezxp)

Isyn(pr1s : ezp X ezp X exp — exp) =

(z,¥,2) >z
(z.9,2) >y

(z,9,2) — 2

Isyn(empty : T — decs) = {— empty

Isyn(=;: ident X ezp X decs — decs)
Isyn(pro7 : ident X exp X decs — ident)
Isyn(pros : ident x ezp X decs — ezp)

Isyn(prag : ident X ezp X decs — decs)

Isyn(prar : €zp X decs — ezp) =

Isyn(pras : exp X decs — decs)

Isyn(prs : ident x ezp — ident)

Isyn(pra : ident x ezp — ezp) =
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(z,y,2) — =;(z,¥,2)

= (z,9,2)— ¢
= (z,9,2)—y

= (z,9,2)— 2

(z,9)— =
(z,9)— ¥

(z,9)— =
(z,9) >y



Isyn(where : exp X decs — prg) =

A.2 The semantics of Toy

A.2.1 The sketch Toysem

The graph Gsem needed to describe the semantics of Toy is an extremely large and complex

object. A pictorial representation of this graph is not practical so the graph is represented in

tabular from below.

Nodes

T

decs

num X num
tdent x T

ezp X ezp X erp
num X ezp

num X exp X ezxp
T x decs

ezp X ezp X decs

Edges

z: T — ident

z_: ident — ident

Zo : tdent — ident
id;den: : ident — ident

dispose;q,,; : tdent —» T

ident

tdent X ezp X decs

ezp

ezp X ezxp

ezp x T

ident X ezp X ezp

ident X num X ezp X decs
num X decs

erp X exp X erp X decs
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(z,y) — where(z,y)

num
ident X ident

ident x decs

ident X ezp

T x ezp

ezp X ezxp X ezp X €xp
ident X ident X ezp X decs

ezp X decs

prg



empty : T — decs
=;: ident x ezp X decs — decs

tdgecs : decs — decs

pra7 : ident X ezp X decs — ident

Pras : ident X ezp X decs — ezp

Prag : ident X ezxp X decs — decs

(call o (pra7, prag), prag) : ident X ezp X decs — ezp X decs

(fetch o (pra7, prae), apply o (pras, prag), prag) : ident X ezp X decs — ezp x erp x decs
(pra7, praos) : ident X ezp X decs — ident X ezp

(praz, prag) : ident x ezp X decs — ident X decs

(pras, prag) : ident x ezp x decs — ezp X decs

pry : ident X ident — ident

pra : tdent X ident — ident

(z,z) : T — ident x ident

T_. X z¢: ident X ident — ident X ident
o X z_: ident X ident — ident X ident
z_X z_: ident X ident — ident X ident
dispose; o nixident : tdent X ident — T

same : ident X ident — num

0: T — num

succ : num — num
zero : num — num
idpym : NUM — num

dispose,,,, : num — T
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PT9 : NUM X num — num

PT10 : MUM X nNum — num

(0,0) : T — num x num

SUCC X Z€T0 : NUM X NUumM — num X num
Zero X SUCC : NUM X Num — num X num
SUCC X SUCC : NUM X NuUM — num X num
dispose . x num © UM X num — T

equal : num X num — num

arg : T — ezp

undef : T — ezp
is_num : num — ezp
fst i ezp — ezp

snd : exp — ezp

id,.;, : exp — ezp
dispose,,, : ezp — T
(,): ezp X ezp — ezp
=: ezp X ezp — ezp

if : ezp X ezp X exp — ezp
call : ident X ezp — ezp

1S_NUM X {S_NUM : NUM X NumM — €ezp X erp

s : ezp — pryg

pr7 : ident X decs — ident

prs : ident X decs — decs

prs : ident X T — ident
pre :tdent X T — T
id.zp X empty : ident x T — ident X decs

dispose;y.nixT : 1dent x T — T
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PTr11 : €zp X ezp — ezp
PT12 : €Zp X €Ip — ezxp

fst x id .z, : ezp X ezp — ezp X ezp
snd X id .z, : ezp X ezp — ezp X ezxp

replace : exp X exp — ezp

pra : ident X ezp — ident

pry : ident X ezp — ezp

DPTi3 : €zp X eIp X exp — erp

PT14 : €Zp X €Ip X ezp — ezrp

PTis : €Zp X €Ip X exp — erp

diSPOSE ozpx erpx erp © €ZP X €2p X €zp — T

((,) o (pr13,pr14),PTr1s5) : €Zp X €zp X exp — ezrp X exp
(pr13,(,) 0 (pr14,PT15)) : €zp X ezp X exp — ezp X ezp
(= o(pri3,pri4),Pr15) : €zp X ezp X exp — ezxp X ezp
U X idesp X id.sp : €Zp X €zp X eIp — €zp X ezp X ezp
(pr13,Pri14) : €Zp X €zp X €zp — ezp X ezp

(pr13,pr1s) : €zp X ezp X ezp — ezp X ezp

(pr14,PT15) : €zp X ezp X ezp — ezp X ezp
(

(replace o (pri3, pr1s), replace o (pri4,pris)) : ezp X ezp X ezp — ezp X ezp

pre1 i ezp X T — ezp
praz:ezp X T — T
id.sp X undef : ezp X T — ezp X ezp

dispose,,, 1 :ezp X T = T

pr3g: Txezxp—T

pras : T X ezp — ezp
disposeTy ., : T x ezp = T

arg X id s, : T X ezp — ezp X ezp

undef X id ., : T X ezp — ezp X ezp
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PT3e : num X erp — num
Praz : num X erp — erp

is.num X id .z, : nUM X exp — ezp X ezp

pras : ident X exp X ezp — ident

Prag : ident X exp X exp — ezp

Prao : ident X ezp X ezp — ezp

(call o (prag, prag), prao) : ident X ezp X ezp — ezp X ezp
(pras, prag) : ident X ezp X ezp — ident X ezp

(prag, preo) : ident X ezp X ezp — ident x ezxp

(pras, replace o (prag, prag)) : ident X ezp X exp — ident X ezxp

PTig : €Ip X €Ip X erp X erp — exp

Pra2o : €Zp X ezp X ezp X exp — exp

Pra21 : €Ip X ezp X erp X exp — exp

PTa2 : €zp X ezp X ezp X exp — ezp

(if o (pr19, Pr20, PT21), PT22) : €Zp X €zp X €zp X exp — ezp X ezp
((,) o (pr19, pr20), PT21,Pr22) : €Ip X ezp X exp X exp — erp X eIp
(pr19,pra0) : €zp X ezp X ezxp X exp — exp X exp

(prig,pra2) : ezp x ezp X ezp X exp — ezp X ezp
(pr21,pra2) : ezp X ezp X ezp X exp — ezp X ezp

(pr19,pr20,pr21) : €Zp X €zp X ezp X ezp — ezp X ezp X erp

)
(pr20,pra22) : €zp X ezp X ezp X ezp — exp X ezp
):

(replace o (prig, pra2), replace o (prao, pra2), replace o (pr21,pr22)) : €zp X ezp X ezp x ezp

Prie : num X €zp X erp — num
Pri7 : nuUmM X exp X ezp — ezp

PTris : NumM X ezp X exp — ezp

1S_num o zero X id.;p X id.zp : NUM X €Zp X ezp — ezp X ezp X ezp

is_num o succ X id.zp X id.rp : NUM X €Zp X €Ip — ezp X ezp X ezp
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prap - ident x num X ezp X decs — ident

pra; : tdent X num X ezp X decs — num

praz : ident X num X ezp X decs — ezrp

Pras : ident X num X ezp X decs — decs

1d,ont X 2€10 X idegp X 1d gecs : tdent X num X ezp X decs — ident X num X ezp X decs
id jent X SUCC X 1d oz X idgec, : ident X num X ezp X decs — ident X num X ezp x decs
(prao, pras) : ident X num X ezp X decs — ident X decs

fetch : ident x decs — ezp

get : ident X num X ezp X decs — ezp

pra : tdent X ident X ezp X decs — ident

pray : tdent X ident X exp x decs — ident

pras : tdent X ident X ezp X decs — ezp

Prae : tdent X ident X exp X decs — decs

(pras, pras, prae) : ident X ident X ezp x decs — ident x ezp x decs

(pra3, =; o(praa, pras, prae)) : ident X ident x ezp X decs — ident x ezp x decs
(pras, prog) : ident X ident X ezp X decs — ident x ident

same o (pra3, prag) : ident X ident X ezp X decs — num

(pras, same o (praa, pras), pras, prae) : ident x ident X ezp x decs

— ident X num X ezp X decs

pry3: T x decs —» T

praq: T X decs — decs

disposet, 4.., : T X decs — T

arg X 1d gec, : T X decs — ezp x decs

undef X 1dg.., : T X decs — ezp X decs

Pras : num X decs — num
Pras : num X decs — decs

ts_num X td .., : num X decs — ezp X decs
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pra7 : ezp X decs — ezrp
pras : ezp X decs — decs
fst X id gecs : num X decs — ezp x decs
snd X id g.cs : num X decs — ezp X decs

apply : ezp x decs — ezrp

PTag : €Ip X ezp X decs — ezrp

Prso : exp X ezp X decs — ezp

prs; : ezp X ezp X decs — decs

((,) o (prag, PTs0), PTs1) : €Zp X €zp X €Ip — €Ip X decs

(= o(prag, PTs0), PT51) : €IP X €Ip X €Tp — €Ip X decs

(apply o (prag, prs1), apply o (prso, prs1)) : ezp X ezp X decs — ezp X ezp
(replace o (pr49, PTso), Prs1) : €zp X ezp X decs — ezp X decs

(pras, prso) : €zp X ezp X decs — €Ip X erp

(prae, prs1) : €zp X ezp X decs — ezp X decs

(prso, prs1) : €zp X ezp X decs — ezp X decs

(apply o (prag, prs1), apply o (prso, prs1)) : ezp X exp X decs — ezp X ezp

prsy : ezp X exp X exp X decs — erp

Prs3 : €zp X exp X erp X decs — ezp

PTsq @ €Ip X ezp X exp X decs — ezp

prss : exp X ezp X ezp X decs — decs

(if o (prs2, PTs3, PTsa), Prss) : €zp X ezp X decs — ezp X decs

(apply o (prs2, Prss), PTs3, PTs4; prss) : ezp X ezp X ezp X decs — ezp X ezp X ezp X decs
(prs2, prss, Prss) : €Ip X ezp X ezp X decs — ezp X ezp X ezp

(prsa, prss) : ezp X ezp X ezxp x decs — ezp X decs

(apply o (prs2, prss), Prs3, PTs4, Prss) : ezp X ezp X exp X decs — ezp X ezp X erp X decs

where : ezp X decs — prg

is~1:prg — ezp

Cones — Csem

The twenty two cones required in the definition of the semantics of Toy are shown below.
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tdent X ezp

V; \
ezp

ident

tdent X decs

7 \

ident decs

ezp X ezp

pPri Pri2
ezp ezp

num X ezp X ezrp

PTie PT17 Ppris
num exp exrp

tdent x ident X ezp x decs

pra3 Prae
PT24 Pras
ezp decs

tdent ident

ident X ident

V X

ident ident
ident x T
AN
ident T

num X num

V N
m nu

exp X exp X ezxp

nu m

Pri3 PT14 PT1s
ezp ezp ezp

ezp X ezp X ezp X ezp

PTi9 pr22
PT20 P21
€exp €zp erp €xp

ident X ezp X decs

7/ Pprasg PT2g

ident ezp decs


file:///pri5
file:///pri8

ident X num X ezp X decs T x exp

PT30 PTas PT34 Pr3s
PT31 PT32
m exp decs T ezp

ident nu

num X exp ident X ezp X ezp
pT36 prar pras PT39 PT40
num ezp ident ezp erp
ezp x T T X decs
% y Pr/ Pras
/
ezp T T decs
num X decs ezp X decs
N
num decs ezrp decs
ezp X ezp X decs ezp X ezp X exp X decs
PT49 PT50 Prs1 %/ \ PTss
PTs3 PT54
ezp ezxp decs ezp ezp ezp decs

Diagrams — Dg.m

The 10 diagrams below are used to describe the operation same : ident X ident — num. This

operation is used to specify equality of identifiers.
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T

. z z
ﬂldident (z,z)
ident
ident —Tident X tdent —T’ident
disposeident
. T
ident ident <Ll—-ident X tdent _P2 ident
z To ZTo Tog X Z- T_
ident ident ——p;—zdent X 1dent—;r-2—>zdent
r T
ident-il—ident X ident—p-z—’ident
z_ I_X Zg To
' .
zdent-—pr——zdent X zdent—pr—z-':dent
r r
ident<—p—1-—ident X ident—l-'z——ident
|
z. lz- X T. T.
ident-—Fi—ident X ident—pT——zdent
(z,7) . . : . Xz .
ident X ident ident X ident ———— ident X ident
0 same disposeidenixidcnt same
um T —0 num ————=num

T_X1ZT
ident x ident—— ident x ident  ident X zdent———’:dent X ident

diSpOS€,dent xident same sar& %me

num num
T 0 succ

Since the sets Is.n(ident) and Isem(num) are, to all intents and purposes the same

we require a similar set of 10 diagrams to describe the equality operation on numbers,

equal : num X num — num.
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. 0 0
[ idnum (0,0)
num
num -——————num X num num
pTg PT10
dispose
T POSE num num pre PT10
num -———num X num———num
\ \267‘0 zero zero X succ succ
num num-ﬁ—num X numW num
PT9 PTi0
num-————num X num————num
succ succ X zero zero
num num X num——— num
Pr9 PT10
PT9 PT10
num-———num X num————num
succ succ X succ suce
num-————num X Num——o—>num
PTo PT10
(0,0) zero X succ
T num X num num X num—————— num X num
0 equal d’sposenum Xnum equal
num num
num T 0 succ
succ X zero succ X succ

num X num—————=num X num

disSpose s ym x num equal

T num num

succ

num X num————————— num X num

eqt;\ %ual
num

The next collection of diagrams describe the operation =: ezp X ezp — ezp. This is the Toy

language equality operator. Notice that 0 is the True value and that 1 is the False value.
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equal
num X num ——————— num

is_num X is.num is_.num

ezp X erp ezp

Pry Prio
num =————— num X num ——> num

is_num is_num X is.num is_.num

|

€Tp X eIp —p——>€eIp

ezp priz

prn

713, PT
ezp X erp M exp X exp X erp

() () o (pri3, pria), Pr1s) Pris
ezp T eTp X erp g €2P
(PT 14,P7‘15)
erp X erp X exp —————€Ip X €zp
Pri3 (pr13, (,) o (pr1a, pr15))  |(5)
ezp Y erp X ezp P12 ezp
exp X exp X exp erp X erp X ezxp
V (pr13,PT14) y " (pr14,PT15) pris
| , |
ezp P ezp X €zp PTi2 €zp €zp P ezp X exp Priz ezp
((,) o (pr13,PT14), PT15) (pr13, (,) © (PT14,PT15))
exp X ezp X ezp erp X exp  ezp X eIp X eIp ezrp X erp
disposewpxe:pxezp = disposec:pxe:pxezp =
undef €zp T undef €zp
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idu-,, X undef undef x ide:rp

ezp X T erp X exp T X ezp ezp X ezp
disposs ., « T = diSPOSET y ¢rp =
T undef ezp T undef ezp
Pr42
ezp X T T

ezp td.zp, X undef undef

m
ezrp X erp

pr12 ezp
Pr34
T X ezp T
ezp undef X id.z undef
P~
€xp X ezxp Tezp

In total 6 diagrams describe the behaviour of the Toy operations fst: ezp — ezp and
snd : ezp — erp. Note that both fst and snd behave as identity when applied to a num-
ber.

undef undef
ezp T €zp
undef fst undef snd
ezp ezp
is_num is_num
num ezxp num ezp
is_num fst is_num snd
erp €rp
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()

ezp X exp ———— ezp erp X exp ————— ezp
Pri fst Pri2 snd
ezp ezp

We require 9 diagrams to specify the behaviour of if. these diagrams are shown below. Note

that the True value is 0 and the false value is any non zero value including a pair constructed

by (,)-

U X idezp X tdegp

ezp X erp X ezp €Ip X eIp X ezp
disposeexp X ezp X ezp if
T undef ezp

i1s_.num o zero X idesp X id.sp
ezp X exp X ezp €zp X ezp X exp

pri7 if

ezp

is_num o succ X td.zp X id.
eIp X eIp X erp erp X erp X erp

\pm\ ;

ezp

((,) o (pr19, Pr20), Pr21, Pr22)
eTp X eIp X eTp X exp ezp X ezp X exp

pr22 if

ezp
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r
ezp-Lezp X exp X exp N\ _PT15
b, AN
e

T U X tdegp x idezp Ip €zp
7‘14
undef l /
ez erp X ez X ez T
P~"pris p p p PT1s
PT16
num num X ezp X e:cp PT18
o]
num iS.num o zero X idezp x zd,,p pr
. 14
zs-numl /
ez, ezp X ez: X ez
P T p X ezp X ezp
PT1s
num num X ez:p X ezp PT1s
succ
l 7‘17
num 1S_Num o succ X idezp x idzp pr
. 14
zs-numl /
ezp ezxp X ea:p X ezp

Pri3

eIp X exp X exp X ezxp

PT19 (PT19, PT20) PT20

|

exp €Ip X €xp exp

—
P pri2

(pr19, PT20)

ezp X ezp erp X ezp X ezp X ezp%
RN

() ((;) o (pr19, PT20), PT21, PT22) ezp ezp

e
ezp X ezp X ezrp Pr1s

Below are the diagrams necessary to describe the operation apply : ezp x decs — ezp and its

ezp pri3

auxiliary functions. The purpose of this operation is to specify function application. Its

operation is as follows.

1. When a function call exists as a sub-expression it is replaced by the function body
bound to the function in the decs part of its argument. This is the purpose of the fetch

operation described below.

133



2. All occurrences of the sub-expression arg within the body of the function found at 1

above are replaced by the function argument from the call of the function in 1 above.

3. Together steps 1 and 2 produce an expression whose evaluation is described by the

remaining diagrams of the sketch.

arg xidq
T X decs e ezp X decs
diSpOSCT x decs apply
T arg ezp

undef Xidgecs

T X decs ezp X decs
diSPOSeT x decs apply
T undef €zp
is.num Xidgecs fst Xidgecs
num X decs ezp X decs ezp X decs—— ezp X decs
Pras apply  apply apply
num is_num ezp cap fst P

snd xidd,c,
ezp X decs———— ezp X decs

apply apply

ez ez
P snd P

(= o (prag, PTso), PTs1)
ezp X ezxp x decs ezp X decs

(apply ° (PT49, P7'51>»
apply o (prso, prs1))

ezp X ezp ezp

apply
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((y) o (prag, prso), prs1)

erp X exp X decs ezp x decs
(apply o (prae, prs1), appl
apply o (prso, prs1)) pply
ezp X ezp ezp
()

(if o (Prsz» PTs3, P7‘54) ’ P7‘55)

exp X exp X exp X decs ezp X decs
l Tss5), PT53, PT54, PT . l
(apply o (prs2, pTss), PTs3, PTs4, PT'ss) (if o (prsz, PTsa, Prsa), Prss) apply
erp X erp X er | ezp X decs ———— €7
P P P 74 apply P

. (call o (pra7, pras), Prae)
ident x ezp X decs ezp X decs

(fetch o (pra7, prag),
apply ° (P"28a P7'29>s
Prag)

ezxp X exp X decs apply

(replace o (prag, Prso), P7‘51)

ezp X decs ez,
P apply P
PT43 PTa3
T T x decs \ pry, ’|I‘~_Txdecs PTrag
arg arg X id{ecs decs undefl undef X idgecs decs
erp ezp X decs PT4s €Ip ~prp7 — €ZP X decs 7 PT48

Prar

PT4s5 Pr47
num <——— num X decs\ pr,q ezp ~———— ezp X decs \ pr,q

is_num| is_num X idg.c, decs  fst fst X idgecs decs
PT4g PT48
ezp ———— ezp X decs ez ez dec
P="prar P P="praz p X decs

Praz (PTa9, PTso)
ezxp ~———— ezp X decs \ pr,g ezp X ezp~———— ezp X ezp X decs Prs:
snd snd X idge decs =| (= o (pras,Prso), Prs1) decs
ezp ~—pr—— ezp X decs 7 PT48 ezp oo ezp X decs 7 P48
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(prag, PTs0)

eIp X erp ezp X ezp X decs\ pre,
()] {(;) o (pras, prso), prs1) decs
ezp ezp X decs ” PT48

PTa7
exp X e:cp x decs

V (Pras, PTso) \7‘50

~— ez x eTp ——r—

~ €zp X ezxp X ezp X decs

Prs2
/ P75N4
ezp (PTs2. pTs3, PTse) erp ezp
T PT1s
R ? //.

€zp X erp X exp

(Prsz + PT53, P7‘54)
ezp X ezp X erp —— ezp X ezp X ezxp X decs Prss

if (if o (prs2, PTs3, PT54) »PTs5) decs
PT4s

ezp ezp X decs

P4z
ezp X exp X ezp X decs
s

Prs2 (prs2, PTss) DTss

!

ezp prar %2 X decs -—pﬁs——decs
(prs2, prss)

erp X ezp ezrp X ezp X ezp X decs

PT53 \ PT54 \ PTs5
appl (apply o (prs2, prss), \ \ \d

pply exp €Ip €cs
P7'53,P7'54ap"'55) /p‘l‘53/p1'54/p1‘55

ezp ezp X erp X ezp x decs

PTs2
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ident X ezp x decs ident x ezp x decs

/ (pra7, pras) y V (pras, pTag) \y

zdent-—:dent x decs —prs decs exp ~—————ezIp X decs ———-decs

ident x e.tp x decs

V (PT28. prag) y

ident T ident x exp —pr, T ezp

(pra7, pras)
ident X e:cp-———,— ident X ezp X decs \ pryg

call (call o (pra=.pras), prag) decs
PT48

ezp ezp X decs

Prav

ezp X ezxp X decs erp X e.'rp x decs

PTag (prao, prs1> 1"51 V (prso, prs1) M

erp X decs ————— -——ez: x decs ———
T i Pras decs ezp 14 decs

(PTag, PTs1) (prso, prs1)
ezp X decs ezp X ezp x decs ———ezp X decs

i
apply|  (apply o (prag, prs1). apply o (prso, prs1)) apply
{

ezp X ezxp

ezp €zp

P11 PTi2

(pra7,prae PT28, PT29)
ident x decs*—’——Zdent X exp X decs(-—’———»ezp x decs

(fetch o (pra7, prag). | \PT29
fetch|  apply o (PT23,1”‘29>,' decs apply

Prag) / PTs1

ezp Pras ezp X exp X decs ezp

PTs0
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ezp X ezp x decs

V (PT49, PTso0) M

PP ezp x erp ————

(pras, PTso)
ezp X ezp ezp X ezp X decs\ prs,
replace (replace o (pr4g, PTso), PTs1) decs
PT4s
€xp prar ezp X decs

These diagrams describe the behaviour of fetch : ident X decs — ezp whose purpose is de-

scribed above.

PTe T

r
ident s ident x T
idident idident X empty |empty

ident ~pr tdent X decs T— decs

idident X empty

ident x T ident X decs
disposeidentx'r{ fetCh
;
T undef €zp

(pra3, =; o(Pr24, PT25, PT26))

ident x ident X ezp X decs ident X decs
(pra3, same o (pras, Pras), PTas, Pr26) fetch
ident X num X ezp X decs gel ezp

ident x ident X ezp X decs

y PN~z

ident  (praq, Pras, Prae) ezp decs

‘M pw

tdent x ezp x decs
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(PT24, pT2s, prae)

y ident x ident X ezxp x decs ident X erp X decs

ident (Pr2a3, =; o(praq, Pras, prae)) -

pre ident X decs s decs

ident x zdent X ezp X decs

V (pra3, praa) \y

ident 7 tdent x ident —pr; ident

(pras, P7‘24)

ident x ident x ezp x decs ident X ident
same o (pra3, praa) same
num

ident X ident X exp X erp

pr23 Pras \\\ Prae
same o (pra3, Prag)
ident  ezp (prys, same o (PT23»P7‘24)»P7‘25,PT26)\ num ezp
PT30 pr32 pr3 Pra3

ident X num X ezp X ezp

PT31 .
num ident X num X ezp X decs .
PT3g P'N pT33
z€ero ident ididcni X zero X idcz’p X iddecs ezp decs
pr3o PV Pra3
num tdent X num X ezp X decs
pT31

pr32
ident X num X ezp X decs

ldtdcnt X zero X 1d¢z‘? X zddecll/

ident X num X ezp X decs
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PT31 .
num ident X num X ezp X decs
PT30 PT32 pras
succ ident tdident X SUCC X idexr X 1dgecs ezp decs
p& PV Pr33
num ident X num X ezp X decs
pT31

ident X num x ezp X decs

1/ (prac, Pras) \

tdent decs

(pr3o, Pras)
ident X num X ezp X decs . ident x decs
idident X SUCC X tdegp X idgecs fetch
ident X num X ezp X decs gl ezp

This collection of diagrams are used to describe the replace : ezp X ezp — erp operation.

T T
T Ak T X €zp \_pras T P4 __Tx €zZp \ pras
arg arg X idez /ezp undef| undef X iderp ezp
———erp X /P12 ———— ezD % % 12
€zp~—pri P X €TP €zp i p X ezp
PT36 Pr11
num ———— num X ezp ezp ~———— €Ip X ezp \qm

is_num| is_num X zd,,p‘ exp  fst fst X 1dezp erp
/"12 /712

ezp ~—pry— ©3P X €P ezp ~—prry— P X €2P
Pri (pr13, PT14)
ezp ezp X ezp \{12 ezp X exp———— €Ip X €Ip X €IP\ prs
snd snd X "ie:p exrp = (= °(P7'13, P"'u),PTls) /ezp
/rn ezp +— ezp x ezp 7 P71

ezp ezp X ezp e

P11
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(pri3,pr14)
ezp X eIp ——— €Ip X ezp X €Ip \<1 s

(I () o (pr13, Pr14), PT15) /6-1'?
PT12
ezp o ezp X ezxp
prio ezp X ezp X ezp X ezp

pr?N]

ezp ezp

ezp (pr19,PT20, PT21)
-
‘M pM

ezp X erp X erp

(pri9, P20, PT21)
eIp X eIp X exp —————— €Ip X €Ip X €Ip X erp \{1'22

if (if o (pr19, Pr20, PT21)s PT22) erp
o

ezp ezp X exp

P

ident X ezp X erp

V (pras, prao) M

zdent-—— ident x ezp ——pr—€zp

(Pras, Pr3o)
ident X erp~——— ident X ezp X ezp \{40

call (call o (pras, prag), PT40) ezxp
ezp o ezp X ezp /ru
ezp X ezp X ezp ezp X ezp X ezp
Pr13 (P7‘13,PT15) y / (pr14,pr15) \M
~—————ezp >< €zp —pr > €I e ~—pr— €4P x erp ————
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(pr13, pris) (pr14,P715)
eIp X exp - eIp X eIp X eIp ——————eIp X eIp

replace (replace o (pry3, pr1s), replace(pria, pr1s)) replace

|

ezp X exp

ezp erp

P Pri2

ezp X erp >< ezp X ezrp ezp X erp x ezp X erp

exp +—pr—— €%P x €zp ——r—— €zp P~ &P x €Zp —pr— €zp

ezp X ezp x exp X erp

V (pr21,PT22) y

-~ ezp x ezp ——

ezp X ezp (Pr19,PT22)

(pra1, Praz)

(Przo,lﬂ‘zz‘)/ €zp X eIp X €Ip X eIp ezp X ezp

ezp X ezp (replace o (pri9, prac),
replace replacel replace o (prao, Pr22), replace

ezp 1 replace o (pr21,pr22))

ezp X erp X ezp 2 ezp

ezp pri3

ident X e.tp X ezp

V (pras, Prao) w

—pr P x exp —pr——~ezp

pras ident x ezp X exp (pras, prao) ezp X ezp

ident (pras, replace o (prag, prao)) replace

|

pT3 ident X ezp 7 ezp
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arg X idezp
T X ezp erp X ezrp

PT3s replace

ezp

undef Xidzp

T x ezp ezp X ezp
diSpOSCTx erp replace
T undef ezp

is.num Xidezp

num X ezp ezp X ezp
Pr3s replace
num is_num ezp
fst Xidezp
ezp X exp ————— €Ip X €zp
replace replace
€zp = ezp
snd Xidezp

€Ip X exp — = €eIp X €Ip

replace replace

ezp ezp

snd

(call o (pras, pras), PT4o)

tdent X ezp X ezp ezp X ezp
(pras. replace o (prag, prao)) replace
ident X ezp ezp
call
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(= o (pr13.pria), pr1s)

erp X ezp X ezp €zp X ezp
(replace o (pri3, Pr1s), replace
replace o (pT14, PT15)) g
exp X ezp — ezp
((;) o (pr13, pr14), PT15)
ezp X ezp X ezp ezp X eIp
(replace o (pr13,Prs), replace
replace o (pr14,PT15)) ’
exp X exp ezp
(+)
(if o(pr1g, Pr20, PT21)s PT22)
ezp X €zp X eTp X ezp ezp X ezp
(replace o (pr19, PT22),
replace o (pra0, PT22)), replace
replace o (pra1, PTa2))
ezp X ezIp X ezp ezp

if

Finally we describe the operation where : ezp X decs — pry. This operation is used to place

an expression within a context, (i.e. an environment) and thus allow the evaluation of function

calls. The operations is : ezp — prg and is™1 : prg — ezp are used to force an isomorphism

between the sets Isem(ezp) and Isem(prg)-

where
ezp X decs pryg

1S

exp prg

is—1 apply is
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A.2.2 The initial model Is.m : Toysem — SET

Isem(T) = {0}
Isem (ident) = {0,1,2,...}
Isem(num) = {0,1,2,...}
Isem(decs) = Ulsem(decs)n,n € {0,1,2,...}
where Igem(decs)o = {empty}
Isem(decs), = Isem(decs)nyU{=;(z,y,2):(z,y,2) €
Isem(ident) X Isem(€zp) X Isem(decs)n—1}
Is.m(ident x ezp x decs) = Isem(1dent) X Isem(ezp) X Isem(decs)
Isem(ident X ident) = Igem(ident) X Isem(ident)
Isem(num x num) = Isem(num) X Isem(num)
Isem(ezp) = Ulsem(ezp)n,n € {0,1,2,...}
where Isem(ezp)o = {undef,arg}U { isnum(z) :z € Isem(num)}
Isem(€zp)n = Isem(€zp)n—1V
{£st(z) : 2 € {y : y € Isem(€zp)n—1 A —p(¥)}}V
{snd(z) :z € {y:y € Isem(ezp)n-1 A ~p(y)}}U
{ (z,9) : (2,9) € Isem(€zP)n-1 X Isem(€zp)n-1}U
{=(z,9),=(y,2) : (z,y) € {z: z € Isem(€zP)n-1 A ~p(2)}x
Isem(ezp)n-1}U
{if(z,y,7) : (2,9,2) € {a: a € Isem(€zp)n-1 A ~p(a)}x
Isem(ezp)n-1 X Isem(€zp)n-1}U
{ call(i,e) : (i,€) € Isem(ident) X Isem(eZp)n-1}
p(arg) = False p(snd(z)) = False
p(undef) = True p(call(i,e)) = False
p(isnum(z)) = True p(=(z,y)) = False
p((z,y)) = True p(if(z,y,2)) = [False
p(fst(z)) = False
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Isem(ident x decs) =
Isem(ident x T) =
Isem(ezp X ezp) =
Isem(ident X ezp) =
Isem(ezp X ezp X ezp) =
Isem(ezp X T) =
Isem (T X ezp) =
Isem(num x ezp) =
Isem(ident X ezp X ezp) =

Isem(ezp X ezp X ezp X ezp) =

Isem(num X ezp X ezp)

Is.n(ident x num X ezp x decs)

Isem(ident x ident x ezp X decs)

Isem(T X decs) =
Isem(num x decs) =
Is.m(ezp x decs) =
Isem(ezp x ezp x decs) =

Isem(ezp X ezp X ezp X decs) =

Isem (ident) X Isem(decs)

Isem(ident) X Isem(T)

Isem(ezp) X Isem(ezp)

Isem(ident) X Isem(ezp)

Isem(ezp) X Isem(€zp) X Isem(ezp)

Isem(ezp) X Isem(T)

Isem(T) X Isem(ezp)

Isem(num) X Isem(€ezp)

Isem(ident) X Isem(ezp) X Isem(ezp)

Isem(€zp) X Isem(€zp) X Isem(€zp) X Isem(ezp)

Isem(num) X Isem(€zp) X Isem(ezp)

Isem(ident) X Isem(num) X Isem(ezp) X Isem(decs)

Is.m(ident) X Is.m(ident) X Isem(€zp) X Isem(decs)
Iseri(T) X Isem(decs)

Isem(num) X Isem(decs)

Isem(ezp) X Isem(decs)

Isem{€zp) X Isem(ezp) X Isem(decs)

ISem(ezp) X ISem(ezp) X IScm(ezp) X ISem(decs)

Isem(pry) = Isem(ezp)
Isem(z : T — ident) = 0~0
Isem(z-: ident — ident) = z—-z+1

Isem(zo : ident — ident) = -0
Isem (ididens : ident — ident) = z-—>1zI
Isem(dispose;q,,; : ident = T) = z—0

Isem(empty : T — decs) = 9+ empty
Isem(=;: ident x ezp x decs — decs) = (z,y,2z)— =;(z,y,2)
Isem (idgecs : decs — decs) = z—>1z
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Isem(praz7 : ident X ezp X decs — ident) = (z,y,2)—
Isem(pras : ident X ezp X decs — ezrp) = (z,9,2)— Y
Isem(prag : ident X ezp X decs — decs) = (z,y,2)— 2
Isem({call o (pra7, prag). prag) : ident X exp x decs — ezp x decs)

= (2,¥,2) = (Isem(call)(z,y). 2)
Isem ({fetch o (pra7, prog). apply o (pras. prag), prag) : ident X ezp x decs

— ezp X ezp X decs)

= (2.9,2) = (Isem(fetch)(z,y), Isem(apply)(y, z),2)

Isem((pra7, Pras) : ident X ezp x decs — ident X ezp) = (z,y,2)—> (z,y)
Isem({pr27, Prag) : ident X ezp X decs — ident x decs) = (z,y,2)— (z,2)
Isem({pras, prag) : ident X ezp x decs — ezp x decs) = (z,y,2)— (y,2)
Isem(pry @ ident x ident — ident) = (z,y)—¢
Isem(prs @ ident X ident — ident) = (z,¥y)—y
Isem({z,z) : T — tdent X ident) = 0~ (0,0)
Isem(Z- X o : ident X ident — ident x ident) = (z,y)— (z+1,0)
Isem(Zo X z-: ident X ident — ident x ident) = (z,y)— (0,y+1)
Isem(z-X% z_: ident X ident — ident x ident) = (z,y)— (z+1,y+1)
Isem (dispose, g, nixident : tdent X ident — T) = (z,y)—0
Isem(same : ident X ident — num) = f
where f(0,0) = 0
f(z +1,0) = 1
f(0,z+1) = 1
fz+Ly+1) = f(z,9)
Isem(0 : T — num) = 0~0
Isem(succ : num — num) = z—-z+1
Isem(zero : num — num) = z—0
Isem(idpym : num — num) = z—>1z
Is.m(dispose,,, :num - T) = z-0
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ISem(pre : nUumM X num — num) = (z,y)—=z

ISem(pT10 : NUM X num — num) = (z,y)—vy
Isem((0,0) : T — num x num) = 0-(0,0)
Isem(suce X zero : num X num — num X num) = (z,y)— (z+1,0)
Isem(zero X succ : num X num — num X num) = (z,y)— (0,y+1)
Isem(Suce X succ : num X num — num X num) = (z,y)—(z+1,y+1)
Isem (dispose pymx num : nuM x num — T) = (z,y)—0
Isem (equal : num X num — num) = f
where  f(0,0) = 0

f(z +1,0) = 1

f(0,z+1) = 1

fz+1,y+1) = f(z.9)

148



Isem(arg : T — ezp) = 0+~ arg

Isem(undef : T — ezp) = @~ undef
Isem(is-num : num — ezp) = z — isnum(z)
Isem(fst : ezp — ezp) = f
where f(z) = wundef, =z = undef
= z, z = isnum(y)
= a, z = (a,b)
= fst(z), otherwise
Isem(snd : exp — ezp) = f
where f(z) = wundef, <z = undef
= z, z = isnum(y)
= b, z = (a,b)
= snd(z), otherwise
Isem(id.sp : €zp — ezp) = z—2z
Isem(dispose,,, : ezp — T) = z—10
Isem((,) : ezp x ezp — ezp) = (z,9)— (z.y9)
Isem(=: ezp X exp — ezp) = f
where f(z,y) = isnum(Js.m(equal)(a,bd)), z = isnum(a) A y = isnum(d)
= undef, z=(a,0)vy=(c,d) Vv

z = undef V y = undef

= =(z,y), otherwise
Isem(if : ezp x ezp X ezp — ezp) = f
where f(z,y,2) = undef, z = undef
= vy, z = isnum(0)
= 2z, z = isnum(n+1) Vz = (a,b)

z = isnum(z+1) V z = (a,bd)
= if(z,y,z), otherwise
Isem(call : ident x ezp — ezp) = (i,z)— call(i,z)
Isem(is-num X is_num : num X num — ezp X ezp)
= (z,y) — (isnum(z),isnum(y))

Isem(is : ezp — prg) = z—1z
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Isem(pry @ ident X decs — ident) = (z.y)— <z

Isem(preg : ident x decs — decs) = (z.y)—y

Isem(prs : ident x T — ident) = (z,¥y)—¢
ISem(pre : ident x T — T) = (z,y)—vy
Isem(dispose;gonxT : 1dent x T — T) = (z,y)—0
Isem(idesp X empty : ident X T — ident X decs) = (z,y) — (z,empty)
Isem(pri1 : €Zp X ezp — ezp) = (z,y)—=z
Isem(pri2 : ezp X ezp — ezp) = (z,9)—y

Isem(fst X idezp : €zp X €Zp — €Ip X ezp)
Isem(snd X id ozp : €2p X €zp — €zp X ezp)

Is.m(replace : exp X exp — ezp)

where

f(arg,7) =
f(undef, ) =

f(ismum(n),r)
f(fst(e),r)
f(snd(e),r)
f(=Cz,9),7)
f(Cz,y),r) =
f(if(z,y,2),r) =
f(call(i,e),r) =

(z,y) — (Isem(fst)(z),y)
(1, y) - (ISem(snd)(z)’ y)

= f
r
undef
is_num(n)
Isem(fst)(f(e,T))

Isem(snd)(f(e, 7))
Isem(=)(f(2,7), f(y,7))
Isem((:))(f(=27), £(y.7))
Isem(if)(f(z,7), f(y:7), f(2,7))
Isem(call)(i, f(e, 1))

Isem(pra: ident X ezp — ident) = (z,y)— =

Isem(prs : ident X ezp — ezp)

(z,9)— ¥
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Isem(pri3: €zp X ezp X ezp — ezp) = (z,y,2)— <
Isem(pri4: €zp X ezp X ezp — ezp) = (z,y,2)—y
Isem(pris : €zp X ezp X ezp — ezp) = (z,y,2)— z
Isem (dispose rpx ezpx ezp © €ZP X €TP X €IP — T) = (z,9,2)—0

Isem({(,) © (PT13,PT14), PT15) : €Zp X €Zp X eXp — €zp X ezp) =
(2,9,2) = (Isem((,))(2, %), 2)

Isem((Pr13,(,) © (PT14, PT15)) : €Zp X €Zp X exp — ezp X ezp) =
(2,9, 2) = (2, Isem((,))(¥, 2))

Isem({= o{pr13,PT14), PT15) : €Zp X €Ip X eXp — eIp X ezp) =
(2,9,2) = (Isem(=)(2,9), 2)

Isem(U X iderp X idesp : €Zp X €Zp X €Zp — €Ip X €Ip X €zp) =

(z,y,2) — (undef,y, z)

Isem({pr13,pr14) : €zp X ezp X exp — ezp X ezp) = (a,b,¢)— (a,b)
Isem({pr13,PT15) : €Zp X ezp X ezp — ezIp X ezp) = (a,b,c)— (a,c)
ISem((PT14,PT15) : €Zp X €zp X exp — eIp X ezp) = (a,b,¢c)— (b,c)
Isem({replace o (pr13, pr1s), replace o (pri4,pris)) : €Ip X ezp X ezp — ezp X ezp)

= (1, Y, Z) - (Ism(replace)(z, Z), ISem(replace)(y’ Z))

Isem(pra1 : ezp X T — ezp) = (5,y)—z
Isem(praz : ezp x T = T) = (z,9)—y
Isem (dispose, 1 : €zp X T — T) = (z,9)—0
Isem(idezp X undef : ezp x T — ezp x ezp) = (z,y) — (z,undef)
Isem(pras: T x ezp — T) = (z,y)—>z
Isem(pras : T X ezp — ezp) = (z,9)—y
iSem(disposeT y crp : T X ezp — T) = (z,9)—0
Isem(arg X id.rp : T X €zp — ezp X ezp) = (z,y)— (arg,y)
Isem(undef X idezp : T X ezp — ezp X ezp) = (z,y) — (undef,y)
Isem(pras : num X ezp — num) = (z,9)—z
Isem(prar : num X ezp — ezp) = (z,y)—y
Isem(is_num X id .z : num X ezp — ezp X ezp) = (z,y)— (isnum(z),y)
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Isem(prag : ident X ezp x ezp — ident) = (z,y.2)—¢z
Isem(prag : ident x ezp X ezp — ezp) = (z,9,2)— Yy
Isem(prao : ident X ezp X ezp — ezp) = (z,y,2)— 2
Isem({call o (prag, prag), pr4o) : ident X exp X eIp — ezp X ezp) =

(z,¥,2) = (Isem(call)(z,y), 2)
Isem({pras, prag) : ident x ezp X ezp — ident X ezp) = (z,9,2)—(z,9)
Isem({prag, Prao) : ident x ezp X ezp — ident X ezp) = (z,9,2)— (¥,2)
Isem({pras, replace o (prag, prao)) : ident X ezp x ezp — ident X ezp) '

= (z,9,2) = (z,Isem(replace)(y, z))

Isem(prig: €Zp X €zp X €zp X eTp — ezp) = (a,b,c,d)—a
Isem(PT20 : €Zp X €zp X €Zp X ezp — ezp) = (a,b,c,d)—>b
ISem (P21 : €Zp X €TP X €Ip X €Ip — €zp) = (a,b,c,d)—c¢c
ISem (P22 : €Zp X €TP X €Ip X €Ip — €Ip) = (a,b,c,d)—> d

Isem({if © (PT19, PT20, PT21), PT22) : €ZP X €ZP X €ZP X €Ip — €IP X €zp)
= (a,b,c,d)— (Is,m(if)(a,b,c),d)
Isem({(;) 0 (P19, PT20), PT21, PT22) : €ZP X €ZP X €Ip X €Zp — €zp X €zp)

= (a,b¢c,d)— (Isem ((, ))(a,b),c,d)

Isem({pT19,PT20) : €ZP X €Zp X €Ip X €Tp — €Ip X ezp) = (a,b,c,d)— (a,b)
Isem({pr19,PT22) : €Ip X €xp X ezp X exp — €Ip X ezp) = (a,b,c,d)— (a,d)
Isem({Pr20,pr22) : €Zp X exp X ezp X exp — €Ip X ezp) = (a,b,c,d)— (b,d)
Isem({pra1,Pr22) : €Zp X ezp X ezp X exp — eIp X ezp) = (a,b,c,d)— (c,d)

Isem({PT19, PT20, PT21) © €ZP X €IP X €Zp X €Ip - €Ip X €Ip X €zp)
= (a,b,¢,d)— (a,b,c)

Isem ({replace o (prig, praz), replace o (prao, praz), replace o (pra, praz))
: eIp X €Ip X eIp X €Tp — €Ip X €Ip X ezp)

= (a,b,¢c,d)— (Isem(replace)(a, d), Isem(replace)(b, d), Isem(replace)(c, d))
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Isem(prie : num X ezp X ezp — num) = (z,y,2)— T
Isem(priz : num X ezp X ezp — ezp) = (z,y,2)— ¥y
Isem(pris : num X ezp X ezp — ezp) = (z,y,2)—> 2
Isem(is-num o zero X id.p X 1d.zp : NUM X €Ip X €Ip — ezp X ezp X €zp)

= (z,¥,2) = (Isem(is-num)(Isem(2zero)(z)), ¥, 2)

Isem(is-num o succ X idezp X idzp : NUM X €Ip X €IPp — €IP X €Ip X ezp)

= (z,9,2) = (Isem(is-num)(Isem(succ)(z)), ¥, 2)

Isem(prao : ident X num X ezp X decs — ident) = (a,b,c,d)—a
Isem(pra; : ident X num X ezp X decs — num) = (a,b,c,d)—b
Isem(praz : ident X num x ezp x decs — ezp) = (a,b,c,d)—c
Isem(pras : ident X num X ezp x decs — decs) = (a,b,c,d)—d

Isem(idigent X z€ro X id.zp X id g, : ident X num X ezxp X decs
— ident X num X ezp X decs)
= (a,b,c,d)— (a,0,c,d)
Isem (idident X succ X idozp X id gec, : tdent X num x erp X decs
— ident X num X ezp X decs)
= (a,b,c,d)— (a,b+ 1,c,d)
Isem ({pr3o, pras) : ident X num X ezp x decs — ident x decs)
= (a,b,c,d)— (a,d)

Isem(fetch : ident x decs — ezp) = f
where f(z,empty) = undef
f(z,=;Cy,e,d)) = Isem(get)(z,Isem(same)(z,y),e,d)
Isem(get : ident x num X ezp x decs — ezp) = f
where f(z,0,e,d) = e

f(z,z + 1,e,d) Isem(fetch)(z,d)
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Isem(praa : ident x ident X ezxp X decs — ident) = (a,b,c,d)—a
ISem(praq : ident X ident X ezp x decs — ident) = (a,b,c,d)—b
Isem(pras : ident X ident X ezxp x decs — ezp) = (a,b,c,d)—c¢c
(a,b,c,d)— d

Isem(pras : ident x ident x ezp x decs — decs)
Isem({pras, pras, proe) : ident X ident X ezp X decs — ident x ezxp x decs)
= (a,b,c,d)— (b,c,d)
ISem ((pras, =; o(PTaq, Pras, prae)) : ident x ident X ezp X decs — ident X ezp X decs)
= (a,b,c,d) = (a,=;(b,c,d))
ISem ({pr23, praq) : ident x ident X ezp x decs — ident X ident) = (a,b,¢,d) — (a,b)
Isem(same o (pras, prag) : ident X ident X ezp X decs — num)
= (a,b,c,d) = Isem(same)(a,b)

Isem({pras, same o (praa, Praa), Pr2s, Prae) : ident X ident X ezp X decs

— ident x num X ezp X decs) = (a,b,c,d)— (a,Isem(same)(a,bd),c,d)
Isem(praa: T x decs — T) = (z,9)— ¢
Isem(praqa : T X decs — decs) = (z,y)—y
Isem(disposery 4.c, : T % decs — T) = (z,y)—0
Isem(arg X id e, : T X decs — ezp X decs) = (z,y)— (arg,y)
Isem(undef X idgecs : T X decs — ezp x decs) = (z,y) — (undef,y)
Isem(pres : num x decs — num) = (z,y)—z
Isem(pras : num x decs — decs) = (z,9)—y
Isem(is-num X idgec, : num x decs — ezp X decs) = (z,y)— (isnum(z),y)
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(z,y)—z

(z.9)—y

(z,¥) = (Isem(fst)(z), y)
(z.y) = (Isem(snd)(z),y)

Isem(pra7 : €zp X decs — ezp)

Isem(pras : ezp X decs — decs)

Isem(fst X tdgecs : num X decs — ezp X decs)

Isem(snd X td gees : num X decs — ezp x decs)

Isem(apply : ezp x decs — ezp) = f
where f(arg.d) = arg

f(undef,d) = undef
f(isnum(z),d) = isnum(z)
fEst(a),d) = Isem(fst)(f(2,d)
f(s0d(2),d) = Isem(snd)(f(2,d))
f((z,y),d) = Isem((,))(f(2,4d), f(y,d))
f(=(z,y),d) = Isem(=)(f(2,d), f(y,d))
f(i£(z,y,2),d) = [(Isem(if)(f(2,d),y,2).d)

f(call(i,e),d) f(Isem(replace)(Isem (fetch)(i,d), f(e,d)),d)

Isem(prag : €zp X exp X decs — ezp) = (z.y.2)—> =z
Isem(prso : ezp X exp X decs — ezp) = (z.y.2)—>y
Isem(prsy : exp X ezp X decs — decs) = (z,y.2)—z

Isem({(,) 0 (prag, PT50), PT51) : €ZP X €zp X eIp — ezp X decs)
= (2.9.2) = (Isem((,))(z,9),2)
Isem({(= o(prag, prso). prs1) : ezp X exp X ezp — ezp X decs)
= (2,4,2) = (Isem(=)(2,9), 2)
Isem({apply o (prag. prs1), apply o (prso, Prs1)) : ezp x ezp X decs — erp X ezp)
= (2,9,2) = (Isem(apply)(2, z), Isem(apply)(y, 2))
Isem({replace o (prag, prso), prs1) : ezp X ezp X decs — ezp x decs)

= (39 y»z) - (ISem(mplace)(z’ y)9z)

Isem((prag, Prso) : €xzp X ezp X decs — ezp X ezp) = (Z,y,2) — (z,¥)
Isem((prao, PTs1) : €zp X ezp X decs — ezp X decs) = (z,y,2) - (z,2)
Isem({prso,prs1) : €zp X ezp X decs — ezp X decs) = (z,¥,2)— (¥,2)

Isem({apply o (prae, prs1), apply o (prso, prs1)) : ezp x ezp X decs — ezp X ezp)
= (z,9,2) = (Isem(apply)(z, ), Isem(apply)(y, 2))
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Isem(pTsz : €zp X ezp X ezp X decs — ezp) = (a.b.c.d)—a
Isem(pTss : exp X ezp X ezp X decs — ezp) = (a.b.c,d)— b
Isem(pTsq : €zp X ezp X ezp X decs — ezp) = (a.b.e.d)—>c

Isem(prss : ezp X ezp X ezp X decs — decs) (a,b.c,d)— d
Isem ({if o (PTs2, PT53, PT54), PTss) : €Ip X ezp X decs — ezp X decs)
= (a,b,¢,d) — (Isem(if)(a,b,¢),d)
Isem({apply o (Prs2, PTss), PTs3, PTsa, PTss) : €Zp X ezp X ezp X decs
— €xp X exp X ezp X decs)
= (a,b,¢,d) = (Ise(apply)(a,d),b,c,d)
ISem ((PTs2, PT53, PTs4) : €Zp X €zp X ezp X decs — ezp X ezp X ezp)
(a,b,c,d) = (a,b,c)

Isem ({prsa2, prss) : €zp X exp X ezp X decs — ezp X decs) = (a,b.c,d)— (a,d)

Isem({apply o (Prsz,Prss),PT53,P7‘54,P7‘55) : ezp X ezp X ezp X decs

— exp X ezp X ezp X decs)

= (a,b,¢,d) = (Ise-(apply)(a,d),b,c,d)

ISem(is)(ISﬂ'n(apply))

Isem(where : ezp X decs — prg)

ISem(is.-.1 : prg — ezp) = T—-2z

A.3 The eval and learn transformations

We begin by specifying the sketch morphism E : Toysyn — T0Ysen which allows us to specify
the functor E* : Mod(Toyg,,) — Mod(Toys,,). Using this functor we are able to define
the model E*(Isem) : Toysy, — SET and the transformations eval : Isyn = E*(Isem) and

learn : E*(Isem) — Isyn-
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A.3.1 The sketch morphism E : Toys,, — Sem

E(T) = T
E(num) = num
E(ident) = ident
E(ezp) = ezp
E(ident x ezp) = ident X ezp
E(ezp x ezp) = ezp X ezp
E(ezp x ezp x ezp) = ezp X ezp X ezp
E(decs) = decs
E(ezp x decs) = ezp X decs
E(ezp x ident x decs) = ident x ezp X decs
E(pry) = prg
E(0: T — num) = 0
E(succ: num — num) = succ
E(z: T — ident) = z
E(z_:ident — ident) = =z
E(arg: T — ezp) = arg
E(error : T — ezp) = undef
E(is_num : num — ezp) = is.num
E(call: ident x ezp — ezp) = call
E(fst: exp — ezp) = fst
E(snd: ezp — ezp) = snd
E(if :ezp X ezp x ezp — ezp) = if
E(=: ezp x ezp — ezp) = =
E((,): ezp x ezp — ezp) = ()
E(pri1:ezp x ezp — ezp) = pri
E(priz:ezp X ezp — ezp) = priz
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E(pri3: ezp X ezp X eIp — €Ip) = Ppri3
E(pris: ezp X ezp X €xp — €Ip) = prig
E(pris: ezp X ezp X ezp — €zp) = Pris
E(empty : T — decs) = empty
E(=;:ident X ezp X decs — decs) = =;
E(pra7 : ident X ezp x decs — ident) = pra7
E(pros : ident x ezp X decs — ident) = prag
E(prag : ident x ezp X decs — ident) = prag
E(pra7 : ezp X decs — exp) = prar
E(pras : ezp X decs — ezp) = Pras
E(prs: ident x ezp — ident) = pr3
E(pry: ident x ezp — ident) = pr4
E(where : ezp x decs — prg) = where

A.3.2 The model E*(Isem)

The functor E* : Mod( Toys..,) — Mod(Toys,,) is defined below.

E*(M : Toys.n, — SET) = MoE
E*(f:M = N) f:E*(M)= E*(N)

From this we obtain the following definition of E*(Isem) : Toysy, — SET.
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E.(ISem)(T) = {0}

E*(Isem )(ident) = {0,1,2,...}
E*(Isem)(num) = {0,1,2,...}
E*(Isem)(decs) = UIsem(decs)n,n € {0,1,2,...}
where Igem(decs)y = {empty}
Isem(decs), = Isem(decs)n—y U {=;(z,y,2):(2,y,2) €
Isem(ident) X Isem(€zp) X Isem(decs)n—1}
E*(Iserm )(ident x ezp x decs) = Is.n(ident) X Isem(ezp) X Isem(decs)
E*(Isem )(exp) = UJlsem(€zp)n,n € {0,1,2,...}
where Igem(ezp)o = {undef,arg}U { isnum(z) :z € Is.m(num)}
Isem(ezp)n = Isem(ezp)n-1U
{ £st(2) : 2 € {y: y € Isem(€zP)n-1 A ~p(y)}}U
{snd(z) :z € {y:y € Isem(ezp)n_1 A =p(y)}}U
{ (z,9) : (2,Y) € Isem(€Zp)n-1 X Isem(€Zp)n-1}U
{=@z,9),=(y,2) : (z,y) € {z: z € Isem(ezp)n-1 A -p(2)} x
Isem(€zp)n-1}U
{ if(z,y,z) : (z,y,2) € {a:a € Isem(ezp)n—1 A ~p(a)}x
Isem(€zp)n—1 X Isem(€zp)n-1}U
{ call(i,e) : (i,€) € Isem(ident) X Isem(€xp)n—-1}
p(arg) = False p(snd(z)) = False
p(undef) = True p(call(i,e)) = False
p(isnum(z)) = True p(=(z,y)) = False
p((z,y)) = True p(if(z,y,2)) = False
p(fst(z)) = False
E*(Isem)(ezp X ezp) = Isem(ezp) X Isem(ezp)
E*(Isem )(ident x ezp) = Igem(ident) X Isem(ezp)
_E*(Isem)(ezp x ezp x ezp) = Isem(ezp) X Isem(ezp) X Isem(ezp)
E*(Isem)(ezp x decs) = Isem(ezp) X Isem(decs)
E*(Isem)(pryg) = Isem(ezp)
E*(Isem)(z : T — ident) = 0—0
E*(Isem)(z-:1ident — ident) = z—>z+1
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E*(Isem )(empty : T — decs)

@ — empty

E*(Isem )(=;: ident x ezp X decs — decs) = (z,y,2)— =;(z,y,7)

E*(Isem )(pror : ident X ezp x decs — ident) (z,y,2)—z

E*(Isem )(pras : ident X ezp x decs — ezp) = (z,9,2)— Y

E*(Isem)(prag : ident X ezp x decs — decs) = (z,y,2) — 2
E*(Isem)(0: T — num) = 0—0
E*(Isem)(succ: num — num) = z-—-z+1
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E*(Isem)(arg : T — ezp) = - arg

E*(Isem )(error : T — ezp) = ( — undef
E*(Isem )(is-num : num — ezp) = z — isnum(z)
E*(Isem)(fst : ezp — ezp) = f
where f(z) = undef, <z = undef
= oz, z = is_num(y)
= a, z = (a,b)
= fst(z), otherwise
E*(Isem)(snd : exzp — ezp) = f
where f(z) = undef, <z = undef
= z, r = isnum(y)
= b, z = (a,b)
= snd(z), otherwise
E*(Isem)((,) : €zp X ezp — ezp) = (z,9)— (z,9)
E*(Isem )(=: ezp X ezp — ezp) = f

is.num(/s,n,(equal)(a,b)), z = isnum(a) A y = is_num(d)

where f(z,y)
= undef, z=(a,b) Vy=(c,d)V

z = undef V y = undef

= =(z,y), otherwise
E*(Isem )(if : ezp X ezp X ezp — ezp) = f
where f(z,y,z) = undef, z = undef
= vy, z = is_num(0)
= z, z = isnum(n+1) V z = (a,bd)

z = isnum(z+1) V z = (a,bd)
= if(z,y,z), otherwise

E*(Isem )(call : ident X ezp — ezp) = (i,z) — call(s,z)

E*(Isem)(pri1: ezp x ezp — ezp) = (z,y)— 2
E*(Isem)(pr12: ezp X ezp — ezp) = (z,9)—y
E*(Isem)(pra: ident x ezp — ident) = (z,y)— <z
E*(Isem)(prq : ident x ezp — ezp) = (z,9) >y
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E*(Isem)(pria: €zp X €xp X ezp — ezp) = (z,y,2)— =z
E*(Isem)(pr1a: €zp X €zp X ezp — ezp) = (z,y,2) — y

E*(Isem)(pris : €zp X €xp X ezp — ezp) = (z,y,2) = 2

E*(Isem )(praz : ezp X decs — ezp) = (z,y)— <z
E*(Isem)(pras: ezp X decs — decs) = (z,y)—y
E'(ISem)(where : ezp x decs — prg) = ISem(is)(ISem(apply))
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A.3.3 The eval natural transformation

evalyp = 1y
f where f(x) 0
f(xy) = 1+ f(y)

evalideni

evalpym = f where f(0) = 0
f(suce(y)) = 1+ f(y)
eval ., = f where f(arg) = arg
f(error) = undef
f(ismum(n)) = isnum(eval,ym(n))
f(£st(2)) = Isem(fst)(f(z))
f(snd(z)) = Isem(snd)(f(z))
f((z,9)) = (f(z).f(y)
f(=(z,1)) = Isem(=)(f(2), f(¥))
f(i£(z,y,2)) = Isem(if)(f(2), f(¥), f(2))
f(call(i,e)) = call(evaligeni(2), f(€))
€@l ezpx ezp = (z,y) — (eval.(z), eval.zp(y))
€8l ezp x ezp x ezp = (z,y,2) — (eval.rp(z), eval.-p(y), eval.zp(z))
evalidentx exp = (2,y) — (evaligeni(z), eval .z (y))
eV8lidentxezpxdecs = (Z,Y,2) — (€v@ligent(T), val.zp(y), evalgecs(2))
eval .., = f
where f(empty) = empty
f(=i(z,y,2)) = =;(evaligeni(z),eval.(y),evalie,(2))
eval ozp x decs = (z,y) — (eval.rp(z), eval.;(y))
eval,,, = f

where f(where(z,y)) = Is.m(apply)(eval.,(z),evals.s(y))
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A.3.4 The learn transformation

learnt = 1y

learn;dent = f where f(0) = x
f+y) = xf()

learnpym = f where f(0) = 0
fA+y) = sucef(y)

learn .z, = f where f(arg) = arg
f(undef) = error
f(isnum(n)) = isnum(learnaum(n))
f(£st(z)) = f£st(f(z))
f(snd(z)) = snd(f(z))
f((z,9)) = (f(z).f(¥))
f(=(z,) = =(f(),1(y))
fit(z,g,2) = 1£(f(2), f(). F2)
f(call(i,e)) = call(learnisent(i),f(€))

learn czpx exp = (z,y)—»(learn,;.,,(::),leam,,,,,(y))

learn czpx expx exp = (z,9,2)— (learn (=), learn, (y), learnzp(2))

learngentx ezp = (z,y) = (learnisens(2), learn . (y))

learnidentx expxdecs = (z,9,2) = (learnigen: (), learn (Yy), learngees(z))

learn gecs = f

where f(empty) = empty
f(=:(z,y,2)) = =; (learnigent(z), learn (y), learn gec,(2))
learn czpx decs = (z,y)-- (learnu,(z),leam,,,(y))
learn .y, = f where f(z) = vhera(learn.(z),empty)

A.4 A Toy datatype to represent Toy programs

The datatype is described as a pair of transformations:

encode : Isyn — E*(Isem)

decode : E*(Isem) — Isyn
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such that decode o encode = 1y5,,..

encode = 0~ (0,0)
encode;gent = y— 1, f(y)
where f(x) = 0
fxy) = 1+ f(y)
encode nym = y— 2,f(y)
where  f(0) = 0
f(suce(y)) = 1+ f(y)
encode jecs = d— (3,f(d)
where f(empty) = (0,0)
f(=;G,e,d)) = (1,encodeidentxezpxdecs(is€,d))
encode .o, = z— (4,f(z))
where f(arg) = (0,0)
f(error) = (0,1)
f(ismum(n)) = (1,encodenym(n))
f(£st(2)) = (2,encode.z,(z))
f(snd(z)) = (3, encode.z,(z))
f((z,y)) = (4,encode,rpxemp(Z,Y))
f(=(z,y) = (5,encodespxezp(2,¥))
f(if(z,y,2)) = (6,encode.cpxcrpxesp(T,Ys2))
f(call(i,e)) = (7,encode;jentxerp(ise€))
encode ezp x ezp = (z,y)— (5, (encode (), encode s, (y)))
€ncode ozp x exp x ezp = (z,y,z)— (6,(encode.p(z), (encode.,(y), encode,z,(2))))
encode;dentx exp = (z,y) = (7,(encodeijeni(z), encode.(y)))
encodeidentx erpxdecs =
(z,y,2) = (8, (encodeident(z), (encodecs(y), encodegees(2))))
encode czp x decs = (z,y)— (9,(encode .(z), encodeye,(y)))
encodey, = (where(e,d)) — (10, encode.cpx decs(€,d))
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decodeT = (€0,0))—~ 0
decode;gent = ((1,9)) = f(y)
where  f(0) = x
fA+y) = xf(y)
decode pym = ((2,9)) - f(v)
where f(0) = 0
fl+y) = succ(f(y))
decode 4., = ((3,d)) — f(d)
where f((0,0)) = empty
f((1,2)) = =;G,e,d)
where (i,e,d) = decodeidentxezpxdecs(Z)
decode.., = (4,1) - f(2)
where f((0,0)) = arg
f(€0,1)) = error
f((1,n)) = is_num(decodeqym(n))
f((2,2)) = f£st(decode.s,(z))
f(3,2)) = snd (decode s, (z))
f(4,z)) = (a,b)
where (a,b) = decode cpx . zp(T)
f((5,2)) = =(a,b)
where (a,b) = decode opx.ezp(T)
f(6,z)) = if(a,b,c)
where (a,b) = decode rpxezpxezp(T)
f((7,2) = call(i,e)
where (i,e) = decodeidentx ezp(T)
decode ;zp x exp = ((5,(z,y))) — (decode (), decode,zp(y))
decode ¢zp x exp x ezp = ((6,(z,y,2)))— (decode.sp(z), decode . (y), decode s, (z))
decode;gentx ezp = ((7,(z,¥))) = (decode;ien:(z), decode .z (y))
decode;qentxepxdecs = ((8,(z,(y,2))))— (decode;gent(z), decode. o, (y), decode gecs(2))
decode ozp x decs = ((9,(z,y))) — (decode.o,(z), decodegecs(y))
decode .y, = ((10,z)) — where(e,d)
where (e,d) = decode zpxdecs(T)
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A.5 The Toy self-interpreter

A.5.1 The interpreter function

This function interpreter : Isyn — Isyn is defined as interpreter = learn o eval. This defini-

tion expands to the one shown below.

interpretery = 1y
interpreter;q.n = 1 Isyn(ident)
interpreter ,,m = lign(num)
interpreter,, = f
where f(arg) = arg
f(error) = error
f(isnum(n)) = isnum(n)
f(£st(e)) = Fptieopesp(f(€))
f(snd(e)) =  Findierp—erp(f(€))
f((z,9)) = (f(z),f(y)
f(=(z, ) = Foicpxep—en (f(2), f(¥))
f(i£(z,9,2)) = Fifierpxerpxemp—erp(f(2), f(¥), f(2))
f(call(i,e)) = call(s,f(e))
interpreter ..y y op = (z,y)— (interpretere,p(z), interpreter,,,(y))
interpreter .oy exp x ezp =

(z,y,z) — (interpreter ., (z), interpreter,,,(y), interpreter ., (2))
interpreter;jenix ezp = (z,y) — (interpreter;;...(z), interpreterup(y))

'nterpreterident X erp Xdecs

(z,y,2) — (interpreter;4...(z), interpreterm(y), interpreter,.,(z))

interpreterg,., = f
where f(emptY) = Femyty:T-—odec:(emptY)
f('; (i»e,d)) = F=;:idcntx¢:pxdeu—odcca(i$ interpreterm(e), f(d))
interpreter ..y x decs = (z,y) — (interpreter,,,(z), interpretery,.,(z))
interpreter,,.y = (Vhere (e,d) ) d ther::e:p X decs—pryg (e’ d)
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The functions used in the definition above are defined by theorem 6.1.1 and are specified

below.

Fempiy:T—»decs = w — empty
F:;:identxeszdcca-»dccs = (Is Y, Z) —T=Y; 2
Fist:erp—ep(T) = error, z = error
= z, z = is.num(y)
= a, z = (a,b)

= fst(z), otherwise

Fund:erp—erp(T) = error, <z = error
= z, z = is_num(y)
= b, I= (a,b)

= fst(z), otherwise

Feepxerpezp(T,Y) = is num(equal(a,b)), z = isnum(a) A isnum(b)
= error, z=(a,b) Vy= (c,d) V

z = error V y = error

= =(z,y), otherwise
where equal(0,0) = 0
equal(succ(z),0) = succ(0)
equal(0,succ(z)) = succ(0)
equal(succ(z),succ(y)) = equal(z,y)
F,-f:,,,x,,,x,,,_.,,,(z,y,z) = error, T = error
= vy, z = isnum(0)
= z, z = isnum(succ(y)) V z = (a,b)

= if(z,y,z), otherwise

therc:cxpxdecs-prg(z;y) = 'here(Fapply:e:pxdccs—'e:p(zy y)s empty)
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Fapply:eszdecs—ezp(arga d) = arg

error

Fapply:ezpxdecs—ezp(@TTor, d)
Fapply:eszdecs—.gzp(is.num(n) s d)

= is.num(n)

Fapply:erpxdccs—oexp(fSt (e) ’ d) Ffst:c:pﬂe:p (Fapply:c:pxdecs-exp(e, d))

Fmd:ezp~ erp (Fapply:eszdecs—oezp(ea d))

Fapply:czp xdecs—exp (snd (e), d)

Fapply:e::pxdecs—oezp( (z, y) ’ d) (Fapply:e:pxdecs—tezp(za d) s Fapply:eszdecs—»ezp(y, d))
I'-'a;:»ply:c:pxdef:.s—mzp("= (z,y),d)
= F::e:p X e:p—w:p(Fapply:eszdecs—‘ezp(z, d), Fapply:e:pxdccs-»erp(yw d))
Fapply:expx decs—ezp ( if(z »Ys z) y d)
= apply:expxdecs—oezp(Fif:up X eZp X exp — ezp (Fapply:expxdeca—»ezp(z, d)a Y, z), d)
Fapply:eszdecs—»erp (Call (i,e), d)

= FLapply:expxdecs—ezp ( Frcp lace:ezp X exp—ezp ( bOdy, Fapply:e:p X deca—'e:p(ea d) ) ’ d)

where body = Fjetch:idcntxdccs~ezp(ivd)

Frcplace:c:px ex;:—oc:p(argv 1') =T
Freplacc:c:pxezp—'u‘p(error’ r) = error
Freplace:errxczp-»e:p(is-num(n)aT) = isnum(n)

Frcplace:c:px cz-p—»c:p(fSt (e), 7') Fjat:e:p—oc:p (Freplacc:u-pxczp—oc:p(e, 7'))

Fmd:e:pxe:p—’e:p(Freplace:esz czp—ocq:(e’ T))

Freplace:czrxe:p—oezp(snd(e) ’ 7‘)
Freplace:esze:p—oczp(=(z Y, )
= F::cszc:p—oerp(Freplace:expxe::p—»en('rv 7'), Freplace:czp X exp—»c:p(y, T))
Freplace:erpx :zp—ocrp( (z ’y) ’ 7‘)
= (Freplace:e:px czp-oezp(za 7') oFreplace:e:px etp—‘”?(yv r))
Frepluce:eszezp—»ezp(if(z ,y,z), 7') = Fif::esz:zyxezr-vc:p (z’, y,’ z,)

o
where =z = Frepluce:e:pxcz‘?—'cz'?(z7r)

’
y = Freplcce:e:yxwp—»en(y, r)

/ —_
2 = Freplace:e:yx::p—ve:p(z, 7')

Freplccc:e:pxazp-»e:p(ca-ll(i:C)s 1') = call(isFrepIacezcszc:p—oezp(ea T))
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Ffetch:ldcntxdccn—ocrp(z,emPtY) = error
chtch:iden! x dcu-—oerp(zs-’- ’ (y »€, d) )

= Fget:identxnum Xcszdcca—oe:p(Z, Faame:ident xident--num(z, y), €, d)

Fget:identxnumxez-pxdccs—-oe:p(zvovead) = €
Fyet:identxnumx ezp xdecs—ecp(Z,5Ucc(n),€,d) =  Ftchiidentx decs—ezp(Z, d)
Faame:identxident—‘num(o’o) = 0

Fiame:identxident—num {Succ(z),0) = succ(0)
Fiame:identxident—num (0,8ucc(z)) = succ(0)

Fume:idcntxidcnt—»num(succ(z) ,Succ(y)) = Faame:idenlxidcnt—mum(za y)

A.5.2 The rep_interpreter function

We now define the function rep_int : E*(Isem) — E*(Isem). This function is defined using
the functions: interpreter, decode, and encode as rep.int = encode o interpreter o decode. This

definition expands to the one shown below.
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rep-intT = (o:o) Land (o)o)

rep-int .. = (1,z) —»(1,z)

rep-int . ym = (2,z) —-(2,7)

rep.int ., = (4,z) — f(z)

where  f((0,0)) = (0,0)
f(Co,1)) = (0,1)
f((1,n)) = (1,n)
f((2,2)) = 1ep-Fyeoperp(rep-int (z))
f((3,2)) = 1ep-F jnierpenp(rep-int . (2))
f((4,(5,(z,y)))) = (4,(5,(rep-int, ., (z),rep-int..,(y))))
f((5,(5,(z,))) = 1ep-Fecrpxesp—enp(2:Y)
f(€6,(6,(z,(¥,2))))) = 1ep-Fifimpxerpxerprezp(2:¥:2)
f((7,(7,@,e)))) = (7,(7,(i,rep-int,,(e))))

rep_int . x erp = ((5,(z,y)))— (5,(rep-int,, (z), rep-int,;,(y)))

1ep-int ooy x exp x ezp =

((6,(z,(y,2)))) — (6, (rep.int,,(z), (rep-int ., (y),rep-int ., ())))
rep-int,-dm,xe,p = ((7) (z .y) )) - (7’ (rep-intident(z) ’ rep‘intcz‘p(y)))

rep-zntidentx erp x decs

(89 (I' (y,Z))) - (8, (rep'intidmt(z)' (rep-intczp(y)’rep-intdecs(:))))

rep_int 4,., = (3,z) - f(z)
where f((0,0)) = 1epF empty:T—decs((0,0))
f((1,(8,(,Ce,d))))) =
1eD F . identx ezpx decs—decs (1, €P-int(e), rep_int 4., (d))
rep-int .zp decs = (9,(z,y)) — (9, (rep_int (), rep-inty,.,(y))
rep_int = (10,(9,(e,d))) — rep_F ypere:erpxdecs—pre(€:d)

The functions used in the definition above are the transformed versions of those defined by

theorem 6.1.1 and are specified below.

rep-Femp!y:T-»deca = (0,0) — (3,(0,0))
reP—F=;:identxetpxdecs—odeca = (i,e,d) — (3,(1,(8,(i,(e,d)))))
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rep-Frpemp—en(z) = (4,00,1)), z=(4,(0,1))
= I, z=(4,(1,y))
= a, z = (4,(4,(5,(a,0))))
= (4,(2,z)), otherwise

rep-F.md:e:p—‘u?(I) = (49(091>), z = (4,(0,1))
= :’ I= (4,(1,!/))
= b’ T = (4,(4,(5,(0,b>)))

= (4,(3,z)), otherwise

mpj::crpxczp—»czp(z, y)

= (4,(1,rep_equal(a,b))}, z=(4,(1,0)) Ay= (4,(1,0))

= (4,(0,1)), z=(4,(4,0)) Vy=(4,(4,0)) Vv
z=(4,00,1)) Vy=(4,(0,1))
= (4,(5,(z,y))), otherwise
where rep_equal((2,0),(2,0)) = (2,0)
rep_equal((2,z +1),(2,0)) = (2,1)
rep_equal((2,0),(2,z+ 1)) = (2,1)

rep_equal((2,z +1),(2,y+ 1))

rep-equal(z,y)

mpjif:c:pxe:pxc:p-»e:p(za yvz)

= (4,(0,1)), z = (4,(0,1))
= v, z = (4,(1,0))
= z, = (49(13y+ 1)) Vz= (41(4'0))

= (4s(5.(6.(3,(y.2))))), othQrWise

mp-pwhtn:eszdcu—»prg(evd) = (10'(9!(rep—Fcpply:cszdeca—oczp(zs y).(3,(0,0)))))
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rep-Fappiyeapxdecserp( (41 (0,00),d) = (4,(0,0)
rep_F o 1y reopxdecomeny((45(0,1)),d) = (4,(0,1))
1ep_F yppiy-erpxdecs—erp( (4, (1,0)),d) = (4,(1,n))
rep_F oppiy:erpxdecs—ezp((4:(2,€)),d) = 1ep_Fyperncop(r€p-F appiyezpxdecs—ezp(€s @)
r€p_F qpplyerpxdecs—ezp( (4, (3,€)),d) = 1ep_F pierpery(TeP-Fappiyezpxdecs—ezp(€s d))

rep_F oppiyezpxdecs—ezpl (45 (4, (5,(z,¥)))),d)

= (4, (4, (rep_F g ppiyezpxdecs—erp(Ts 8) s TePF appiyerpxdecs—erp(¥:@)))).
1ep-F appiysespxdecssesp( (1 (5, (5, (2,4)))),d)

= 1rep_F . erp x ezp— exp(T€P-Fapply:ezpxdecs—erp T+ @) TePFappiy:ezpxdecs—ezp(¥s d))
1€p_F o pply:erpxdecs—ezp( (45 (6,(6,(z,(y,2))))),d)
= rep_Fuppiyerpxdecs—ezp(TeP-Fif.eopx exp x exp—ezp (T€P-Fappiy:ezpxdecs—ezp (T @)s Y5 2), d)
rep-F 4ppiy:ecpxdecs—ezp( (4, (7, (i,€))),d)
= 1ep_Foppiy:erpxdecs—ezp(TEPF replace:ezp x ezp—exp (00GY; T€P_F 4 pplyerpxdecs—ezp(€) ), )

where bOdy = mp-chtch:idedeecs-bcrp(i’d)

173



TeP-F replace:expx erp—ezp((4,(0,0)),7) = r
T€p-F replace:ezpx erp—ezp((4:(0,1)),7) = (4,(0,1))
TeP-F replace:czpx erp—ezp((45(1,7)),1) = (4,(1,n))
Tep-F replace:ecpx erp—ecp((4:(2,€)),7) =
"eP—Ffu:up-ezp("eP—Freplace:ezpxe:p—»ezp(e’”))
Tep-F replace:ecpx exp—esp((4,(3,€)),7) =
P€PF ynd:erpx exp—ezp(TEP-F replace:ecpx exp—rezp (€17))
T€D_F replace:ezpx exp—ezp((45 (5, (5,(z,9)))),T) '
= "eP—F=:ezyxezp-ezp(reP—FrepIace:expxe:;—.ay(za"')aFreplace:ezwxetr-'err(yv"))
T€p-F . place:crpx exp—ezp( (45 (4,(5,(2,9)))),1)
= (rep_F replace:espx esp—ezp (Z17) s TePF replace:ezpx exp—sezp (1 7))
1ep-F optace:erpx erp—erp((4:(6,(6,(z,(y,2))))), )
= 1P Fif copxeapxeap—esp (T V5 2')
where 2/ = rep_F"p,m:,,pxe”_,m(:z:,r)
y = NP-Freplm:eszczp--ezp(yv r)
2 = repFrpiice:erpxerprenp(27T)
rep-F reptace:eopx erp—ezp ((4: (7, (7,(i,€)))),7) =
(4,(7,(7,(i,repF replace:erpxezp—ezp (€, T)))))

reP-Ffetch:identxdecs-—verp(z’cs’(030))) = (4,(0,1))
rep—Ffetch:identxdﬂ:a—vez—p(za(st(11(8’(?/’(e)d))))))

= rep—Fget:ideMxrumXerpx:lec.v-»etp(zs rep-Fume:ideMxident—mum(z, y)se’d)

rep-Fget:idntxnlmxu'pxdecs—tezp(zvcl’c)’ev d) €

mp'}:‘get:ident)mtm>< erp X decs—ezp (37(1 s+ 1y 1 €5 d) rep-Ffetch:identxdeca-ezy(z’ d)

T€P-F same:ident x ident—num((1,0),(1,0)) = (1,0
T€P_F yame:identxident—nym (1,2 +1),(1,0)) = 1,1
T€P-F sumesidentxident—num((1,0),(1,2 + 1)) = 1,1
rep-F sumeiidentxident—num (1,2 +1),(1,y+ 1)) = repF o nciidentxident—num(Z:Y)
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A.6 The self-interpreter program

The rep_interpreter function is implemented in Toy by the program shown below. Note that
we shall use rumerical characters to represent numbers rather than the Toy representation
using succ ard 0. For the sake of readability we also use meaningful identifiers rather than

strings of x as the Toy syntax specifies.

(10, (9, (*apply(arg),(3,(0,0)))));

*where(arg) where *where

*apply = if fst(fst(arg)) = 4 then
if fst(snd(fst(arg))) = O then fst(arg)
else if fst(snd(fst(arg))) = 1 then fst(arg)
else if fst(snd(fst(arg))) = 2 then
*fst(*apply((snd(fst(arg)),snd(arg)))
else if fst(snd(fst(arg))) = 3 then
*snd(*apply((snd(fst(arg)),snd(arg)))
else if fst(snd(fst(arg))) = 4 then
(4, (4, (*apply((fst(snd(snd(snd(fst(arg))))),snd(arg))),
*apply((snd(snd(snd(snd(fst(arg))))),snd(arg))))))
else if fst(snd(fst(arg))) = 5 then
*=(*apply((£fst(snd(snd(snd(fst(arg))))),snd(arg))),
*apply((snd(snd(snd(snd(fst(arg))))),snd(arg))))
else if fst(snd(fst(arg))) = 6 then
*apply ((*if ((*apply((fst(snd(snd(snd(fst(arg))))),snd(arg))),
(fst(snd(snd(snd(snd(fst(arg)))))),
snd(snd(snd(snd(snd(fst(arg))))))))),
snd(arg)))
else if fst(snd(fst(arg))) = 7 then
*apply ((*replace((*fetch(fst(snd(snd(fst(arg))))),snd(arg))),
*apply ((snd(snd(snd(fst(arg)))),snd(arg)))))

else error

else error;
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«fst = if fst(arg) = 4 then
if fst(snd(arg)) = O then
1 then (4,(0,1))

if sdn(snd(arg))

else error

else if fst(snd(arg)) = 1 then arg

else if fst(snd(arg)) = 4 then fst(snd(snd(snd(arg))))
else (4,(2,arg))

else (4,(2,arg));

*xsnd = if fst(arg) = 4 then
if fst(snd(arg)) = O then
1 then (4,(0,1))

if sdn(snd(arg))
else error

else if fst(snd(arg)) = 1 then arg

else if fst(snd(arg)) = 4 then snd(snd(snd(snd(arg))))
else (4,(3,arg))

else (4,(3,arg));

%= = if *and((fst(fst(arg))=4,fst(snd(arg))=4)) then
if *and({fst(snd(fst(arg)))=1,fst(snd(snd(arg)))=1)) then
(4,(1,*rep-equal((snd(snd(fst(arg))),snd(snd(snd(arg)))))))
else if *or((*and((fst(snd(fst(arg)))=4.fst(snd(snd(arg)))=4)),
xand ({*and ((£st(snd{fst(arg)?})=0,
snd(snd{fst(axg)))=1)),
nand{ (£st(snd(snd(arg)))=0,
snd(snd(and(arg)))=1)))))) then
(4,(0,1))
else (4,(5,arg))

else error;

*rep_equal = if sand ((£st(fst(arg))=2,fst(snd(arg))=2)) then
(2,snd(fst(arg))=snd(snd(arg)))
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else error;

*if = if fst(fst(arg)) = 4 then

if #=and((fst(snd(fst(arg)))=0,snd(snd(fst(arg)))=1)) then
(4,00,1))
else if *and((fst(snd(fst(arg)))=1,snd(snd(fst(arg)))=0)) then

fst(snd(arg))

else if *or((fst(snd(fst(arg)))=1,fst(snd(fst(arg)))=4)) then

snd(snd(arg))
else (4,(6,(6,(fst(arg),(fst(snd(arg)),snd(snd(arg)))))))
else (4,(6,(6,(fst(arg),(fst(snd(arg)),snd(snd(arg)))))));

*xreplace = if fst(fst(arg)) = 4 then

if fst(snd(fst(arg))) = O then

if snd(snd(fst(arg))) = O then snd(arg)
else (4,(0,1))

else

else

else

else

else

else

if
if

if

if

if

if

fst(snd(fst(arg))) = 1 then fst(arg)

fst(snd(fst(arg))) = 2 then
*fst(*replace((snd(snd(fst(arg))),snd(arg))))
fst(snd(fst(arg))) = 3 then
*snd (*replace((snd(snd(fst(arg))),snd(arg))))
fst(snd(fst(arg))) = 5 then
*=((*replace((fst(snd(snd(snd(fst(arg))))),snd(arg))),
*replace((snd(snd(snd(snd(fst(arg))))),snd(arg)))))
fst(snd(fst(arg))) = 4 then
(*replace((fst(snd(snd(snd(fst(arg))))),snd(arg))),
*replace((snd(snd(snd(snd(fst(arg))))),snd(arg))))
fst(snd(fst(arg))) = 6 then
*if ((*replace((fst(snd(snd(snd(fst(arg))))),snd(arg))),
(*replace((fst(snd(snd(snd(snd(fst(arg)))))),
snd(arg))),
*replace((snd(snd(snd(snd(snd(fst(arg)))))),

snd(arg))))))
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else if fst(snd(fst(arg))) = 7 thep
(4,(7,(7,(fst(snd(snd(snd(fst(arg))))),
*replace((snd(snd(snd(snd(fst(arg))))),
snd(arg)))})));

*xfetch = if fst(snd(arg)) = 3 then
if fst(snd(snd(arg))) = O then (4,(0,1))
else if fst(snd(snd(arg))) = 1 then
*get ((fst(arg),

(*same ((fst(arg) ,fst(snd(snd(snd(snd(arg))))))),
(fst(snd(snd(snd(snd(snd(arg)))))),
snd(snd(snd(snd(snd(snd(arg))))))))))

else error;

else error;

*get = if fst(fst(snd(arg))) = 1 then
if snd(fst(snd(srg))) = O then fst(snd(snd(arg)))
else *fetch((fst(arg),snd(snd(snd(arg)))))

else error;
*same = if *and((fst(fst{arg))=i,fst{snd(arg))=1)) then
(1,snd(fst(arg))=snd(snd{arg)))
else error;

*and = if fst(arg) then snd(arg) else fst(arg);

*or = if fst(arg) then fst(arg) else snd(arg);



