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DIAGRAMMES VOLUME 33 ,1995 

TOWARDS A SKETCH BASED MODEL 

OF 

SELF-INTERPRETERS 

A. C. Reeves 

Abstract 

There has been a steady stream of research into compiler génération Systems since the late 

1960's most of which has involved some sort of approach where the user spécifies the source 

language, the target language and the source —> target relationship. This spécification of the 

source —• target relationship is, in effect, a spécification of the compiler and the correctness 

of the generated compiler dépends on the correetness of this relationship. 

In this thesis we propose an approach, based on partial évaluation, which does not involve 

the spécification of the source -• target relationship. Correetness of the generated compfl-

ers therefore dépends solely on the spécification of source and target languages and upon 

the soundness of the theory underlying the technique. The method requires the automatic 

dérivation of both a target partial evaluator and a source interpréter, expressed as a target 

program. We attempt the development of a technique to calculate a self-interpreter, an £ 

interpréter which is itself an C program, for an arbitrary language, £, as this represents a 

significant step towards the goal of the automatic dérivation of both partial evaluators and 

interpreters. 



Initially we examine an algebraic model of language which allows us to specify the function 

which an interpréter for the language £ computes, solely in terms of the algebraic spéc

ification of the language £. The interpréter is described as the composition of a pair of 

functions, learn : Semantics -* Syntax which forms part of the algebraic spécification of £, 

and eval : Syntax —• Semantics which arises naturally from the language spécification due to 

the properties of the category of algebras over a common signature. 

Using the algebraic model of language the composition learn o eval, which is the £ inter

préter function, does not lie within the semantics of £ and therefore cannot easily be used to 

construct the £ self-interpreter. 

For this reason a category theoretic model of language based on finite limit sketches is devel-

oped. This model is similar to the algebraic model above and shares many of its properties 

but has the advantage that learn is expressed as an indexed family of arrows from SET, the 

category of sets, and that eval is a natural transformation whose components also lie within 

SET. As a resuit of this the components of learn o eval can be brought within the seman

tics of £. We can then use the structure of the natural transformation eval to construct an 

implementation of learn o eval as an £ program. 
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Chapter 1 

A Brief Introduction and Guided 

Tour 

This dissertation describes a method for calculating self-interpreters for arbitrary program-

ming languages, i.e. an interpréter for the language C which is an C program. On the face 

of it an C self-interpreter, C-self-int, is a singularly useless program, it cannot provide an im-

plementation of the language C because an implementation of C is required before C-self-int 

can be run. Even then C-self-int can only make C programs run slower by adding an extra 

layer of unnecessary interprétation to the implementation. So what is the purpose of an C 

self-interpreter? 

The calculation of C-self-int is a step towards the ability to calculate an interpréter, int, for C 

as a program in the arbitrary language T. Calculation of C-self-int is also a reasonable starting 

point if we wish to calculate the partial evaluator mix [Ersh82, Jone88] for the language £. 

Given the ability to calculate int and mix for arbitrary languages we can construct a compiler 

génération System which requires no user input other than the spécifications of the source 

and target languages. 

In chapter 2 we set the scène by outlining the development of compiler-compilers and make 

the distinction between a compiler spécification language which requires the user to specify the 

relationship between the source language S and the target language T, and a true compiler 

génération System which requires no such spécification of the S —> T relationship. We attempt 



to show that a true compiler génération system can be constructed based on partial évaluation 

and the ability to calculate the appropriate int and mix programs for the languages S and T. 

The main purpose of chapter 2 is to motivate the subséquent chapters which deal with the 

calculation of C-self-int. 

The algebraic model of language developed by Rus [HaRu76, Rus76, RuHe84, Rus85, Rus87, 

Rus90, Rus92] is discussed in chapter 3. Using this model of language it is possible to 

describe the function computed by C-self-int in terms of the spécification of C. The function 

interpréter, computed by C-self-int is described as the composition of certain functions which 

form part of Rus' algebraic model. There is no obvious way to turn the interpréter function 

into an C program because the functions used to describe it are not within the semantics of 

C. In spite of this the algebraic approach is not a complète blind alley, it provides a gentle 

introduction to the category theoretic approach used subsequently. 

In chapter 4 we describe aspects of the theory of sketches [Ehre68] which are used in chapter 

5 to construct a categorical model of language which has similar properties to Rus' algebraic 

model of language. For reasons of space we hâve assumed that the reader is familiar with 

basic category theory, an understanding of (at least) the concepts of category, functor, natural 

transformation, and adjunction are required before reading further. Readers unfamiliar with 

category theory are referred to [BaWe90, Gold84, Macl71, RyBu88]. 

We describe a categorical model of language based on sketches in chapter 5 and discuss some 

of its implications for the way in which we specify certain language constructs. 

Chapter 6 concerns the dérivation of a self-interpreter. Using the categorical model of language 

the function computed by C-self-int is described as the pointwise composition of a pair of 

indexed collections of arrows in the category of sets and functions. Thèse collections can be 

calculated from the sketch spécification of the language C. This version of the interpréter 

function also lies outside the semantics of C but, because it is structured as a collection of 

arrows in SET, we can construct an analogue of each component arrow of the interpréter 

function which acts on a représentation of the syntax of C and is within the semantics of C. 

This allows us not only to convert the interpréter function into an C program but also, at 

least partially, to formalise the notion of expressive power required for C to express C-self-int 

We do not attempt to dérive a représentation of the syntax of £ as an £ datatype as this is 



a relatively trivial problem. 

The final chapter, chapter 7, re-examines the method used to calculate the self-interpreter, 

points out some of its shortcomings, and suggests possible extensions to allow the calculation 

of partial evaluators and interpreters. 

Finally appendix A contains an example of the calculation of a self-interpreter. 



Chapter 2 

Compiler Génération: A Science 

Fiction Story 

The compiler génération system described in this chapter is a work of fiction but, in common 

with many other science fiction stories, its roots are firmly planted in science fact. Since the 

birth of formai language spécification attempts hâve been made to produce Systems which 

generate compilers from formai descriptions of the source and target languages. A conven-

tional compiler génération system requires the user to specify the relationship between the 

source and target languages h addition to the source and target languages themselves, see 

figure 2.1. 

user specified 
S-+T 
relationship 

source language 
spécification (S) 

Compiler- Compiler 

target language 
spécification (T) 

S —• T compiler 

Figure 2.1: A conventional compiler spécification system 

Given this fact, conventional compiler génération Systems could perhaps be more correctly 



described as compiler spécification languages. The major drawbacks of the approach are: 

1. the spécification of the S —> T relationship requires a great deal of time and effort. 

2. If the user incorrectly spécifies the S —• T relationship, the compiler-compiler will 

usually generate an incorrect compiler. As a resuit if the user wishes to guarantee the 

correetness of the generated compiler they must prove the correetness of their S —> T 

relationship [BuLa69, Morr73, ThWW80, Wand80, C0II86]. This proof is likely to be 

rather involved and just as prone to errors as the original spécification of the S —* T 

relationship. 

The process could perhaps be improved somewhat by providing machine assistance for the 

correetness proof. but even then the process of compiler spécification is still a long and involved 

task. 

A true compiler génération system, in the opinion of the author, should require no user input 

other than the spécifications of the source and target languages. 

source language 
spécification (S) 

target language 
spécification (T) 

Compiler- Generator 
S —• T compiler 

Figure 2.2: A True Compiler Generator 

If such a system had a sound basis in mathematics it would not only provide considérable sav-

ings both in user time and effort but would also generate compilers which could be guaranteed 

correct by construction. 

The remainder of this chapter attempts to answer the question, uHow could a true compiler 

génération system operate?" 



2.1 The factual basis of the story 

Before attempting to answer the question above we should examine the main approaches to 

the implementation of compiler spécification languages which are currently available. 

2.1.1 Syntax directed compiler generators 

Probably the simplest form of compiler spécification system is the syntax directed compiler 

generator. Using this technique the source language is specified as a context free grammar. A 

semantic action is associated with each production rule of the source grammar and the com

piler is produced by generating a parser for the source language. The parser is constructed in 

such a way that it exécutes the semantic action associated with a production rule whenever it 

recognises a phrase generated using that production rule. One of the first attempts to produce 

a syntax directed compiler generator was the STAGE2 system [Wait70]. Other examples of 

syntax directed compiler generators include YACC [John78], DELTA [Lorh82], and SYNTAX 

[Boul80]. Of thèse YACC is probably the most generally available as it is distributed as 

part of the UNIX1 operating system. The most obvious shortcoming of the syntax directed 

technique is that the semantic action associated with a production rule does not describe 

either the semantics of the source language phrase, or the target language construct used to 

implement the source language phrase. In fact the target language of the generated compiler 

is not specified at ail using the syntax directed approach. 

What the semantic action actually spécifies is the action to be taken by the generated compiler 

on recognising the source phrase associated with each action. This effectively obscures the 

S —• T relationship by hiding it within the implementation détails of the compiler, making 

its construction and correetness proof much harder. 

Since the only objects which are formally specified are the source syntax and (in some cases) 

the meta-language used to express the compiler spécification, the correetness proof requires 

a great deal of additional information: i.e. source semantics, target syntax, and target se

mantics. The requirement for additional information also makes the correetness proof much 

more difficult. It could be argued that the requirement for additional information makes the 

!UNIX is a trademark of AT & T Bell Laboratories 



syntax directed compiler spécification technique a semi-formal compiler spécification method 

rather than a formai one. 

2.1.2 Semantics directed compiler generators 

A second approach to compiler spécification is the semantics directed compiler génération 

technique. Compiler writing using this approach is based on a formai description of the 

source language as input data, and the target language as output data. Usually the source 

language is described as a context free grammar where each source phrase has an associated 

target language construction which describes its semantics. 

The détails of compiler spécification vary from system to system but, in gênerai, aJl semantics 

directed compiler spécification Systems conform to one or other of the approaches given in 

[Moss76]. 

"Choose a fcuniversaT object code with a well defined semantics. Then to 

generate a compiler from a given denotational semantics for some programming 

language. find code séquences which simulate the abstract meanings of the phrases 

of the language. and construct a compiler which produces thèse code séquences" 

or 

"Take a more abstract view of compiling: instead of 

Compiler : progs —* code 

consider 

Compiler : progs —>input-output-fns. 

Thus an abstract compiler does not transform an (abstract) program text into 

an (abstract) séquence of instructions; rather it transforms it into the abstract 

input-output-fn represented by those instructions. The concrète version of such 

an abstract compiler produces denotations (i.e. représentations) of input-output-

fns from denotations of programs — it is just an implementation of a denotational 

semantics." 



Although Mosses was referring specifically to semantics directed compiler spécification Sys

tems based on denotational semantics the same thing applies to Systems based on attribute 

grammars [Boch78] or on algebraic semantics [Desc82]. 

Most commonly semantics directed compiler generators are based on the denotational ap

proach to programming language semantics [ScSt71, Stoy77, Schm86], and there is a great 

deal of literature dealing with this type of semantics directed compiler spécification system, 

for example: [Ganz79, Moss79, RaTu79, JoSc80, Schm85, Wand85, Roye86, Vick86]. 

Of thèse [Roye86] is of particular interest because it attempts to dérive a target semantics 

from a source denotational semantics in, "the most constructive way possible." The technique 

described by Royer is still a compiler spécification technique rather than a true compiler 

génération system because the user has to supply the S —• T relationship in the form of a 

collection of target domains which are used to implement the source domains, together with 

a congruence relation for thèse domains. 

In [Schm85] Schmidt also constructs a semantics directed compiler directly from the standard 

denotational semantics of a programming language rather than a continuation style denota

tional semantics as is more usual. This has the advantage that the semantics used to specify 

the programming language is at a much higher level. The approach used is to transform the 

semantics so that operational properties of the semantics become clearer. The transforma

tions used are focussed on the operational properties of the particular réduction strategy used 

to implement an interpréter for the denotational semantics définition. Using this technique 

the implementor has to supply rather more information about the S —> T relationship than 

is the case if a continuation semantics were used. This may in fact be an advantage because 

the user can use implementation "tricks" to produce a much more optimal implementation, 

however; it also moves further away from the goal of this chapter. 

The compiler spécification system described in [JoSc80] consists of a back end compiler <p : 

LAMC - • STM which translates a dialect of the lambda calculus, (LAMC), into a language 

of state transition machines, (STM). The front end is defined by providing a denotational 

définition, A, of the source language, «S, using the LAMC language, this defines a mapping 

A : S —• LAMC. The compiler is then specified as the function (fi o A. 

In gênerai semantics directed compilers are specified as the composition of front and back 



ends. 

Source fwnt end Intermediate back end , Target 
Language Language Language 

This leads to a problem in the correetness proof because the intermediate language is not for-

mally specified as part of the génération process and must therefore be specified as additional 

information during the correetness proof. 

2.1.3 Algebraic directed compiler generators 

The T.I.C.S. System developed by Rus [Rus83, RuHe84, Rus90, Rus92] is, to the best of 

the author's knowledge, the only working example of the third class of compiler spécification 

system, namely Algebraic directed compiler spécification Systems. The system is based on the 

"commuting square" notion of compiler correetness [BuLa69, Morr73, ThWW80, Wand80], 

and dépends on an algebraic model of language also developed by Rus [HaRu76, Rus76, 

RuHe84, Rus85, Rus86, Rus87]. 

This algebraic model of language is described in détail in chapter 3 but can be summarised 

hère as follows. A program iiing language C is a triple 

(Sem(E),Syn(E),/earn : Sem(E) -+ Syn(E)) 

where Syn(Z) spécifies the syntax and is the word algebra generated by the signature E. The 

semantics is specified by the similar algebra Sem(E) and the Syntax «-> Semantics associa

tion is specified by the function learn : Sem(E) — 5yn(E) and by the initiality of 5yn(E), 

which gives rise to an homomorphism eval : Syn(E) —• 5em(E). If S is a programming lan

guage specified over Ei and T is specified over E2 then a compiler C : S —• T is specified as 

a pair of homomorphisms, compile and encode, such that the équations 

encode = era/2 o compile o learn\ 

compile = eval\ o encode o /earri2 

both hold in figure 2.3. 



, ^ v compile 
5yn(Ex) £ * Syn(E2) 

learn\ eval\ learn2 evalo 

5 e m ( E l ) l^de " 5 e m ^ 2 ) 

Figure 2.3: The algebraic directed view of a compiler 

In the T.I.C.S. System the S -* T spécification takes the form of a set of parameterised macro 

expressions, one for each opération in Ei. Each macro expression is the target code to be used 

to implement the source opération. Compilation begins by identifying patterns in the source 

string which correspond to the generators of Syn(H{) and replacing them by their target 

représentations. On the subséquent passes through the source string the compiler attempts 

to identify source opérations whose arguments hâve already been replaced by their target 

représentations. When the compiler recognises such a source opération it uses the embedded 

target représentations to parameterise the associated macro opération and replaces the source 

opération by the resuit of the macro expansion. Compilation is complète when there are no 

source opérations left to translate. 

In [Reev87] Reeves attempts to show the relationship between this approach and the semantics 

directed approach by using a tree of partially expanded macro expressions as the intermediate 

language of a semantics directed compiler spécification system. 

The algebraic basis of the T.LC.S. System makes the spécification of T.I.C.S. generated 

compilers particularly amenable to the usual methods for proving the correetness of the 

S —• T relationship. 

2.1.4 Compiler génération by partial évaluation 

Partial évaluation [Futa71, Ersh77] or mixed computation can be described informally as the 

process of "doing as much évaluation as possible with, possibly, incomplète input." If p is a 

program whose input can be divided into two classes: S - static i.e. input which is fixed at a 

particular value, and D - dynamic i.e. input which is not fixed and may vary over ail possible 

10 



values of the correct type, the program p can be evaluated fully only if it is given both S and 

a particular value of D. 

If only S is available the process of partial évaluation can be applied to p. The part of the 

computation of p which dépends only on S is performed. The resuit of this process is a new 

specialised version of p whose input is the dynamic part of the input of p, D, and which, when 

it is applied to D, produces the same output as p applied to both S and D. 

p(S,D) = ps(D) 

This specialised function ps is known as a residual program. For example consider the function 

power 

power x n = 1, if n = 0 

= x * power x (n — 1), otherwise 

This function raises x to the power of n. Suppose the value of n is fixed at 3 but the value of 

x is dynamic. Spécialisation of power to its static input n = 3 produces the residual program 

power' x = x * x * x * 1 

because ail computation except multiplication by x, which is dynamic, can be performed at 

partial évaluation time. 

Beckmann et al [BHOS76] and Futamura [Futa82] describe some of the potential applications 

of partial évaluation. Thèse include: 

• Automatic theorem proving. It is possible to use a partial evaluator to produce a 

spécifie theorem prover by specialising a gênerai theorem prover to a spécifie set of 

axioms [Futa82]. 

• Construction of small specialised utility programs from more gênerai routines [BHOS76]. 

• Construction of spécifie parsers from gênerai parsing routines [Futa82]. If there is a 

gênerai parsing algorithm P : BNF-grammar x text -» parseJree, and S is the BNF 

11 



grammar of the language S. A spécifie S parser P$ can be produced by specialising P 

to S by partial évaluation. 

• Compilation and compiler génération. This use of partial évaluation is discussed in 

détail below. 

In gênerai partial évaluation is a useful technique where there is a need to construct a fast, 

spécifie, algorithm to do a particular job and a slower more gênerai, data driven, algorithm 

already exists. 

Partial évaluation and compilation 

The use of partial évaluation as a compiler construction technique is described in [Futa71, 

Ersh77, Ersh82, Futa82, JoSS85, JoSS89]. A brief overview of the technique is shown below. 

Suppose that mix is a self-applicable partial evaluator for the target language T, i.e. mix 

is a T program which implements a partial evaluator for the language T. Because mix is a 

partial evaluator the following équation holds for ail T programs t with static input istatic 

and dynamic input idynamic 

tfcstatic, idynamicl = (wïiartt^M^toticDPdynomicl 

where mix[[*]][[i5taticl is the residual program produced from t and i3tatic 

Now assume int is an interpréter for the programming language S and is written in the target 

language C. If s is an S program which takes i as its input and produces o as its output then 

4*1 = o 

represents running the program s on an S machine with input t. The same output can be 

produced using a T machine by running int and giving it s and î as its input. 

int^s* i]] = o 

12 



Since int is a T program and s is some of its input we can use mix to produce a specialised 

version of int which can only interpret the program 5 by setting s as static input for int and 

: as dynamic input. 

int9 = mix[[tnf]][[s]] 

Now using ints and a T machine we hâve 

ints
rJl = o 

furthermore ail the computation in int which applies only to the analysis of the program s 

is done at partial évaluation time and does not hâve to be done when int3 is executed. The 

T program int3 has the same input/output relation as the S program s and is, in fact, a 

compiled version of s. 

Since mtx|[int]|[[$] is a compiled version of s and mix is a T program, an S to T compiler 

can be produced using mix and int by regarding int as static input for mix and leaving s as 

dynamic input. 

comp = fnix[[mîx]]|[in*]] 

This is easy to verify because: 

compW = (rotzJmixl[tnt])|[sD 

= inta 

lf we remember that the basic function of a partial evaluator is to eliminate redundancy from 

a partially bound T program it is easy to understand how thèse results arise. By définition 

an S interpréter, int, must contain the T expressions necessary to exécute any S program 

with any input data in addition to the T expressions necessary to parse an S program and 

exécute its static semantics. If the program argument of an interpréter is bound to a particular 

S program, q, it is possible to exécute the parsing and static semantics components of the 

13 



interpréter as they only dépend on the S program text. The code segments of the interpréter 

which actually simulate the run time behaviour of q dépend on the input data for q as well 

as the program text and therefore become part of the residual program intq. This reasoning 

extends to the construction of mixint in the obvious manner. 

Partial évaluation Systems 

There is a large, and growing, body of literature on the subject of partial évaluation as a 

compiler génération technique. 

In [MaBe85] partial évaluation is used to dérive a compiler and an object interpréter from an 

operational semantics given using the V.D.L. spécification language. However the approach 

used needs to place several restrictions on the style of V.D.L. spécification and does not appear 

to généralise to the automatic génération of compiler generators in any obvious manner. 

The first working version of a fully self-applicable mix was produced by Jones et al [JoSS85, 

Sest85, JoSS87, JoSS89]. This project identified the process of binding time analysis as critical 

to the effective opération of a partial evaluator. 

To spécialise the power function given above to some fixed value of n the partial evaluator 

need only unfold recursive calls of power until the value of n falls to 0. Now consider the spé

cialisation of power to some fixed value of x (say 5) rather than n. The obvious spécialisation 

is 

power" n = 1, if n = 0 

= 5 * power"(n - 1), otherwise 

but this spécialisation cannot be produced by repeated unfolding of recursive calls because 

the value of n is dynamic and therefore never falls to 0. Spécialisation by repeated unfolding 

will actually cause non-termination of the partial evaluator as it attempts to produce the 

infinité residual program shown below. 
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power"1 n = 1, if n = 0 

= 5 * 1 , if n - 1 = 0 

= 5 * 5 * 1 , if n - 1 - 1 = 0 

= 5* - * 5 * 1 , otherwise 

The problem arises because the expression power 5 n where n is dynamic is itself dynamic 

and must not be unfolded at partial évaluation time. To overcome this problem a partial 

évaluation system must perform a process of binding time analysis on the program to be 

specialised to détermine which sub-expressions in its body are static (reducible) and which 

are dynamic (irreducible) at partial évaluation time. 

In [JoSS85] the binding time analysis is done "by hand", but in later versions the process is 

automated, ail be it in a fairly ad hoc manner. 

The treatment of binding time analysis given by Launchbury [Laun88, Laun89, Laun90] using 

a domain theoretic construction of dépendent sums which allows aspects of binding time 

analysis to be expressed as domain projections is particularly interesting but for reasons of 

space cannot be discussed hère. 

Another interesting example of partial évaluation is the work of Turchin et al [Turc80, 

TuNT82, Turc85, Turc86] on the supercompiler concept. A supercompiler is a generalised 

from of partial evaluator. Supercompilation consists of a process called driving in which a 

T program, p, is run in a generalised form (with unknown values for some of the variables 

of p) to produce a graph of states and state transitions of the possible configurations of the 

Computing system specified by p. To keep this driving finite the supercompiler examines the 

configurations of p and généralises them until a set of generalised configurations are produced 

which are capable of describing the whole of the Computing system, p. This généralisation 

process replaces the binding time analysis of the more traditional partial évaluation system. 

Because the driving and généralisation process has access to more information than a simple 

partial evaluator a supercompiler can carry out transformations to the program p which are 

not possible using partial évaluation alone. On the other hand self-application is much harder 

to achieve because of the increased complexity of a supercompiler. 

Other work on partial évaluation includes: compilation of pattern matching [Bond88. Jorg90] 
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by partial évaluation. The extension of partial évaluation to lazy functional languages 

[Bond90b] and partial évaluation of higher order languages [Goma89, Bond90a, Cons90]. 

Compiler génération by partial évaluation is included as an example of a compiler spécification 

system where the S —• T relationship is specified as an «S interpréter expressed in the language 

T. To be a fully formai compiler spécification technique we require formai spécifications of 

the S and T languages and a formai description of the process of partial évaluation, in order 

to prove the correetness of mix. In reality the technique is much more powerful than simple 

compiler génération, it is probably better described as a program transformation technique 

but in its guise as a compiler spécification system it provides the inspiration for the fictional 

true compiler generator described below. 

2.2 A true compiler génération system 

By making two, rather large, assumptions we can now take a look inside the "compiler 

generator" box in figure 2.2 and speculate about its internai workings, based on a partial 

evaluator. 

Assumption 1. there is a technique which allows us to examine the spécification of a com

puter language, T, and from this spécification, calculate a T program which implements 

mix for the language T. 

Assumption 2. given the spécifications of two languages, S, and T, it is possible to dérive 

an implementation of S in the form of an interpréter expressed as a T program. 

By allowing assumption 1 only, we could implement a compiler spécification language in the 

following way: 

1. examine the target language spécification, T, and compute the implementation of mix 

for this language. 

2. Accept a source interpréter, int, written as a target program and compute the value 

mix\mix,int\ 
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3. Output the value mix^mix, int^ as the generated compiler. 

This system is still a compiler spécification system rather than a compiler génération system 

because the user has to supply the S —• T relationship in the form of the source interpréter, 

int 

If we also allow assumption 2 we can implement a true compiler generator system by calcu-

lating the source interpréter from the spécifications of S and T, rather than accepting it as 

input. 

The proposed overall structure of the "compiler generator" box in figure 2.2 is shown in figure 

2.4. 

source language 
spécification (S) 

target language 
spécification (T) 

calculate int 

calculate mix 

int 

compute mix§mix,int§ 

S-+T 
compiler 

mix 

Figure 2.4: The anatomy of a true compiler generator 

The boxes labelled "calculate mix" and "calculate int" are implementations of assumptions 

1 and 2 respectively. The last box, labelled "compute mix^mix,intY is a parameterised 

Simulator which accepts the following inputs: 

1. a language spécification T. 

2. A T program which implements mix for the language T. 

3. A T program, int, which is a programming language interpréter. 

When given the spécification of the language T the "compute mix\mix,intY component 

becomes a T interpréter and computes the value mix^mix,inï§ which it constructs from its 
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remaining inputs. This last component is relatively trivial to construct as it is basically an 

interpréter for the meta-language used to specify T. 

2.3 Fiction to fact: the requirements 

How unreasonable are the assumptions in section 2.2? The short answer to this question 

is currently very unreasonable. Taking each assumption in turn, for assumption 1 to be 

reasonable we need to be able to: 

1. construct a représentation of the syntax of an arbitrary language T as a data type of 

the language T. This is required because mix must hâve some way of representing the 

T programs it processes. 

2. Construct a binding time analysis phase from the spécification of the semantics of an 

arbitrary language T. 

3. Construct the function spécialisation phase for an arbitrary language T. This is proba

bly the easiest of the three requirements necessary to justify assumption 1. The function 

spécialisation phase of a T partial evaluator is very closely related to the évaluation func

tion of the programming language T and is basically a T program which reduces other 

T programs to their canonical form with respect to the static input and binding time 

analysis. 

The requirements necessary to justify assumption 2 are: 

1. given arbitrary programming languages S and T we must be able to construct a T 

data type which represents the syntax of S. Hère again this is required because the 

interpréter, int, must be able to represent any S program to process it. 

2. The ability to dérive an S interpréter, int, as a T program. To dérive an S interpréter as 

a T program we must be able to implement the S évaluation function as a T program. 

We will concentrate on the development of a technique which allows us to calculate a self-

interpreter for the arbitrary language T, i.e. an interpréter for the language T which is itself 
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a T program. The reason for this is that the calculation of a self-interpreter is a reasonable 

step on the road to both the calculation of an S interpréter as a T program. and toward the 

calculation of a function spécialisation phase for the language T. 

The problem of constructing a T data structure to represent the S programs can be reduted 

to the problem of implementing binary trees in T, since any tree structure can be transformed 

into a binary tree and any S program can be represented as its dérivation tree. A less efficient 

but more straightforward représentation technique could be constructed by implementing n-

ary trees in T, where n is the largest number of subtrees possible for a node in the dérivation 

tree of an S program. From this point on wre will assume that one or other of thèse techniques 

is used to construct a représentation of S programs as a data type in the arbitrary language 

T. This will be required for the construction of a self-interpreter, (both S and X are the same 

language for a self-interpreter). 
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Chapter 3 

An Algebraic Approach to a 

Self-interpreter 

The algebraic model of language developed by Rus [HaRu76, Rus76, RuHe84, Rus85, Rus87, 

Rus90, Rus92] can be used to specify a programming language as a triple 

C = (Sera, Syn, learn : Sem —• Syn) 

where Sem and Syn are algebraic structures over a common signature and learn is function 

which associâtes an expression in Syn with eath meaning in Sem. There is an associated 

homomorphism eval : Syn -• Sem which defines the évaluation of expressions in Syn. The 

model is described in section 3.1 and in section 3.2 we show how the properties of the model 

can be used to construct the function computed by a self-interpreter. 

3.1 An algebraic model of language 

Rus describes an algebraic model of language based on two properties of many sorted algebra. 

Given the category of E algebras C(E): 

1. the word algebra W is unique up to isomorphism and coïncides with the initial algebra 

in C(E). 
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2. Any function defined on the generators of W returning values in the carrier of a similar 

algebra A extends to an unique homomorphism £ : W —• A. 

The construction of the model is shown below. 

3.1.1 The spéc i f ica t ion basis 

The three components of the spécification basis are: 

1. a set of names of the abstract objects specified in the language, denoted by /. 

2. A finite set of reserved words denoted by S. 

3. A finite set of opération schemes E. The opération schemes, a £ E specify opérations 

on families of sets (indexed by / ) and are denoted by a triple. 

a = (n,s0si ...sn,ii...ini) 

The components of the triple are: 

• n > 0, the arity of the opération. 

• The opération symbol SQSI .. .sn, Sj 6 S. 

• The operand sorts i\.. .in, ij € / and resuit sort of the opération i 6 / . 

A proof that every context free grammar générâtes a basis B and every finite basis B générâtes 

a context free grammar is given in [Rus87]. 

3.1.2 The semant ics algebra 

The semantics of a programming language is given as an algebra specified by some ba

sis B over a family of sets A = { J 4 I , J 4 2 , . . . } . The family A represents the collection 

of abstract objects which are denotable within the language semantics. The algebra 

Sem(B,A) = (Sem(I), Sem(S), 5cm(E)) is constructed as follows: 
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1. Sem(ik) = Ak.ik € / . Sem(I) is then a family of sets chosen from A and indexed by /, 

allowing Sem{B,A) to be constructed as a many sorted algebra. 

2. Sem(S) = 5. The purpose of this set is to fix the symbols used to express constructions 

over Sem(I). 

3. The set of opérations on Sem(I) is denoted by Sem(E) and Va G E,<7 = (n, so^i - - - ^ , 

i l . . .in*)> Sem(a) is an opération 

Sem(a) : Sera(z'i) x . . . x Sem(in) -• Sem(i) 

The tuple (s0 ,si , -. -,sn) is used as the opération symbol and for a* € Sem(ik), k = 

1,...,71 Sem(a) applied to appropriate a* is denoted 5 0ai5ia 2 . . .sn-\ansn and is of 

sort i. 

This construction of Sem(B,A) as a many sorted algebra with opération symbols which 

distribute over their operands provides a very natural association between the semantics 

algebra and the phrases of a context free grammar. 

3.1.3 T h e syntax algebra 

The set W(X, E) = {W{(X, E), i G / } is the family of well formed expressions freely generated 

from the family of finite symbol sets X = {Xi, i € / } by the signature E. Détails of this con

struction are given in [Higg63, Rus90]. The algebra Syn(B,W) = (Syn(I),Syn(S),Syn(T,)) 

is constructed as follows: 

1. Syn(I) = { W i ( X , E ) , i € J } . 

2. Syn(S) = 5. 

3. The set of opérations on Syn(I) is denoted by 5yn(E) and Va € E,cr = (n, s0si ...sn, 

il.. .ini), Syn(a) is an opération 

Syn(a) = Syn(ii) x . . . x Syn(in) — Syn(i) 

defined by the rules for well formed expressions in Wi(X,T,) as 
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VÎT, G W t j (X ,E) , j = l,...n,Syn(<r)(wi,...,wn) = s0wis1 ...sn-iwnsn G W t(X,E). 

Note that for any context free grammar G, the language generated by G is the set of words 

W(Q,B(G)) where B(G) is the basis generated by G [HaRu76]. 

3.1.4 T h e learn and eval functions 

Given a basis B = (I, S, E), a family of abstract objects A = {Ai,..., An}, and a family of 

symbol sets X = {Xi, i G / } . Syn defines an algebra of words on W(X, E) and Sem defines a 

similar algebra on A. 

A = ({Ai,ieI},X,Sem(Z)) 

W = ({Wt-(Jr, E), i G / } , E, 5î/n(E)} 

The triple £ = (Sem(B, A), Syn(B, W(X, E)), learn : Sem(£, A) - Syn(B, W(X, E))) spéc

ifies a programming language with semantics Sem(B, A), and syntax Sj/n(i?, W^X, E)). 

The purpose of the learning function is to specify the process of sentence construction carried 

out by a sender Communicator using the language C. The other communication process, 

understanding, is modelled by the eval : Syn(B,W(X,Y,)) - • Sem(B,A) homomorphism 

given by property 2 above. A construction for the eval homomorphism is given in [Rus92]. 

For the sake of clarity we shall give a simpler, and less gênerai, construction hère, by assuming 

learn to be injective1. 

1. Let Syn0 = {Synio,i0 G / } be the indexed family of free generators of the algebra 

Syn(B,W(X,E)). For each w G Synio, a = (0,w,io) G E is an opération scheme 

and a G At0 a unique value with learn(a) = w. Define eval0 : Syn^ - • Sem(B,A) as 

eval0(w) = a. For any a1 = (0, w', i) jt a such that Sem(a') = a, set eval0(w') = a. 

2. Extend eval0 homomorphically to eval: Syn(B,W(X,i:)) - • Sem(B,A). 

When the algebras Syn(B,W(X,Z)) and Sem(B,A) are finitely generated, i.e. when X and 

A are finite collections, learn and et?a/ are constructed such that eval o learn = idSem(B,A)^ 

11\ÛS assumption is not unreasonable as we would not expect more than one meaning to be expressed by 

any single programming language sentence. 
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where o dénotes function composition. In the case of a conventional programming language 

both A and X are finite. 

3.1 .5 Example: a language of n u m b e r s and addition 

The algebraic model of language described above provides a formai définition of the three 

components of a programming language (Syntax, Semantics, and the Syntax <-• Semantics 

association) within the single framework of universal algebra. This section illustrâtes the 

model using a simple expression language of natural numbers with an addition operator. 

Expressions in the language are generated according to the BNF grammar. 

(Exp) — 0 

{Exp) —• succ((£xp)) 

(Exp) — (Exp)+(Exp) 

The semantics of this language are the expected semantics for natural numbers and addition: 

0 is the syntactic expression denoting the number 0, suce dénotes the function Xx.x + 1, and 

the symbol • is the addition operator. 

Spécification basis 

To specify this language algebraically we must first define the basis B. The language contains 

only one abstract object, namely Exp, so the set / = {Exp}. There are four reserved words: 

'0', csucc(\ ' ) ' , and *•', together thèse reserved words form the set S. Each of the three BNF 

rules adds the opération scheme shown below to the set E. 

BNF rule 

(Exp) -» 0 

(Exp) -* s\icc((Exp)) 

(Exp) -* (Exp)*(Exp) 

opération scheme 

<0,<0\£xp) 

(l,'succ(")',£xp£ip> 

(2, e'+'e, ExpExpExp) 

Note that the opération symbol for the third opération scheme contains two occurrences of 

the empty string e. The spécification basis B is the triple: 
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5 = ( / = {Exp},S = {0,succ(,),+}, 

E = {(0,iO\Exp),(l,is\iccC)\ExpExp),(2,e^€,ExpExpExp)) 

Semantics algebra 

To specify the semantics algebra Sem(B, A) we must first define the family of abstract objects 

A. The only object required for the semantics is the set of natural numbers, Nat, constructed 

by the signature below: 

zéro : -• Nat 

suce : Nat —> Nat 

the family A is therefore A = {Nat}. The construction of Sem(I) is Sem(I) = 

{Sem(Exp)} = {AExP} = {Nat}, and Sem(S) is constructed as Sem(S) = {0,succ(,),+}. 

We can now construct Sera(E). The set of opérations of the algebra Sem(B,A), i.e. 

{Sem(a),a G E}, is constructed by the assignment shown in the table below. 

Sem((W,Exp)) 

Sem^UsMCcV'YExpExp)) 

Sem((2, c'+V. ExpExpExp)) 

opération signature 

—• Sem(Exp) 

Sem(Exp) -> Sem(Exp) 

Sem(Exp) x Sem(Exp) -• Sem(Exp) 

opération 

zéro 

suce 

/ 

where the opération / : Nat x Nat —• iVa/ is defined as addition on natural numbers. 

f(zero,x) = x 

f(succ(x),y) = succ(f(x,y)) 

Using this assignment the set Sem(E) is defined as Sem(E) = {zéro,suce, /} , this complètes 

the définition of Sem(B, A). 

Syntax algebra 

Since the expression language is generated by a context free grammar, the family W(X, E) 

for the syntax algebra is freely generated from the family of symbol sets X = {0} by the 
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signature E. Following the rules for the construction of W(X, E) in [Rus90] we obtain an 

unchanged set S (Xis the family of empty sets). The set WEXP(X, S) is described below. 

WExpo(X.Z) = {0} 

H W X . S ) = WExPn_1(X,2)U{siicctwy.w€WEXPn_1(X,'Z)} 

U{e«;1 + w2e : (w1,w2) € ^ ^ . , ( ^ , 2 ) x WE^^X ,Z)} 

WExp(X,Z) = \JWExPn(X,Z),ne {0,1,2,. . .} 

So W(X,X) = {WExP{X,i:)}. The family Syn(I) is defined as {WExp(X,?,)} and the set 

Syn(S) is {0,succ(,),+}. The éléments of the set 5j/n(£) are described in the table below. 

Syn((0SO\Exp)) 

5î/n(( l , tsucc(") , ,£xp£xp)) 

Syn((2, e'+'e, ExpExpExp)) 

opération signature 

—• Syn(Exp) 

Syn(Exp) —• Syn(Exp) 

Syn(Exp) x Syn(Exp) —> Syn(Exp) 

opération 

0 

9 

h 

The opérations g :WExp(X,Z)-+WExp(X,Z) and /i : WExp(X,X) x W^*P(*,E) - . 

WExp(X, E) are defined as: 

g(w) = succ(ttf) 

h(wi,W2) = CU?I+W2É 

5yn(E) is therefore defined as 5yn(E) = {0,5,/1} and the définition of the algebra of words 

Syn(B,W(X, E)) is complète. 

The learn and eva/ functions 

The function learno : Sem0(B,A) -+ Syno(B,W(X,T,)) is defined as: learn0(zero) = zéro. 

This function can be extended through the signature E as follows: 

learn(zero) = zéro 

learn(succ(a)) = suce (learn(a)) 

learn(f(ai,a2)) = elearn(ai) + learnfa)*-
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Since the value /(ai,02) is constructed by the opérations zéro and suce for ail values ai,02 G 

5em(i4) this définition simplifies to: 

learn(zero) = zéro 

learn(succ(a)) = succ(/earn(a)). 

We can now define the eval homomorphism as follows: 

1. define eval0 : Syn0(B,W(X, E)) - • Sem0(B, A) as: eva/0(zero) = zéro. 

2. Extend eva/o homomorphically to eval. 

eval(zero) = zéro 

eval(succ(w)) = succ(era/(tu)) 

et;a/(eit;i • W2t) = f(eval(w\),eval(w2)) 

3.2 The interpréter function 

The conventional définition of an C interpréter is a program which, when given an C program 

/ and input i for the C program as its input, produces the same output as / produces when 

given input i. If the interpréter is itself an C program it is called an C self-interpreter. For 

the purposes of the algebraic model above this définition must be made a little more précise. 

Définition: An C self-interpreter. 

An C self-interpreter is a term int such that: 

1. eval(int) is a function interpréter :Q -+ Q, where W(X, E) Ç Q. 

2. For every term w G W(X, E), eval(w) = eval(interpreter(w)) and no further réduction 

of interpreter(w) is possible. O 

In other words an C self-interpreter is an C program which takes C syntactic terms as input 

and delivers maximally reduced C syntactic terms as output while preserving the meaning of 

thèse terms during the réduction process. 

27 



The algebraic model of language outlined above can be used to describe the interpréter func

tion. 

Proposition 3.2.1 If C is a programming language: 

C = (Sem{B, A), Syn(B, W(X, E)), learn : Sem(B, A) — Syn(B, W(X, E))) 

with évaluation homomorphism: 

eval : Syn(B, W(X, E)) - Sem(B, A). 

The interpréter functions for C is defined as 

interpréter = learn o eval 

Proof: The eval homomorphism defines an équivalence relation on Syn(B,W(X, E)). 

Vwi,u;2 G Syn(B, W(X, E)) : ui = u>2 ̂  eva/(u;i) = eval(u2) 

This relation can be used to construct a quotient algebra Syn(B, W(X, E))/= where each 

élément of Syn(B,W(X,T,))/= is not an C program but the complète collection of ail £ 

programs which hâve a given meaning. For example, in the expression language above, the 

équivalence class which contains the term esucc(O) + suce (suce (0))c will also contain the 

term succ(succ(succ(0))) , and ail other terms which evaluate to succ(succ(succ(zero))). 

This suggests a mechanism for the Computing the interpréter function. 

1. Identify the équivalence class containing the term to be specialised. 

2. Select a pre-determined term from this équivalence class and use it as the resuit term. 

There is an isomorphism between Syn(B,W(X,Y,))/= and Sem(B.A) so if a term w G 

Syn(B,W(X, E)) can be uniquely identified as the preferred syntactic représentation of each 
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élément of Sem(B,A) the interpréter function can be described using the eval homomor

phism. The learn function from the définition of C performs exactly this task and so the 

function computed by a self-interpreter can be described as: interpréter = learn o eval. • 

The effect of proposition 3.2.1 is to define a family of functions Fa on the syntax algebra 

which correspond to the opérations Sem(a) of the semantics algebra, for each a G E. 

Theorem 3.2.1 For each opération scheme o = (n,s0Si. ..sn,ii. ..ini) G E the function 

Fa : Syn(ii) x ...x Syn(in) - • Syn(i) 

defined as 

Fa = interpréter o Syn[a) 

has the same behaviour on syntactic objects as Sem(a) : Sem(ii) x . . . x Sem(in) —• Sem(i) 

has on semantic objects. 

Proof: Fa is defined as: 

Fa(wi, ...,wn) = (learn o eval)(Syn(a)(wi,..., wn)) 

= learn(eval(Syn(a)(wi,..., wn))) 

= learn(Sem(o)(eval(wi),. ..,eval(wn))) 

for each a = (n,sQsi ...sn,i'i.. .ini) G E, n > 0. Fa is defined as: 

Fa = (learn o eval)(w) 

for each a = (0, w, i) G E. D 

Returning to the example from section 3.1.5 the interpréter function can be defined as: 

interpréter = learn o eval. Using theorem 3.2.1, this définition can be expanded as: 

29 



as indexed collections of arrows whose components can be brought within the semantics of 

the specified language. 
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interpreter(zero) = (learn o era/)(zero) 

= learn(zero) 

= zéro 

interpreter(succ(w)) = (learn o eva/)(succ(tr)) 

= learn(succ(eval(w)) 

= succ((/earn o eva/)(tr)) 

= s\icc(interpreter(w)) 

interpreter(ewi • W2O = (learn o ei;a/)(eu;i • u^c) 

= learn(f(eval(wi), eval(w2))) 

= ir(2,^e,£:xpErpExp>(^^rPr^er(it;i),interpr6<er(u;2)). 

The function F(2,c+€,ExpExpExp) : Syn(Exp) x Syn(Exp) -> Syn(Exp) given by theorem 3.2.1 

is the syntactic équivalent of the semantic opération / : JVaJ x Nat —• iVa* and is defined in 

figure 3.1. 

F(wi, W2) = learn(f(eval(w{), eval(w2))) 

F(zero, it;) = it? 

.F( suce (wi ),w2) = succC^it?!,^)) 

Figure 3.1: The opération F(2,c+c,ExpExpExp) 

Although the interpréter function is completely described in terms of the définition of the 

programming language C it is not a description of a self-interpreter for the simple reason 

that it is not an C program. In fact the interpréter function is not actually an élément 

of the algebra Sem(B, A) and so there is no guarantee that an C program to compute the 

interpréter function actually exists. The following chapters describe a categorical model of 

language based on finite limit sketches [BaWe85]. The categorical model of language exploits 

the fact that finite limit sketches modelled in the category of sets and functions (SET) exceed 

the expressive power of many sorted algebraic théories and hâve ail the properties used above. 

Using finite limit sketches we can therefore construct analogues of the learn and eval functions 
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Chapter 4 

Sketches 

The concept of a sketch originates with Ehresmann and is described in [BaEh68]. Sketches 

hâve been studied extensively by several groups Worldwide, mainly in France and Canada, and 

a gênerai introduction to the work can be found in [Ehre68, BaEh68, Lair75, GuLa80, CoLa84, 

BaWe85, Gray87, \VeBa87, Ba\Ve90]; this list of références is by no means complète. The 

formalism used hère most closely follows that of Barr and Wells [BaWe85, BaWe90, WeBa87] 

as thèse are more widely distributed than the majority of the other références. 

4.1 Définitions 

Sketches provide a formai spécification technique based on graphs and, "as such are the intrin-

sically categorical way of providing a finite spécification of a possibly infinité mathematical 

object or class of models" [BaWe90] (ppl61). The définition used in [WeBa87] is given below. 

Définition: Directed Graph. 

A directed graph, G, is a pair of sets Go — nodes, and Gi — edges, together with two 

functions: src : Gi —• Go, which returns the source node of a given edge, and function 

trg : Gi —> Go maps the edges to their target nodes. D 

For example: 
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• b • c 

with Go, Gi , src, and trg defined as: 

G0 = {a,6,c} Gi = {f,g,h} 

src(f) = a trg(f) = 6 

src(g) = b trg(g) = c 

src(h) = c trg(h) = c. 

The définition of a sketch requires the définition of a diagram. To define a diagram we must 

first define a graph homomorphism. 

Définition: Graph Homomorphism. 

A graph homomorphism H : G —» E is defined as a pair of functions Hi : G,- —» £, , t = 0,1 

such that the following properties hold: 

Ve G Gi : H0(src(e)) = src(Hi(e)) 

Ve G Gi : H0(trg(e)) = trg(Hi(e)). 

That is to say /7 préserves the connectivity of the graph G. D 

A diagram can now be defined. 

Définition: Diagram. 

If d and G are graphs, a diagram of shape d in G is defined as a graph homomorphism 

D:d-+G. D 

d = G = 

r n 

9 

u 
33 



D:d-G = (DQ,Di) 

where D0 and Di are defined as 

D0(w) = D0(xj - p 

D0(y) = D0(z) = q 

Di(f) = Di(j) = s 

Di(g) = r 

£1(/1) = t 

A directed graph and a set of distinguished diagrams in that graph form two of the components 

of a sketch. The remaining two components are a set of cônes and a set of cocones, defined 

below. 

Définition: Cône. 

A cône in a graph G consists of: 

1. a diagram of shape d in G, D : d -• G. This diagram is called the base of the cône. 

2. A node v of G, called the vertex of the cône. 

3. A family of projection edges p = {p,; : v — D(i)} indexed by the nodes of d. 

A cône with vertex v and base D is referred to as a cône from v to D or as cône p:v -^ D. • 

Any cône p:v -> D can be indicated by a diagram of the form 
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In the category C, a cône p : v —• D is a limit cône if it has two additional properties: 

1. for every arrow a : i —• j of d, D(a) opi = pj where o is the composition operator of C. 

A cône with this property is called a commutative cône. 

2. If ç : s —• I? is a différent commutative cône there is a unique arrow w : 5 —• v such that 

Pi o u = qi for ail nodes t of d. In the category of commutative cônes over diagram D, 

the limit cône is the terminal object. 

A limit cône over a discrète diagram, in any category, is called a product cône and its vertex 

is known as the product of the objects in its base. In SET, the category of sets, for example, 

the vertex of a limit cône over a discrète diagram is the cartesian product of the sets in its 

base. 

A cocone is defined to be the dual of a cône. 

Définition: Cocone. 

A cocone in a graph G consists of: 

1. a diagram of shape dm G, D : d —• G. This diagram is called the base. 

2. A node v of G, called the vertex. 

3. A family of injections in = {ini ' D(i) -» v} indexed by the nodes of d. D 

The colimit cocone over diagram D in the category G is defined as the initial object in the 

category of commutative cocones over diagram D. That is to say, if j : D —• v is the colimit 

cocone over diagram D : d -+ G and k : D —• s is another commutative cocone over D there 

is a unique arrow u : v —• s such that fc, = u o j t . 

In any category the colimit cocone over a discrète diagram is the sum (coproduct) of the 

objects in its base. In SET, for example, the vertex of the colimit cocone is the disjoint union 

of the sets in its base. 

Thèse définitions of directed graph, diagram, cône, and cocone are combined to give the 

définition of a sketch. 
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Définition: Sketch. 

A sketch is a 4-tuple (G, Di,C,Co) consisting of a graph G, a set Di of diagrams on G, a se: 

C of cônes on G, and a set Co of cocones on G. C 

Définition: FP Sketch. 

A sketch is called an FP (finite product) sketch if it contains no cocones and ail cônes are 

over finite discrète diagrams. C 

Définition: FL Sketch. 

A sketch is called an FL (finite limit) sketch if it contains no cocones and ail cônes are over 

finite diagrams. Clearly every FP sketch is also an FL sketch. C 

Définition: Sketch Morphism. 

If Si = (Gi,2)ti,Gi,Coi) and 52 = (G2,£*2,C2,Co2) are sketches then a sketch morphism 

F : Si —• 52 is a graph homomorphism such that: 

1. for each diagram D : d —• Gi in Dii, F 0 D : d —• G2 is a diagram in Di'2. 

2. For each cône p : v —• D in Ci, the cône F(p) : F(v) -* F o D belongs to C2. 

3. For each cocone j : D —• v oiCoi, the cocone F(j) : F 0 D —» F(v) is a cocone belonging 

to Co2. C 

That is to say that F : Si —* 52 takes the diagrams of 5i to diagrams of 52, the cônes of 5i 

to cônes of 52, and cocones of 5i to cocones of 52-

Given any category C, there is a sketch underlying C defined as (G, Di, C, Co) where G is the 

underlying graph of C, Di is the set of ail commutative diagrams of C, C is the set of ail limit 

cônes of C, and Co is the set of ail colimit cocones. This leads to the final définition in this 

section. 

Définition: Model of a sketch. 

A model of a sketch, S, is a sketch morphism M : 5 -» \V\ where \V\ is the sketch underlying 

some category V (typically SET). It follows that the diagrams of S will be taken to com

mutative diagrams of V, and the cônes (cocones) of S will be taken to limit cônes (colimit 

cocones) of V. C 
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Although M : S -* \V\ is actually a graph homomorphism, it is sometimes convenient to 

regard it as a functor M : S —• V where S is the free category generated by the sketch 5. 

The models of a sketch 5 in category V, M : S —• V also form a category denoted Modp(5) . 

The objects of this category are the models M and the arrows are natural transformations. 

The category Modp(5) is a full reflective subcategory of the functor category [5,2?]. The 

category of models of 5 in SET is denoted by Mod(5 ) . 

4.2 Example: lists 

Currently, interest is growing in the use of sketches as a tool for the spécification of abstract 

data types. Sketches offer a spécification tool wThich is far more powerful than any which is 

currently available. Two reasons for this are: 

1. the diagrams of a sketch contain no variables and become commuting diagrams (équa

tions) when the sketch is modelled in any category, î>; equational reasoning is therefore 

greatly simplified for the model of a sketch. 

2. The existence of a set of cocones in a sketch allows the user to specify sorts as sums, 

this can drastically reduce the complexity of a sketch. To quote from Wells and Barr 

[WeBa87]. 

"Having the ability to form disjoint unions makes it easy to define op

érations . . .which are undefined on part of the datatype. We don't need to 

give it some artificial value such as 'error' — we just don't define it on the 

embarrassing part of the datatype, and in any model it is then not defined 

there and thus gives no trouble." 

Gray [Gray87] shows how sketches of simple datatypes may be combined to form more complex 

datatypes such as: SETofNAT, and SETofSETofNAT, and is currently developing a tech

nique for implementing sketches using the computer algebra package Mathematica [Gray?]. 

A simple example, a sketch of lists of natural numbers with a distinguished error number, 

is included hère to give a flavour of the use of sketches in the spécification of abstract data 
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types. 

The sketch of the abstract data type List has seven opérations: 

empty 

cons 

head 

tail 

—• List 

Data x List —* List 

List —• Data 

List —» List. 

which operate on lists and 

zéro 

error 

suce 

—• Data 

-> Data 

.Data — Z)ata 

The opérations empty and cons are constructors, /iead : List —• .Data and tai/ : Zt$* -* List 

are described by the functions below. 

head(empty) = error 

head(cons(d,l)) = (f 

tail(empty) = empty 

tail(cons(d,l)) = / 

For the sake of simplicity the tail function is defined so that the tail of an empty list is the 

empty list rather than an error. Defining tail in this manner is done to avoid the need include 

cocones in the sketch. 

To force the Data sort to contain a unique error élément we also require: 

succ(error) = error. 

4.2.1 T h e sketch of lists 

The sketch List comprises a graph G with four nodes, and nine edges. There are two cônes 

and five diagrams. 
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Graph - G 

The graph of the sketch of lists contains a node for each sort and an edge corresponding to each 

opération mentioned in the signature above. The nodes of the graph are: Data, List, T, Datax 

List and the edges are empty : T —> List, cons : Data x List —• List, head : List —• Data, 

and tail : List —• List. In addition to the edges above the graph of the sketch also contains 

edges: error : T —• Data, zéro : T —> Data, and suce : Data —• Data. The complète graph 

is represented pictorially below. 

JData x List 

tail Q List 

cons//prLi*% 

head 

PrData 

Data j suce 

empty 

The construction of the objects T, and Data x List, and arrows prnst and prData is described 

below. 

The set of cônes - C 

The cônes for the sketch List are: 

the cône over the empty diagram. For any model, M, in category C, M(T) will be the vertex 

of the limit cône over the empty diagram, so M(T) must be the terminal object of C. The 

second cône is used to specify the object Data x List as a product. 
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Data x List 

PrData, ^PrList 

Data List 

Any model. M, in category C, will take this cône to the product cône 

M(Data x List) 

M(prData)/ \M(prList) 

M(Data) M (List) 

so the présence of this cône spécifies that M (Data x List) = M (Data) x M (List) with the 

arrows M(prnst) and M(prj^ata) as the coordinate projections. It should be emphasised that 

the node Data x List in the graph G is not a product, in spite of its name, it is merely a node 

of the graph. 

The set of diagrams - D 

The sketch of lists requires five diagrams: two to specify the behaviour oîhead : List — Data, 

and two to specify tail : List —• List. 

List 
head 

Data 
Data x List 

cons A JPTData 
empty error 

List 

(«) 

head 

W 

Data 

Together thèse diagrams specify the behaviour of head since any model, M, will force the 

diagrams (a) and (6) to commute. By (c) we obtain the équation M(head) o M(empty) = 

M (error) and (b) gives rise to the équation M (head) o M(cons) = M(prData). The diagrams 
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List 
tail 

List 
Data x List 

empty" empty 
^PrList 

List 
tail 

List 

(<0 (d) 

specify the behaviour of tail. Again because any model, M, forces (c) and (d) to 

commute, we obtain the équations M(tail) o M(empty) = M(empty), from (c), and 

M(tail) o M(cons) = M(prn5t), from diagram (d). 

One final diagram is required to specify the behaviour of the suce opération: 

Data suce Data 

error error 

(e) 

which gives rise to the équation M (suce) o M (error) = M(error). This diagram will be used 

to force the Data sort to contain a unique error value. The sketch contains no other diagrams. 

Since the sketch List is an FP sketch it contains no cocones and is fully described as the 

4-tuple 

List = (G, Z?,C,0). 

4.2.2 The semantics of List 

A set valued model of an FP sketch S is called a term model if it is the initial object in the 

category Mod(5). FP sketches always hâve a term model [Barr86] as do FL sketches. To 
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provide a semantics for the sketch List we take its term model. / : List - • SET. To do this 

we must first define a congruence relation. 

Définition: Congruence relation. 

A congruence relation ~ is an équivalence relation on the arrows of a category C such that: 

1. if / ~ ff, then / a n d g hâve the same source and target. 

2. In the diagram: 

*ft \C -D 

if / ~ 05 then f ° h ~ g o h and k o f ~ k o g. 

The congruence class containing the arrow / i s denoted [/]. D 

In [BaWe90] Barr and Wells give a set of rules for the construction of the term model J : S -» 

SET for the FP sketch S = (G,D,C,Q). The terms are constructed as congruence classes of 

strings of tuples of composable arrows from the graph G and the rules recursively construct 

terms from an alphabet which consists of: the arrows of G, and ail finite length tuples of thèse 

arrows. For each cône c € C of the form: 

1. If / : a -> b is an arrow of G and [x] € I(a), then [fx] € I(b) and I(f)[x] = [fx]. 

2. If ( / i , - . - , /m) and (gu.. .,gn) are paths, a ->+ b, in a diagram d € D and [x] € / ( a ) , 

then 

( / ( / 0 o . . . o I(fm))[x] = (/(Si) o . . . o I(gn))[x] 

in /(6). 
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3. If for i = 1 , . . . , n, [xt] € I(ai), then [c(xx,..., xn)] G I(q) is a congruence class of strings 

consisting of the cône, c, followed by a tuple of arrows, so if n = 0 there is only one 

élément [c()] for the empty product. 

4. If for i = l , . . . , n , [xi],[yi] € /(a,-) and [x,] = [y,-], then c (x! , . . . . x n ) = c(ya , . . .,j/n). 

5. For i = l , . . . , n , [p,c(xi,.. . ,xn)] = [x,]. 

By rules 1 and 2 each / ( / ) : I(a) -* 7(6) is forced to be a function which respects the diagrams 

D. From rule 3 the vertex I(q) of a cône is forced to contain an élément corresponding to each 

tuple ( / (a i ) , . . . , I(an)). Rule 5 forces I(pi), i = 1 , . . . , n to be the coordinate projections and 

from rules 1 and 5 we obtain 

I(pi)[c(xi,...,xn)] = [x,-],V* = l , . . . , n . 

Rule 4 extends the congruence relation to cover tuples. 

We can now construct the term model, I : List —• SET. The alphabet is constructed as: 

Ai = {empty, zéro, error, suce, cons,prust, pra>ata, tail, head} 

An = A1} = {(ai,...,an) : a,; G Ai,i = 1, . . . ,n} 

A = L M n , n € { l , 2 , . . . } . 

Together rules 1, 3 and 5 define I(Data x List) as the set I(Data) x I(List), and I(prList), 

I(PrData) are the coordinate projections giving I(List) and I(Data) respectively. The func

tions I(prnst) and I(prData) cannot construct any éléments of I(List) and I(Data) and will 

be ignored below, except where they form part of a diagram. 

By rule 3, / (T) is a singleton set, I(empty) is an élément of 1(List) which we shall naine nil, 

while I(zero) and I(error) are éléments of I(Data) which we name 0 and err respectively. 

From rule 1, the set I(Data) is inductively defined as: 
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I(Data)0 = {0,err} 

I{Data)n = {succ(x) : x € I(Data)n-!} U {head(x) : x <= I(List)} 

I(Data) = [JI(Data)n,nÇ: {0.1,2,...}. 

Notice that from rule 2 and diagrams (a) and (b) we obtain: 

I(head) o I(empty) = I(error) and 

I(head) o I(cons) = /(pr0ota) 

so the set {/iead(x),x € /(lis*)} adds no new éléments to I(Data)n and can be ig-

nored. Similarly, by rule 2 and diagram (e), I(succ) o I(error) = /(error) so I(Data) = 

{O,succ(0),succ(succ(0)),...} U {err}, i.e the set of natural numbers with a distinguished 

error élément. 

By rule 1, the set I(List) is constructed as: 

I(List)0 = {nil} 

I{List)n = /(XwO»-iU 

{cons(x,y) : (x,y) G I{Data) x Z(/is*)n-i} U {tai/(x) : x € Z(Iist)„_i} 

/ ( l i «0 = U / ( M n , n £ {0,1,2,...}. 

From rule 2 and diagram (c), we obtain /(toi/) o I(empty) = I{empty), therefore tail{nil) = 

nil. Similarly rule 2 and diagram (d) produce I(tail) o I(cons) = I(prLiat), so the set 

{tail(x),x € I(List)n-i} adds no new éléments to I(List)n. The description of I(List) can 

therefore be simplified to 

I(List)0 - {nil} 

I(List)n = J(List)n-i U {cons(x, y) : (x, y) € I(Data) x / (I i50„-i} 

I(List) = U/(£*«*)n,n€ {0,1,2,...} 

the set of séquences of éléments of I(Daia) terminated by the value nil, i.e. Lists of natural 

numbers with a distinguished error number. The opération I{head : List -* Data) is specified 

by the équations generated by diagrams (a) and (b) as: 
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(a) I(head)(nil) = err 

(b) I{head)(I(cons)(x,y)) = x, V(x,y) € I{Data) x I{List) 

and I(tail : List - • List) is specified by (c) and (d) as: 

(c) I(tail)(nil) = ni/ 

(d) /(*a«7)(J(cons)(x,y)) = y, V(x, y) € J(Z?a*a) x / ( I M * ) -

In other words, the expected head and tail opérations. 

4.3 Sketch morphisms and induced functors 

In this section we examine some of the properties of sketches and their models. The construc

tion of the categorical model of language in chapter 5 is based on thèse properties. 

Property 4.3.1 IfhiS -+T isa sketch morphism it induces a functor between the catégories 

of models ofS and T, h' : Mod(T) -* Mod(S) . 

Proof: h* : Mod(T) — Mod(S) is defined as 

h'(M) = M oh 

h*(f:M-+N) = fh:h'(M)^h'(N) 

We can use property 4.3.1 to construct models of a sketch, S, which play the rôle of datatypes 

with hidden sorts and opérations. 

Proposition 4.3.1 Let S = (G,I>,C,0) be an FL sketch, T = (G', £>', C , Co') be a sketch, 

andhxS^Tbea sketch morphism. For each model, M :T — SET, of T, the datatype 

h*(M) : S -* SET has the saine behaviour as M except that each object n' € G'0 which is not 

the image in h of some object n € Go becomes a hidden sort ofh"{M) and each edge e' € G\ 

which is not the image in h of some edge e € G\ becomes a hidden opération. 
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Proof: If n € Go then h(n) € G'0 and from property 4.3.1 h*(M)(n) = M(h(n)) are the same 

sort. If n1 6 G'0 and there is no n 6 Go such that h(n) = n' then hu(M)(n) is undefined so 

the sort M(n') is hidden. 

Similarly if e € Gi then h(e) 6 G[ and from property 4.3.1 hm(M)(e) = M(h(e)) are the same 

opération. If e' 6 G^ and there is no e G Gi such that /i(e) = e' then /i*(M)(e) is undefined 

and the opération M(e') is hidden. a 

A second property allows us to map the initial model of S to the model h*(M). 

Property 4.3.2 If S is an FL sketch then for any sketch, T, and sketch morphism h : S -+ T 

we hâve a unique natural transformation, e : /5 -A h*(M), where Is : S -> SET is the initial 

model of S and M :T -+ SET is any model of T. 

Proof: IS:S - SET is initial in Mod(S) . D 

For FL sketches S and T and sketch morphism h : S -> T the construction in Mod(5) is 

shown in figure 4.1 

\ 
\ 

Figure 4.1: The category Mod(S) 

where Is : S — S E T is the initial raodel of 5, M : T - • SET is a model of T, and hm : 

Mod(T) -> Mod(5) is given by h : S - • T and property 4.3.1. The natural transformation 

e : / 5 A h*(M) is given by property 4.3.2. Our intention is to use Mod(5) to construct a 

model of language where /5 models language syntax, hm(M) models language semantics and 

e : Is -^ h*(M) models the évaluation of programs. 
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To construct this model of language with properties similar to Rus' model of language we 

need to establish: 

1. that Is can be used to model a language syntax. 

2. That h*(M) can model a language semantics and 

3. the conditions under which we can construct an arrow learn : h*(M) —• / 5 . 

We will leave 1 and 2 for the next chapter and concentrate hère on 3, the construction of 

learn. 

To discuss the conditions sufficient to allow the construction of learn we must first define 

what sort of object learn is. In order to impose as few conditions on S,T, and h : S —• T as 

possible we define learn as a transformation [Copp80]. 

Définition: Transformation. 

Let F : C - • V and G : C - • V be functors. A transformation t : F - • G is defined as any 

collection of arrows / c : F(c) -+ G(c) indexed by the objects, c, of C. D 

This définition is simply a much weaker form of the définition of natural transformation where 

the naturality condition has been completely removed. The composition of transformations 

we require is the horizontal composition given in [Copp80] and is defined below. 

Définition: Composition of transformations. 

Let F, G, H : C — V be functors and s : F — G, t : G — H be transformations. The 

composition of t and s is defined as the transformation t 0 s : F - • H given by the collection 

of arrows tcosc: F(c) -+ H (c) indexed by the nodes, c, of C. D 

If learn : hm(M) -+ /5 is a transformation then to construct and analogue of Rus' learning 

function we require that e o learn = 1&»(M)- TO ^ e a ^ e t o construct learn we require a 

relationship between S and T which is illustrated in figure 4.2 

In the situation where the arrow g e T is not the image in h of an arrow from S it must be 

the case that the arrow M(g) adds no new éléments to the set M(h(y)). Additionally we also 

require that the set M(h(y)) contains no éléments which are not constructed by some arrow 
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-^- y 

h(f) 
-=> 

T h(x) ^ h(y) 
g 

Figure 4.2: Generalised arrows in sketches S and T. 

M(p) where p is a path in 7\ i.e. we can ensure this by insisting the M : T -> SET is the 

initial model IT - T —• SET of T. 

When the sketches S and T hâve the relationship described above we will say that S is 

learnable from T. That is to say we can construct the sketch S by deleting parts of T without 

removing éléments from the sets constructed by models of T from objects of T which are 

common to both S and T. We can now describe the construction of the transformation 

learn : h*(Ij) —• Is-

Proposition 4.3.2 If S and T be an FL sketches and h : S -+T is a sketch morphism such 

that S is learnable from T. We can construct a transformation learn : hm(Ij) -+ Is where 

Is : S -> SET and IT -T -+ SET are the initial models of S and T respectively. 

The natural transformation e : Is + h*(Ij) given by property 4.3.1 defines an équivalence 

= s on the set Is(s) for each node s e S. 

Vx.y e Is(s) :x=sy& es(x) = e3(y) 

We can therefore construct a quotient set /5(5)=, where each élément [x] £ Is(s)=, is the 

class of terms t G /5(5) which are équivalent under = , . Since S is learnable from T there is an 

isomorphism between the sets /5(5)=, and h*(IT)(s) so to construct an arrow l5 : h*(IT)(s) -» 

Is(s), set ls(x) = y for each x G h*(IT)(s) where y is a member of the équivalence class, [y] 

such that es(y) = x. The arrows /5 form the transformation learn : h*(Ir) -+ / s - D 
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Obviously the arrows la are not unique as we can choose an arbitrary y from [y] but regardless 

of the choice of y we know, by construction, that e3 o ls = lh*(iT)(s) and therefore e o learn = 

l / i*( / r)-

We now hâve ail the components necessary to construct a categorical model of language with 

similar properties to the algebraic model of language discussed in chapter 3. 
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Chapter 5 

A Categorical Model of Language 

The categorical model of language described in this chapter is a development of the model 

discussed in [ReRa89], and is used to construct a category Mod(S) , where Sis an FL sketch 

describing the syntax of a programming language. The category, Mod(S), is generated by 

an FL sketch and, as a resuit, has properties similar to those of the category of E-algebras, 

C(S). The category of E-algebras is actually équivalent to the models of FP sketches, so by 

using the FL class of sketches (which includes ail FP sketches) we can increase the power 

of the model of language. The model of language described therefore has similar properties 

to Rus' algebraic model of language discussed in chapter 3 while having a greater expressive 

power. 

5.1 Using sketches to model language syntax 

To model the syntax of a programming language, C, we construct a sketch which describes 

the abstract syntax trees of C programs. To define the abstract syntax trees of C we will 

assume that the syntax of C is described by a context free grammar, CFG. 

Définition: Context Free Grammar. 

A context free grammar, CFG, is defined as a 4-tupie \N,T, P,S) where: 
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1. the set N, called the set of nonterminal symbols, is a set of names used to name the 

types of phrases of the language, L(CFG), described by the context free grammar. 

2. The set T, of terminal symbols, is the set of symbols which may appear in a sentence 

of the language, L. The set of strings of terminal symbols is denoted by T + . 

3. P, called the set of production rules, is a non-symmetric, non-transitive binary relation, 

P : N -*RHS, where RHS is the set of strings which can be constructed from the set 

NuT. 

4. The start symbol S G N is a distinguished nonterminal symbol such that: 

Vs G T + : s is a sentence in L & S —>+ s 

where —•+ is the transitive closure of P. 

The set, L(CFG) = {x : x G T + A S -++ x}, describes the language generated by the context 

free grammar, CFG. D 

Using this définition of context free grammar the abstract syntax trees generated by CFG are 

defined below. 

Définition: Abstract syntax tree. 

An abstract syntax tree is a labelled, ordered, rooted tree such that: 

Abs-1. if tis a string in T + and there is a production rule, p : N —> t, then t is an abstract 

syntax tree describing a phrase belonging to type N. 

Abs-2. Let p : N —• Co . . . cx, x > 0, be a production rule such that, c t , . . . , c*, . . . , Cj, 0 < 

i < k < j < x,is the séquence of nonterminals from the string co.. .cx . If 

ti is the abstract syntax tree of a phrase of type c,, 

tk is the abstract syntax tree of a phrase of type c&, and 

tj is the abstract syntax tree of a phrase of type Cj, 

an abstract syntax tree, t, rooted by p is constructed by setting U,..., tk,..., t:; in order 

as the children of node p. The abstract syntax tree, t, describes a phrase of type N. 
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Abs-3. Nothing else is an abstract syntax tree. D 

Theorem 5.1.1 shows that we can construct an FP sketch, S, which describes the abstract 

syntax trees of the language generated by the arbitrary context free grammar, CFG. 

Theorem 5.1.1 For every context free grammar, CFG, there is an FP sketch. S, such that 

each node, n, which is not the vertex of a cône, is mapped to the set phrases of type n G N of 

L(CFG) by the initial model, Is : S — SET, in Mod(S). 

Proof: The FP sketch, S, describing the abstract syntax trees of L(CFG) is constructed as: 

1. set S = (G,0, C,0) where G is the graph containing exactly one node, T, and no edges, 

and Cis the set of cônes containing just the cône over the empty diagram. e : T —• G. 

2. For each nonterminal symbol, n G N, add a node n to the set of nodes, Go-

3. For each production rule, p : n — t,t G T + add an edge, p : T —> n, to the set of edges, 

Gi. 

4. For each production rule, p : n — co . . .c x , where c t , . . . , c*, . . . , c:, 0 < i < k < j < x is 

the séquence of nonterminals from co .. . c r : 

(a) if i ^ j , add a node named. c, x . . . x c* x . . . x Cj, to Go-

(b) If i ^ j , add a cône pr : c t x . . . x c* x . . . x Cj —• D over the discrète diagram 

Ci . . . Ck . . . Cj 

to the set of cônes, C. 

(c) If i = j , add the edge p : c, —• n to G\. 

If i ^ j add the edge, p : c, x . . . x c* x . . . x Cj —• n to Gi. 

5. Nothing else belongs to S. 

We must now show that each set Is(n), n G Go, where n is not the vertex of a cône is the set 

of phrases of type n G AT of L(CFG). 
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From Abs-1 we know that each phrase of type n, t, which has no subtrees is generated by 

a rule of the form p : n —> t. Rules 1, 2, and 3 above ensure that the sketch, S, has an edge 

p : T —• n corresponding to each production rule p : n —• t. Since S contains no diagrams we 

know that the arrow Is(p) - / s (T) —> /s(n) uniquely identifies a term in Is(n), corresponding 

to the phrase, t. 

From rule Abs-2 we know that each phrase, t, with subtrees U,..., tk,..., t3 is constructed 

by a production rule p : n —> CQ...CX where c,-,.. . ,c* , . . ,,Cj, 0 < i < k < j < x are 

nonterminal symbols such that: U is a phrase belonging to type ct, tk is a phrase be-

longing to type c*, and tj is a phrase belonging to type Cj. Rule 2 ensures that the 

sketch, S, contains a node, n, while rules 4a, and 4b ensure that Is(ci,.. . , c* , . . .,Cj) 

is the product Is(ct) x . . . x Is(ck) x . . . x Is(cj)- By rule 4c we obtain an edge in G, 

p : a x . . . x Ck x ... x Cj —• n, corresponding to each production rule p : n -+ CQ . . .cx. Since, 

5, contains no diagrams the arrow Is(p) : Is(ci) x . . . x Is(ck) x . . . x Is(cj) -+ /s(^) con-

structs terms such that for each y = (U,...,tk,...,tj) G /5(^1) x . . . x Is(ck) x . . . x Is(cj), 

Is(p)(y) is uniquely identified as a term in Is(n) and has subterms, in order, / , - , . . . , ^ , . . . , tj. 

The term Is(p)(y) corresponds to the phrase, t. 

From rule 5 we know that each Is(n) contains no other terms. • 

The simple expression language in chapter 3 with syntax: 

(Exp) — 0 

(Exp) —• succ((Exp)) 

(Exp) — (Exp)+(Exp) 

has the abstract syntax trees shown. 

exp-treeso = {0} 

exp-treesn = {succ(x): x €exp-treeSn-i}\J 

{+(x,y): (x,y) eexp-treesn-iXexp-treesn-i} 

exp-trees = \Jexp-treesn. n G {0,1, . . .} 
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The sketch, Exp, which describes this set of abstract syntax trees has 3 nodes, T, exp, and, 

exp x exp. and 5 edges: 

0 

suce 

pr\ 

pr2 

+ 

T—• exp 

exp —* exp 

exp x exp —• exp 

exp x exp -» exp 

exp x exp —• exp 

The edge, 0 : T -* exp arises from the production rule (Exp) —• 0, because of rule 3. The 

production rules (Exp) -» succ((£xp)). and (Exp) —• (Exp)+(Exp), together with rule 4 

force the existence of the edges suce : exp —» exp and + : exp x exp —* exp respectively. The 

edges pri : exp x exp —• exp and pr2 : exp x exp —• exp arise solely because of rule 4b, as they 

are the projection edges of a cône. 

There are just 2 cônes: 

the cône over the empty diagram, and 

exp x exp 

which is forced to exist by rules 4a and 4b and, when modelled in SET, forces M(exp x exp) 

to be the product M(exp) x M(exp). The sketch is represented pictorially below. 

succ\ 
•exp — 

prx 

+ •exp x exp 

pr2 
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The sketch, Exp contains only one node which is not the vertex of a cône, namely exp. Using 

rules for constructing the term model, Ï£zv : Exp — SET, of Exp given in section 4.2.2 we 

obtain the set, ÏExP(exp), shown below. 

IExp(exp)o = {W°)(0)} 
lExp(exp)n = {IEXP(SUCC)(X) : x € lExP(exp)n-i}U 

{lExP(pri)(x) : x £ lExp{exp)n-i}\J 

{lExp{pr2){x) •• x € lExP(exp)n-i}U 

{lExP(+)(Xny) : (x,y) € lExP(exp)n-i x lExP(exp)n-i} 

lExP(exp) = \JlExP{exp)n, n € {0 ,1 , . . . } 

The sketch contains no diagrams and so lExp{0)jExp(succ),IExp{+) uniquely construct terms 

in IExp(exp). The arrows Isxpipri) and Isxpipri) are forced to be the coordinate projections 

of the product lExp(e*P x exp) and as a conséquence do not construct terms in /£x p(eip). 

The description of iExp(exp) can therefore be simplifled to: 

lExp(exp)0 = {0} 

lExp(exp)n = {succ(a:):z G/£xP(earp)n-i}U 

{+(x,y): (x,y) € lExp(exp)n-i x lExP(exp)n-i} 

lExP(exp) = {JlExp(exp)n, n € {0 ,1 , . . . } 

and so lExp(exp) S cxp-trees. 

In section 5.4 we will show that by using FL rather than FP sketches to model language 

syntax we can simplify the process of language spécification by capturing the static semantics 

of a programming language within the spécification of the syntax. 
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5.2 Using sketches to model language semantics 

In this section we show how a sketch can be used to construct the semantics of a programming 

language. To describe the senantics of a programming language we must actually describe 

the computational uni verse in which the language exists. To describe this uni verse we simply 

view it as a complex abstract data type and construct an FL sketch, Sem, which has this 

datatype as its initial model. 

The semantics of the simple expression language is given by an FP sketch, Nat, which describes 

the natural numbers with an addition opération. This sketch has nodes, T, nat, and natxnat, 

and edges: 

There are two cônes: 

and 

0 

dispose 

suce 

pr\ 

pr2 

+ 

idnat 

(ï.idnat) 

SUCC X idnat 

: T— nat 

: nat -• T 

: nat —• nat 

: nat x nat —> nat 

: nat x nat —• nat 

: nat x nat -+ nat 

: nat —• nat 

: nat —> nat 

: nat —• nat x nat 

: nat x nat —• nat x nat. 

nat x nat 

nat 
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Thèse cônes force the objects, M(T), and M (nat x nat) to be the sets, {0}, and M (nat) x 

M(nat) respectively. The graph of the sketch is shown below. 

(z, idnat) 

suce 

dispose 
idnai 

s + —nat* 

[3 a 

-nat x nat 
SUCC X idnat 

We require six diagrams to complète the spécification of the semantics. 

nat nat 

dispose idnat 

nat 

(b) 

From diagram (a) we obtain the équation 

M(z) = M (0) o M (dispose) 

For the initial model of Nat, I^at : Nat —• SET, this équation forces //Vot(^) to be the func

tion, x -+ lNat(0)(lNat(T)), i.e. x -* 0. Diagram (6) forces lNat(idnat) to be the function 

1 /Nat(noO' 

nat 

(2, idnat) 

pri nat x nat — — nat 

(c) 
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The équations: 

M(pri)oM((z,idnat)) = M(z) 

M(pr2) o M((z, idnat)) = M(idnat) 

are obtained from diagram (c). Together, thèse équations force lNat((z, idnat)) to be the 

function: x -+ (lNat(z)(x),INat(idnat)(x)). 

PT\ PT2 
nat -* nat x nat -nat 

suce 

nat-

SUCC X idnat 

pri 
nat x nat • 

id< nat 

pT2 
•nat 

(d) 

From diagram (d) we obtain the équations: 

M(pri) o M (suce x idnat) = M (suce) o M(pri) 

M(pr2) o M(succ x idnat) = M(idnat) o M(pr2) 

so lNat(succ x idnat) is the function, (x,y) -> (lNat(succ)(x), lNat(idnat)(y)). 

A (*,idnat) . 
nat •- nat 

nat 

nat x nat 

+ SUCC X idnat 

nat x nat • 

-nat 

suce 

nat 

(e) ( / ) 

The final two diagrams (e), and (/) provide the équations: 
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M( + )oM((z,idnat)) = M(idnat) 

Àf(+) o M(succ x idnat) = M(succ) o M(+) 

which force Ixat(+) to be addition on natural numbers. The sketch, Nat, is discussed in 

greater détail in [BaWe90], chapter 7, and Ijsjat describes the semantics of the simple expres

sion language of natural numbers and addition. In section 5.3 below we show how to combine 

the sketches Exp and Nat to produce a complète description of this language. 

5.3 A categorical model of language 

5.3.1 A categorical spécification of language 

Recall that Rus' algebraic model of language spécifies a language as a triple 

(Sem, Syn, learn : Sem —• Syn) 

where Syn is the initial algebra over signature E and Sem is a similar algebra. The 

function learn : Sem —• Syn is defined on the carrier sets of Sem and Syn such that, if 

eval : Syn —• Sem is an homomorphism given by the initiality of Syn then evalolearn = l 5 e m . 

To construct a categorical model of language with properties similar to Rus' algebraic model 

we specify it as a 4-tuple 

(Sem, Syn, E : Syn - • Sem, learn : E*(Msem) - • Isyn) 

where Sem and Syn are FL sketches, and E : Syn —• Sem is a sketch morphism such that Syn 

is learnable from Sem. The transformation learn : E*(Isem)(Sem) —• Isyn(Syn) is constructed 

by following the procédure given in the proof of proposition 4.3.2 and is described in greater 

détail below. 

By theorem 5.1.1 we know that for every context free grammar, CFG, we can construct an 

FL sketch (actually an FP sketch but the extra power of FL sketches can be used to describe 

the static semantics) whose initial model in SET describes the abstract syntax trees of the 
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language, L(CFG). The sketch, Syn, is just such a sketch and we take its initial model in 

SET, Isyn • Syn -• SET to be the abstract syntax of the language, L(CFG). 

The semantics of L(CFG) is specified by the sketch, Sem. but we do not regard the 

initial model, Isem • Sem —> SET, as the semantics because there is no obvious way to 

describe the évaluation of programs if Isem is the semantics. To construct the seman

tics of L(CFG) we use property 4.3.1. The sketch morphism E : Syn —• Sem in

duces a functor E* : Mod(Sem) —• Mod(Syn), and so by proposition 4.3.1 the model 

E*(Istm) • Syn -+ S E T e Mod(Syn) spécifies a datatype which is équivalent to Isem with 

hidden sorts. We use the model Em(IsCm) € Mod(Syn) as the semantics of L(CFG). 

The évaluation function, eval : ISyn -^ E*(Isem), is the natural transformation which is 

known to exist because of property 4.3.2. 

To complète the spécification of L(CFG) we specify learn : E*(Isem) -> Isyn as a transfor

mation such that, eval o learn = l£*(/Sem), w ^ e r e ° *s composition of transformations. Since 

Syn, Sem, and E : Syn — Sem are such that Syn is learnable from Sem proposition 4.3.2 

guarantees the existence of learn. The 4-tuple 

(Sem,Syn, E : Syn —• Sem, learn : Em(Isem) —• Isyn) 

therefore completely spécifies the syntax, semantics and syntax *•* semantics association of 

the language, L(CFG). 

5.3.2 The language of natural numbers and addition 

We hâve already constructed sketches, Exp, and Nat, which we will use to specify the syn

tax and semantics of the simple expression language from section 3.1.5. To complète the 

spécification we must: 

1. construct a sketch morphism E : Syn -+ Sem such that Exp is learnable from Nat. 

2. Construct the transformation learn : E*(Isat) - 4 lExp-
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The construction of E : Syn —• Sem follows a fairly simple procédure. We simply map 

éléments from the syntax (the sketch Exp) to the corresponding éléments from the semantics 

(the sketch Nat) which we wish to use to express the meanings of the syntactic objects. In 

this way we can construct E : Syn —> Sem as: 

E(T) 

E(exp) 

E(exp x exp) 

= T 

= nat 

= nat x nat 

E(0 : T — exp) 

E(succ : exp —• exp) 

E(pri : exp x exp —> exp) 

E(pr2 : exp x exp -+ exp) 

E(+ : exp x exp —• exp) 

0 : T -* nat 

suce : nat -* nat 

pri : nat x nat —• nat 

pr2 : nat x nat —* nat 

+ : nat x nat —• nat. 

This leaves us with the following edges of Nat which are not the images in E of edges of Exp. 

dispose 

z 

idnat 

(Z, idnat) 

SUCC X idnat 

nat-* T 

nat —* nat 

nat —• nat 

nat —• nat x nat 

nat x nat —* nat x nat 

To show that Exp is learnable from Nat we need to show that none of thèse arrows construct 

éléments of the sets /Not(T), iNat(^at), or lNat(^at x nat). 

We know that except for dispose : nat —* T, the model I^at maps each of the above edges to 

functions which are defined in terms of /;vot(0), iNat(succ), and l/Nat(naQ- ^ s a resuit none 

of thèse functions produce éléments of /^at(T), iNat(nat), or Itfat(nat x nat) which are not 

constructed by some combination of lsat(0) and Isat(succ). Since we also know that //Vat(T) 

is terminal we know that I^at(dispose) : iNat(nat) —> -̂ Not(T) can only be the function x —• 0 

so it cannot construct éléments either. We therefore know that Exp is learnable from Nat. 

We must now construct the transformation learn : Em(Ijsrat) -* lExp-
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The component arrows of learn are constructed so that they are right inverses of the eval 

natural transformation. Obviously to specify learn we must first calculate eval. 

The eval natural transformation 

From property 4.3.2 we know that eval is the unique natural transformation eval : IEXP - • 

Em(ljvat) given by the initiality of IEXP- We therefore know that the diagrams below commute. 

WT)" 

evalrç 

hrP(0) 
- lExp(exp) 

eval, exp 

E*(lNat)(T) 
E"(lsat)(0) 

E*(INat)(exp) 

(a) 

From the définitions of IEXP and Iffat we know that IEXP(T) = £*(/)vat)(T) = {0} and so 

evalf = 1{0} 

From diagram (a) we obtain the équation 

evalexp o IEXP(0 < = E*(lNat)(0) o eval?. 

We know from the définitions of IEXP, and Isat that IEXP(0)(9) = 0 where 0 is a syntactic 

term, and E*(lriat)(0)(to) - 0, i.e. the number 0, so from the équation above we obtain 

evalexp o IET7(0) = (0 •-» 0) o 1 { 0 } 

eval^ o (0 — 0) = 0 -* 0. 

From this final équation we can partially define evalexp as: eva/eip(0) = 0. 
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IEXP(MCC) 
iExp(exp) * ÏExpiexp) 

eval, exp eval exp 

E*(INat)(exp) — 
E*(INat)(sUCC) 

Em(INat)(exp) 

(b) 

From diagram (b) we obtain 

eval^ o IEXP(SUCC) = Em(I^at)(succ) o evalexp 

By the définitions of IEXP and ^Nat we know that IEXP(SUCC), and Em(lNat)(succ) are respec

tively the functions x —• s u c c ( x ) and x —• z + 1. From this we obtain: 

evaltxpo(x - • s u c c ( x ) ) = (x — x + l ) o eval^p 

which allows us to partially define evalexp as: ei?a/e x p(succ(x)) = evalexp(x) + 1. 

r , x IExP(pri) 
lExP(exp x exp) - lExp(exp) 

eval exp x exp eval 
exp 

E'(INat)(exp x exp) — * E'(INat)(exp) 
E (lNat)(pri) 

(c) 

The commutativity of diagram (c) gives us the équation: 

eval^p o iExp(pri) = Em(lNat)(pr\) o evalcxpxexP 
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while commutativity of diagram (d) gives us: 

evalexp o IEXP(P^2) = E*(Itfat)(pr2) ° evalexpxexP. 

w „, x el?) W£!î> . W M F ) 

eva/, exp x exp eval exp 

Em(Isat)(exp x exp) 
E'(lNat)(pr2) 

- Em(INat)(exp) 

(d) 

Since lExP{pr\) and IEXP(P^2) are the co-ordinate projections for iExp(exp) x iExp(exp) and 

Em(Ixat)(pri) and Em(Isat)(pT2) are the co-ordinate projections for iNat(nat) x iNat(nat), 

diagrams (c) and (d) define evalexpxtaep: evaltxpxexP(z,y) = ( e v a W x ) > e v a W î O ) -

lExP(exp x exp)-

evalexpxexp 

W+) 
- /£xp(e*p) 

eva/. exp 

E"(lNat)(exp x exp) — 
£•(/*.«)(+) 

E'(Isat){exp) 

(e) 

This final diagram adds one last équation which allows us to complète the définition of evalexp-

evalexp o J E * P ( + ) = Em(INat)(+) o evalexpxexp-

From the définition of J ^ p we know that IEXP(+) is the function (x, y) -* +(x ,y ) which con

s t r u i s syntactic expressions involving the plus operator from pairs of expressions. Similarly 
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we know from I^at that E*(Iwat)(+) is addition on natural numbers. Using diagram (e) we 

can dérive the équation 

evalexp(+(x>y)) = evalexp(x) + evalcxp(y). 

By collecting the various parts of the définition of the eval natural transformation together 

we construct the following: 

evalf = 0 i—• 0 

evalexp = / where / (0) = 0 

/ ( succ(x) ) = / (x ) + l 

/ (•<*, y » = f(x) + f(y) 

evalexpxexp = (x, y) — (evalexp( x), evalcxp(y)) 

Having calculated the eval natural transformation we can now specify learn : Em(Isat) -* lExp 

so that 

Vn € Exp : evaln o learnn = l£'(/Nût)n-

The components of learn : Eu(Iwat) —* ^Exp are specified as: 

learnj^ = 0 i—• 0 

learnexp = l where 1(0) = 0 

/ ( x + 1 ) = succ(/(x)) 

learneXpxexp = (*, y) - • (/earncxp(x), learnexp(y)). 

The language of natural numbers and addition is therefore completely specified by the 4-tuple: 

(Nat, Exp, E, learn) 
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where Nat is the sketch from section 5.2, Exp is the FP sketch given in section 5.1, E : Syn — 

Sem and learn : E*(Ijvat) -> lExp are, respectively, the sketch morphism and transformation 

shown above. 

In the remainder of this chapter we discuss some of the implications the sketch based model 

of language has for the way in which we specify certain language features while in chapter 6 

we will discuss the process by which we arrive at a self-interpreter for the arbitrary language 

C specified using this model. 

5.4 Describing language features using the model 

The categorical model of language described above allows the language spécifier to use limits 

which are not simple products in a language spécification. The use of such constructs can 

drastically simplify the spécification of certain types of language construct. 

In [KoQu92] Kortas and Quatrain use the categorical model of language described above to 

specify a subset of the pascal programming language. The spécification that they provide is 

interesting because it uses thèse features to construct a spécification which is both clear and 

less complex than can be achieved using conventional methods. 

In this section we show how the model of language can be used to construct a spécification 

of the type scheme for a simple FP [Back78] like language. 

The spécification that we construct demonstrates some of the extra power which is available 

within the categorical model of language, and shows that while the model has a great deal in 

common with Rus' algebraic model it is significantly more powerful. 

5.4.1 A simple type scheme 

The language we describe hère constructs programs as the composition of functions. The 

language has two basic types: nurn and char and two basic opérations: 

1. ord which returns the ordinal number of a given character. 
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2. chr which will return the character with the ordinal number of its argument. 

We also hâve one structured type constructor, list, which allows us to construct lists of any 

depth. The function map takes a function f of type 

f : * —> ** 

and constructs a function of type 

map f : * list —• ** list. 

Functions are composed using the o operator. This operator is a partial operator since the 

composition f o g is only defined if the source type of the function f is equal to the target 

type of the function g. 

We can describe this aspect of the semantics of our language using a very simple sketch whose 

graph contains only 4 nodes: T, exp, type, and exp x exp. we require 12 edges: 

ord 

chr 

map 

o 

num 

char 

list 

src 

trg 

pri 

pr2 

pr3 

T -• exp 

T -* exp 

exp —• exp 

exp x exp -» exp 

T — type 

T — type 

type -+ type 

exp —• type 

exp —• type 

exp x exp —• exp 

exp x exp -H- type 

exp x exp -» exp 

to produce the graph shown pictorially as: 
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Pn 

P?3 

• exp x exp 

pr2 

We require four diagrams to describe the src arrow: 

src src 

type 

(a) (b) 

which give us the équations: 

M (src) o M (ord) = M (char) 

M(src) o M(chr) = M(num) 

In other words the source type of the function ord is char and the source type of the function 

chr is num. From diagram (c) 
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src 

map 
exp x exp 

src pr$ 

exp src 

exp 

src 

type 

(c) (d) 

we obtain the équation: 

M(src) o M(map) = M(list) o M(src). 

This tells us that the source type of the expression map f is * list where * is the source type 

of f, while diagram (d) gives us the équation: 

M(src) o M(o) = M(src) o M(pr^) 

which states that the source of the composition f o g is equal to the source of g. Four similar 

diagrams are needed to describe trg. 

We now hâve only the partial nature of the o operator left to describe. This is done using the 

cônes. There are two cônes. Firstly the cône over the empty diagram 

and secondly the cône 

exp x exp 

exp exp 

When this cône is modelled we obtain an équation 
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M(src) o M(pri) = M(pr2) = M(trg) o M(pr3) 

and the cône becomes a new kind of limit known as a pullback. In SET the vertex of this 

cône is a restricted form of product containing only those pairs which conform to certain 

properties. In this case the restricting property is given by the commutativity of the cône so 

we know that the set M (exp x exp) is 

{(x, y) : (x, y) £ M(exp) x M(exp) A M(src)(x) = M(trg)(y)}. 

This allows us to specify o as a total operator since the only members of the set M (exp x exp) 

are those pairs of functions whose types make them composable. 

Contrast this with a spécification given using FP sketches or using Rus' algebraic model. In 

the case of an FP sketch the node exp x exp would be defined by the cône 

exp x exp 

exp exp 

and so M (exp x exp) would contain very many pairs of non-composable functions. We would 

need to add several diagrams to the sketch to describe the behaviour of o when applied to 

thèse pairs, which would need to be mapped to a new expression value type-error. We 

would then need to add a new arrow type-error: T -* exp and several more diagrams to 

describe the behaviour of src, trg, and map applied to this value. We would also need to add 

another arrow error-type: T —• type so that we could define the source and target type of 

the expression type-error. The resuit is a sketch (or an algebraic spécification) which is 

drastically more complicated than the one given above and in which the simplicity of the 

type scheme we are trying to specify is consequently obscured. The inclusion of a cône which 

is modelled as a pullback allows us simply to ignore incorrectly typed programs because our 

syntax cannot contain them. 

70 



5.4.2 The semantics 

The simple language described hère is a higher order language which présents us with some-

thing of a problem since we cannot use any type of sketch directly to describe a higher 

order construct. We can, however, still describe the semantics of our language indirectly by 

describing the effect of applying programs to data objects. 

To explain: we construct a node, data, whose model Isem(data) contains ail well formed (i.e. 

type correct) data objects which can be processed in our language. We also define an edge 

typ : data — type 

with appropriate diagrams so that the function Iscm(typ) returns the type of any élément of 

Isem(data) to which it is applied. 

Using the data node and the typ : data —•> type edge we can construct the cône 

exp x data 

exP — 1 Ï T ^ 'w* ~tjiï— data 

whose vertex Isem(exp x data) contains ail pairs of programs and the data objects to which 

they can be applied. 

If we now add an edge 

run : exp x data —• data 

we can construct diagrams which describe the effect of applying programs to data objects and 

thus describe the semantics of the language. The resulting sketch is, however, rather complex 

and there is little to be gained by showing it hère. 
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Chapter 6 

A Categorical Approach to a 

Self-interpreter 

So far we hâve constructed a model of language based on FL sketches which while it has 

many properties in common with Rus' algebraic model of language is, as we demonstrated 

in section 5.4, significantly more powerful. In this chapter we use the properties which our 

sketch based model of language shares with Rus' model to construct a self-interpreter. 

6.1 Construction of the self-interpreter 

It was shown in section 3.2 that using Rus' algebraic model of language, the function computed 

by the interpréter for the programming language 

C = (Syn(B, W(X, E)), Sem(B, A), learn : Sem(B, A) - Syn(B, W(X, E))) 

is defined as 

interpréter = learn o eval. 

This is also true for the categorical model of language. 
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Proposition 6.1.1 If C is specified using sketches 

C = (Sem, Syn, E : Syn -• Sem, learn : E*(Isem) -* hyn) 

the interpréter function is described as 

interpréter = learn o eval. 

Proof: Since Sem, Syn, and E : Syn —• Sem are such that Syn is learnable from Sem we 

know that for each object S G Syn there is a quotient set Isyn(S)=s defined by eval s and that 

Isyn(S)=s = Em(Isem)(S). From the construction of learns we know that for each meaning 

m e E*(Isem)(S), m 2 [x], where evals(x) = m, learns(m) 6 [x] is the preferred syntactic 

représentation of m. The function interpréter = learn o eval therefore maps programs to their 

preferred syntactic form (whilst preserving their meaning) and is an C interpréter. • 

Proposition 6.1.1 is an exact analogue of proposition 3.2.1 stated in section 3.2. We also 

obtain an analogue of theorem 3.2.1 shown below 

Theorem 6.1.1 For each edge, f :a -+ b, from the graph of the sketch Syn, the function, 

Ff:a^b : ISyn(a) -> ISyn(b) 

in SET, defined as 

Fj:a-+b = interpréter o hyn(f) 

has the same behaviour on syntactic objects as Em(Isem)(f) '• Em(Isem)(a>) -> Em(Isem)(b) has 

on semantic objects. 

Proof: Fj:a-*b is defined as: 

Ff-.a-*b = interpréter o ISyn (f) 

= learnb o evah o hyn(f) 

= learnb o E*(Isem ) ( / ) ° evala 
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This theorem can in fact be generalised to include ail arrows g : E(a) -• E(b) from the graph 

of Sem where E : Syn —• Sem is the sketch morphism, given in the language spécification, 

and defines Em. 

F9:E(a)^E(b) = l^arnb ° Em(IScm)(g) o evala 

This généralisation allows us to construct arrows which correspond to the hidden opérations 

defined on the objects of E*(IScm)(Syn). ° 

In the example language given in chapter 5 the interpréter function for the language: 

C = (Nat, Exp,E: Exp — Nat, learn : Em(INat) -> IErp) 

is therefore specified as: 

interpréter^ = learn^ o eval^ 

= 0.-0 

interpréterexp = learneXp ° evalexp 

= / where f(0) = 0 

/ ( succ(x)) = succ(/(x) 

f(+(x>y)) = ir+:expxcxp-cxp(^?î/) 

interpréterexpXexP = lea>rnexpxexp ° evalexpxexp 

= learneXpxexp ° (*> y) -+ (et>aJexp(s), evaleXp(y)) 

= (x, y) — ((/ear7icxp o eva/^pXx), (learnexp o evalexp)(y)) 

= (*, y) — (mterpreter^x), interpréterexp(y)) 

The function, F+:cxpxc*p-e*p : /syn(exp) x Jsyn(exp) — /syn(esp), used in the définition of 

interpréter exp above is given by theorem 6.1.1 and is defined exactly as in figure 3.1. 

F+:expxexp-*exp = k<*™exp ° + ° evaleXpxexp 

F+:expXcxp—*exp(Qiy) = S 

ir+:cxpXcxp-cxp(sUCC(x),î/) = SUCC(ir
+:Cxpxcxp^cxp(^i î /)) 
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As with the algebraic description of a self-interpreter in section 3.2 the components of the 

interpréter function above lie outside the semantics of the language C. The remainder of this 

chapter deals with the process by which the interpréter transformation is converted into an 

C program. 

6.2 Moving into the semantics 

The first step in the process of converting interpréter into an C program is to construct a 

datatype which exists within the semantics of C and is capable of representing the abstract 

syntax trees of C programs. Although the construction of this représentation is not addressed 

in this thesis we still need to provide a définition of such a représentation since we require 

certain properties for the construction of the self-interpreter. 

Définition: A représentation of syntax. 

Given a language spécification 

C = (Sem, Syn, E : Syn — Syn, learn : E*(Isem) -* Isyn) 

a représentation of the syntax of C is defined as a pair of transformations 

encode : ISyn - • E*(IStm) 

décode : Em(Istm) -+ hyn 

such that décode o encode = l/5yn . D 

Each object, Isyn(t), of the syntax must be taken to an object, rept, of the semantics. The 

objects reps and rept need not be distinct if they represent différent objects from the syntax. 

The only restriction required is that where a semantics object represents more than one syntax 

object the représentations form disjoint subsets. In this way the syntax of C is represented 

in the semantics of £ with no loss of information. The choice of thèse arrows is dépendent on 

the exact représentation chosen for the syntax of £ and is outside the scope of this discussion. 

An example représentation may be found in appendix A.4. 
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Once the représentation of the syntax has been constructed the interpréter function can be 

moved within the semantics of £ by composing it with the encode and décode transformations. 

rep-interpréter = encode o interpréter o décode 

For each function Fj:a-+b ' Isyn(a) —> Isyn(b) we can also construct the function repJFf:a-+b 

by composition with encode and décode. 

rep J7/^—6 = encode^ o Fj:a-+b ° decodea 

We can now formalise a notion of a language with sufficient power to express its self interpréter. 

The language £ is powerful enough to express its self-interpreter if the following holds: 

V* G GsynO ' rep-interpréter t 6 E*(Isem)(Syn). 

Less formally, the language £ can express its self-interpreter if its semantics contains the 

arrow rep-interpréter t for every node, t, from the graph of Syn. 

We should note that rep-interpréter is defined in terms of the rep-Ff:a-*b functions so if the 

semantics of £ contains the arrows rep-interpréter t for each node t it will also contain the 

arrow rep-F/:a—b for every arrow / : a -> b of Syn. 

The predicate above is really too abstract to tell us much about the nature of the language £ 

because it does not relate to any language features. We would, however, expect £ to provide 

methods of constructing: 

Binary trees: Which are necessary to represent £ programs as data objects. 

Conditional: We require some form of conditional in order to be able to sélect the correct 

code segments to simulate a particular syntactic construct in an £ program. 

Recursive functions: Thèse are necessary to enable us to form the code segments necessary 

to simulate the behaviour of the syntactic constructs of the language £. 
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Thèse requirements may be met directly by £, as is the case for the Toy language defined in 

appendix A, or indirectly as would be the case if £ were, say, an assembler language. In this 

second case £ does not provide either binary trees or recursive functions but is sufficiently 

powerful to be used to construct implementations of both. 

6.3 The self-interpreter 

For a suitable language, £ = (Sem, Syn,E : Syn -> Sem, learn : Em(Isem) —• Isyn), the cate

gory Em(Isem)(Syn) contains the arrows, {rep-interprétert : t £ Gsemo}, which are the func

tions the £ self-interpreter, C-self-int, computes. To complète the construction of C-self-int 

we must convert thèse functions into an £ program. 

To perform this conversion we require an algorithm which générâtes an £ program, C-self-

int, such that eval(C-self-int) = rep -interpréter 9, where s is the node of Syn which dénotes 

complète £ programs. Provided we make the, not unreasonable, assumption that the notation 

used to represent the rep -interpréter function has a fixed syntax and semantics, this algorithm 

is, in fact, a parameterised compiler. The extra pièces of information which we must supply 

as parameters of the compiler are: 

1. the syntactic construct which £ uses to define functions. 

2. The £ syntactic construct corresponding to a function call. 

3. The form of conditional used by £. 

Thèse parameters are required because the rep-interpréter function is structured as a set of 

functions which perform re-writes of the encoding of the syntax of £. We therefore need to 

be able to: 

1. define functions in C-self-int which perform thèse re-writes. 

2. Generate calls of thèse re-writing functions. 

3. Generate conditionals to décide which re-writing function to call in a given situation. 



In appendix A we define Toy, a simple, typeless, first order functional language. Functions in 

Toy can only be defined at the top level and hâve one implicit argument, named arg in the 

body of the function. The only data objects in Toy are natural numbers and binary trees. 

We can test natural numbers for equality using the = operator and construct and destruct 

binary trees using the (.,_) and f s t , snd operators respectively. 

The function which our Toy self-interpreter computes is shown in appendix A.5.2. Below we 

outline the final stage of the construction of the self-interpreter. Note that for the sake of 

clarity we hâve used arabic mimerais and meaningful identifiers rather than the Toy syntactic 

constructs. 

The node of the sketch ToySyn which corresponds to complète Toy programs is named prg. 

We can use this information to index the component of repJnt corresponding to the top level 

of the self-interpreter. 

rep.intVTg = (10 , (9 , (e ,d) ) ) - rep-Fwhm:expxdecs^prg(e,d) 

This allows us to construct the top level of the self-interpreter as a call to the function *where. 

•where(arg) where 

We now use the définition given by theorem 6.1.1 of rep-F whtTt.txpxdtC5_prg shown below 

rep-Fwkere:tx?xdecs_prg(e,d) = (10 AS Arep-F apply:expxdecs^tTp(x, y) 9 (3 9(090))))) 

to add the définition of *where to the self-interpreter. 

•where(arg) where *where * (10 , (9 , (*apply(arg) , (3 , (0 ,0 ) ) ) ) ; 

Since rep-F^ereicxpxdecs-*prg is defined in terms of rep-Favpiv.txpxdecs-^prg, we must use its 

définition 
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rep-Fapply:txpxdecs^exp(^^090)).d) = ( 4 , ( 0 , 0 ) ) 

n e p . F a p p / y : c X p X r f c c J ^ c x p ( ( 4 , ( 0 , l ) ) , d ) = ( 4 , ( 0 . 1 ) ) 

reP-Fapply:expxdec3-+exp(U>(l>rihd) = ( 4 . ( 1 , II)) 

™P-Fapply.expxdecs^exp( ( 4 , ( 2 , e ) ) , d) = rep-Ffst:txV-+tTV{reP-F}apply'.expxdecs-.exp(ei d)) 

reP-Fapply:expxdec3-+exp((4>(3 »€^ ^) = ™P-F snd:txp_exp(rep -Fapply:expxdec3-+exp(€i d)) 

reP-Fapply:expxdec3-+exp( ( 4 , ( 4 , ( 5 , (x , y ) ) ) ) , d) 

= (4 , (4, (rep-Fapply:expxdecs^cxp(x, d), rep-Fapply,expxdecs^txp(y, d)) ) ) 

™P-Fapply:expxdecs-*exp{ ( 4 , ( 5 , ( 5 , ( x , y ) ) ) ) , d) 

= ^P^=:expxexp^tJn>(^P^apply:expxdec3^exp(x^d),repJp
app^^^ 

rep-Fapply:txpxdecs^exp(C4» (6> ( 6 , ( x , ( y , z ) ) ) ) ) , d ) 

= rep-t apply:expxdec3—*exp\reP-* if:expXeTpXcxp-+cTp\reP-*i apply:expxdecs->exp\xf ")» !/> 2j ,aJ 

reP-Fapply:expxdecs^exp( ( 4 , (7 , ( t , e) ) ) , d) 

= repJrapp/y:CxpX(fCC5->Cxp(^ 

where tody = rep-Ffetch:idenixdecs^txp(i, d) 

to construct the définition of *apply which we then add to the self-interpreter. 

•apply = if fst(fst(arg)) = 4 then 

if fs t (snd(fs t(arg))) = 0 then fst(arg) 

else if fs t (snd(fst(arg))) - 1 then fst(arg) 

else if fst(snd(fst(arg))) = 2 then 

•fst(•apply((snd(fst(arg)),snd(arg))) 

else if fst(snd(fst(arg))) • 3 then 

*snd(*apply((snd(fst(arg)),snd(arg))) 

else if fst(snd(fst(arg))) * 4 then 

(4,(4,(*apply((fst(snd(snd(snd(fst(arg))))),snd(arg))), 

•apply((snd(snd(snd(snd(fst(arg))))),snd(arg) ) ) ) ) ) 

else if fst(snd(fst(arg))) = 5 then 

*=(*apply((fst(snd(snd(snd(fst(arg))))).snd(arg))), 

*apply((snd(snd(snd(snd(fst(arg))))).snd(arg)))) 

else if fst(snd(fst(arg))) = 6 then 

•apply ( (*if ( (•apply ( (f st (snd(snd(snd(f st (arg) ) ) ) ) , snd(arg) ) ) , 

(fst(snd(snd(snd(snd(fst(arg)))))), 
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snd(snd(snd(snd(snd(fst (arg) ) ) ) ) ) ) ) ) , 

snd(arg))) 

e l se if f s t ( s n d ( f s t ( a r g ) ) ) = 7 then 

•apply((+replace((+fetch(fst (snd(snd(fst (arg)) ) ) ) , snd(arg)) ) , 

•apply((snd(snd(snd(fst(arg))) ) ,snd(arg)))) ) 

e l se error 

e l se error; 

Each clause of the définition of rep-Fapply,txpxdecs-+exp a d d s a conditional branch to +apply 

and to complète the définition of this function we must construct implementations of the 

functions: rep-Fjst:exp-+exp, rep-Fsnd:txv^txv, rep-F=:crpXcrp—crp, rep-Fif-.cxpxexpxcxp^cxp, 

rep-Frotact^xcrp-cxp, reP-Ffetch:idcntxdCcs-.cxp- Thèse functions implement the language 

opérations: fst, snd, = , if, and call, where call is actually implemented using apply, replace, 

and fetch. 

rep-Ff3t:exp_exp(x) = ( 4 , ( 0 , 1 ) ) , x = ( 4 , (0 ,1 ) ) 

= x, x = ( 4 , ( l , y ) ) 

= a, x = ( 4 , ( 4 , ( 5 , ( a , 6 ) ) ) ) 

= ( 4 , ( 2 , x ) ) , otherwise 

This function gives us the définition of +f st. 

• f s t = i f fst(arg) « 4 then 

i f fst(snd(arg)) = 0 then 

if snd(snd(arg)) = 1 then (4,(0,1)) 

else error 

else if fst(snd(arg)) = 1 then arg 

else if fst(snd(arg)) * 4 then fst(snd(snd(snd(arg)))) 

else (4,(2,arg)) 

else (4,(2,arg)); 
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rep-Fênd:exp^exp(x) = ( 4 , ( 0 , 1 ) ) , x = ( 4 , ( 0 , 1 ) ) 

= x, x = ( 4 , ( 1 , y ) ) 

= 6, x = ( 4 , ( 4 , ( 5 , ( a , 6 ) ) ) ) 

= ( 4 , ( 3 , x ) ) , otherwise 

The function TepJFsnd:exp_^txp provides the implementation of •snd shown. 

•snd = if f s t ( a r g ) = 4 then 

if f s t ( s n d ( a r g ) ) * 0 then 

if snd(snd(arg)) = 1 then (4 , (0 ,1 ) ) 

e l s e e r r o r 

e l s e if f s t ( snd (a rg ) ) = 1 then arg 

e l se if f s t ( snd (a rg ) ) = 4 then snd(snd(snd(snd(arg))) ) 

e l se ( 4 , ( 3 , a r g ) ) 

e l se ( 4 , ( 3 , a r g ) ) ; 

The function repJ r
= : c r j , x c r p_ e r ? ) is defined as 

reP-^=:«pxerp-Crp (*>!/) 

= (4,( l , rep.e 9 t ia / (a ,6))) , x = ( 4 , ( 1 , a ) ) A y = ( 4 , ( 1 , 6 ) ) 

= ( 4 , ( 0 , 1 ) ) , x = ( 4 , ( 4 , a ) ) V y = ( 4 , ( 4 , 6 ) ) V 

x = (4 , (0 ,1 ) ) V y = ( 4 , ( 0 , 1 ) ) 

= ( 4 , ( 5 , ( x , y ) ) ) , otherwise 

where rep-equal( (2 ,0) , (2 ,0) ) = (2,0) 

rep.e9iia/((2,x + 1),(2,0)) = (2,1) 

rep.eçtia/((2,0),(2,x+l)) = (2,1) 

rep.eçtia/((2,x + l ) , (2 ,y + D ) = rep.equal(x,y) 

and adds •* to the self-interpreter. 

•= * if •and(( f s t ( f s t (arg) )*4 , f s t ( snd(arg) )*4) ) then 

i f •and( ( f s t ( snd( f s t (arg ) ) ) - l , f s t ( snd( snd(arg ) ) ) - l ) ) then 

(4 , (1 , •rep.equal( (snd(snd(fs t (arg)) ) , snd(snd(snd(arg)) ) ) ) ) ) 

e l se i f •or( (^and(( fs t (snd(fs t (arg)) )*4 , fs t (snd(snd(arg)) )=4)) , 
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•and((•and((fst(snd(fst(arg)))=0, 

snd(snd(fst(arg)))=D), 

•and((fst(snd(snd(arg)))=0, 

snd(snd(snd(arg)))=l)))))) then 

(4,(0,1)) 

else (4,(5,arg)) 

else error; 

Since the définition of rep-F=:expxtxp—ix? is given in terms of the function rep-equal we must 

also construct •rep-equal. In addition, for the sake of readability, we hâve defined the 

functions +and and •or . 

• r ep .equa l = if • a n d ( ( f s t ( f s t ( a r g ) ) = 2 , f s t ( s n d ( a r g ) ) = 2 ) ) then 

(2 , snd( f s t (a rg) )=snd(snd(a rg) ) ) 

e l se e r ro r ; 

•and = if f s t ( a r g ) then snd(arg) e l se f s t ( a r g ) ; 

• o r = if f s t ( a r g ) then f s t ( a r g ) e l se snd(a rg) ; 

The définition of rep-Fif:exTXexvXtrp-.esP shown below requires no auxiliary functions. 

reP'Fif:expXexpXexp^exp(x,y,z) 

= ( 4 , ( 0 , 1 ) ) , x = ( 4 , ( 0 , 1 ) ) 

= y, x = ( 4 , ( 1 , 0 ) ) 

= 2, x = ( 4 , ( l , y + D ) Vx = ( 4 , ( 4 , a ) ) 

= (4, (6 , (6 , (x, ( y , 2 ) ) ) ) ) . o therwise 

We therefore only need to add • i f to the self-interpreter to implement it. 

• i f = if f s t ( f s t ( a r g ) ) = 4 then 

i f •and(( fs t (snd(fst (arg)) )«0 ,snd(snd(fst (arg)) )=D) then 

( 4 , ( 0 , 1 ) ) 

e l se i f •and((fs t (snd(fst (arg)) ) = l , snd(snd(fst(arg)))=0)) then 
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fst(snd(arg)) 

else if *or((fst(snd(fst(arg)))=l,fst(snd(fst(arg)))=4)) then 

snd(snd(arg)) 

else (4,(6,(6,(fst(arg),(fst(snd(arg)),snd(snd(arg))))))) 

else (4,(6,(6,(fst(arg),(fst(snd(arg)),snd(snd(arg))))))); 

The opération rep-Fnpuee:ezfXtxp->exp also becomes a single Toy function in the implementa

tion. 

^P-Frtvhcf.trvx « , - e * , ( W . < ° . 0 » » r ) = r 

rep-FTepUct:txJ,xtxp^erj,(^AO,l)),r) = ( 4 , ( 0 . 1 ) ) 

rep-F„p/ace:MJ)XeIJ,_eip((4,(l,n)),r) = ( 4 , ( l , n ) ) 

rep-Frej),ace:MÏ, x e r p_ e x p ( ( 4 , (2 , e) ) , r) 

r€P-Fjst:ezp->exp\reP-Frtplacc:expXtxp-~ezp{eir)) 

reP-Fnplacc:expXcTp^cTp(^.^,€)),r) 

TZP-Ï sndiexpXcrp—teTpK^P-* replace : exp x exp —• exp Ie'? r)) 

reP-Frtplacc-.txpxtTp-expite'te'te'tX'ymhr) 

= rep_.T _ . e r j , X e r j ) _ e l j , ( rep_r TepUct:txpxtxp-*txp\xiT)i *' replace:expxexp—>exp{yi T)) 

« P - F , r e p / « « : e x P x e x P - . e r P ( ( 4 , ( 4 , ( 5 , ( l , y ) ) ) ) , r ) 

= trep_T rep/ace:expxexp-*erp(.a'' T)>reP-*' Ttplact:txpxtxp — txp\.yi r)' 

nP-Frcplacf.expx « ? - « ? ( ( 4 . ( 6 » ( 6 . ( x , ( y , * ) ) ) ) ) . r ) 

= TCP-* \]itxpxexpxexp—>exp\x lit iz ) 

where x' = repJr
replace:expXexp^exp(x,r) 

y' = rep-Freplace:expXexp^exp(y,r) 

Z = reP-T replacc:txpxtxp-*exp\z'>r) 

rep-Freplaee:txpXtXT^tx?((4A7A7>(i,e)))),r) = 

(4,(7,(7,(i,nep^rc7,/acc:erpxcr7>^CX7,(e,r))))) 

•replace * if fst(fst(arg)) * 4 then 

if fst(snd(fst(arg))) = 0 then 

if snd(snd(fst(arg))) = 0 then snd(arg) 

e l s e ( 4 , ( 0 , 1 ) ) 

e lse i f f s t ( snd( f s t (arg ) ) ) • 1 then f s t (arg) 
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else if fst(snd(fst(arg))) = 2 then 

•fst(+replace((snd(snd(fst(arg))),snd(arg)))) 

else if fst(snd(fst(arg))) = 3 then 

•snd(+replace((snd(snd(fst(arg))),snd(arg)))) 

else if fst(snd(fst(arg))) = 5 then 

•=((+replace((fst(snd(snd(snd(fst(arg))))),snd(arg))), 

•replace((snd(snd(snd(snd(fst(arg))))),snd(arg))))) 

else if fst(snd(fst(arg))) = 4 then 

(•replace((fst(snd(snd(snd(fst(arg))))),snd(arg))), 

•replace((snd(snd(snd(snd(fst(arg))))),snd(arg)))) 

else if fst(snd(fst(arg))) = 6 then 

•if((•replace((fst(snd(snd(snd(fst(arg))))),snd(arg))), 

(•replace((fst(snd(snd(snd(snd(fst(arg)))))), 

snd(arg))), 

•replace((snd(snd(snd(snd(snd(fst(arg)))))), 

snd(arg)))))) 

else if fst(snd(fst(arg))) = 7 then 

(4,(7,(7,(fst(snd(snd(snd(fst(arg))))), 

•replace((snd(snd(snd(snd(fst(arg))))), 

snd(arg))))))); 

In the définition of repJFreplaeeîexpxexp^txp we only encounter one function for which we do 

not already hâve a Toy implementation, namely rep-Ffetch:identxdec8-+exp 

reP-Ffetck:identxdecs^exp(*,te>(°>0») = ( 4 , ( 0 , 1 ) ) 

nep.F / c^ :^ c n < x^C J^ c r p(x,(3,( l , (8,(y,(e,d)))))) 

= rep-Fget:identxnumxtxpxdecs-*txp\xi l^P-ï 8amc:identxident-mum\x) V)) ei **) 

We implement this function as +f etch. 

•fetch = if fst(snd(arg)) = 3 then 

if fst(snd(snd(arg))) = 0 then (4,(0,1)) 

else if fst(snd(snd(arg))) = 1 then 

•get((fst(arg), 
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(•same((fst(arg),fst(snd(snd(snd(snd(arg))))))), 

(fst(snd(snd(snd(snd(snd(arg)))))), 

snd (snd(snd(snd(snd(snd(arg)))))))))) 

else error; 

else error; 

The rep-F}tuh'.identxdec8-+exp fonction is defined in terms of two new functions 

™P-F 9eUidentxnumXexpxdecs-+txp{xM >Q) ,C,d) = e 

reP-E getiidentxnumxexpxdeca-* «rp( x >(l , fl + D > * , d ) = reP-Ffetch:identxdec8-+exp{X'>d) 

and 

» « P - ^ M m e : W e » < x W e » ^ n . m ( C l . 0 ) , ( 1 , 0 ) ) = ( 1 , 0 ) 

^P^êameMenixiient^num((l9X + l),ilf0)) = ( 1 . 1 ) 

™P-F,ame:identxident-+num(( 1 . 0 ) , ( 1 , * + D ) = ( l . D 

rep^jame:Men«xirfen<^»«m((l»x + D , ( l , y + D ) = ^P-Pjame:Wen<xWent-n«m(xi »)• 

Thèse définitions provide us with the last two functions définitions we need to add to the Toy 

self-interpreter to complète it. 

•get = i f f s t ( f s t ( snd(arg) ) ) = 1 then 

i f snd(fst(snd(srg))) = 0 then fst(snd(snd(arg))) 

e l se • fetch(( fst (arg) ,snd(snd(snd(arg)) ) ) ) 

e l s e error; 

•same = i f ^and((fst ( fs t (arg))=l , fs t (snd(arg))=1)) then 

( l ,snd(fst(arg))=snd(snd(arg))) 

e l s e error; 

The complète text of the Toy self-interpreter is shown in appendix A.6. 

For this process to be completely automatic we need to be able to recognise the Toy syntactic 

forms of function définition, function application, and conditional. The algorithm to perform 

this analysis must be sufficiently gênerai to recognise thèse forms however they manifest 

themselves. The reader should bear in mind that if Toy were, for example, an assembler 

85 



language then the features we would need to recognise could in fact be: labels, and conditional 

goto. At this time we are unable to construct such a récognition algorithm and as a resuit 

the precess described hère still requires considérable input from the user. We will return to 

this problem in section 7.1.2. 
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Chapter 7 

Concluding Discussion 

In the preceding six chapters we propose and construct an alternative framework for con-

sidering the source -• target relationship in the spécification of compilers. The approach is 

centred upon partial évaluation and the framework is categorical in nature and based on 

the theory of sketches. Inevitably, this work reveals a number of new Unes of research and 

identifies a variety of interesting open problems as well as providing useful expérience, and 

expérimental data, on the theoretical and practical usefulness of sketch theory in a large and 

important area of Computing science. In section 7.1 we review the model of language and self-

interpreter construction method developed in this thesis. Section 7.2 deals with some of the 

extensions necessary to convert the construction technique so that it becomes a true compiler 

construction method. In section 7.2 we also address some of the questions of practicality, 

both of the true compiler construction technique outlined in chapter 2, and of fully automatic 

compiler construction in gênerai. In the final section, 7.3, we speculate about some methods 

of removing the more obvious shortcomings of the sketch based model of language used hère. 

7.1 Summary 

The work in this thesis falls roughly into two interrelated sections. The bulk of the work deals 

with the construction of a categorical model of language based on sketches. This model of 

language is, however, not the main aim of the thesis as its construction is motivated by the 

désire to develop a technique for the calculation of a self-interpreter. Accordingly this section 
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is split into two parts: in section 7.1.1 we critically appraise the categorical model of language 

while in section 7.1.2 the discussion focusses on the self-interpreter construction technique. 

7.1.1 The model of l a n g u a g e 

The categorical model of language describes a language, C, as a 4-tuple 

C = (Sem,Syn, E : Syn -> Sem, learn : E*(Isem) - • Isyn). 

Sem and Syn are FL sketches, and E : Syn —• Sem is a sketch morphism such that Syn is 

learnable from Sem. The syntax and semantics of £ are both constructed as models of Syn, 

where the syntax is constructed as the initial model: Isyn ' Syn -» SET. We use property 

4.3.1 to construct the semantics of C as the model 

E*(ISem):Syn-+ SET 

where Isem • Sem —• SET is the initial model of Sem in SET. 

The construction of eval as the natural transformation 

eval :Isyn -^ Em(IStm) 

arises from property 4.3.2. Since Sem, Syn, and E : Syn —• Sem are such that Syn is 

learnable from Sem we can use proposition 4.3.2 to construct the components of the learn 

transformation 

learn : E*(Isem) - • h. yn 

such that eval o learn = l£»(/5em) and the language C is fully specified. 

The extremely abstract nature of the language spécification enables very gênerai properties 

of languages and classes of languages to be studied and understood. Since the category 
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Mod(Syn) is a full reflexive sub-category of [Syn, SET] we can obtain a great deal of in

formation about any class of languages without ever having to consider the détails of an 

individual language, simply by studying what is known about the category [Syn, SET]. 

An example language spécification using the sketch based model of language is given in 

appendix A. The sketch describing the semantics of Toy is an extremely large and complex 

object, much more so than, say, a domain theoretic semantics for the same language. The 

complexity arises in a number of way s. Firstly it is due to the fact that every object used in a 

sketch must be described explicitly from a few basic constants and opérations, we cannot for 

example simply assume the existence of a particular product, we must construct that product. 

To paraphrase Barr and Wells [BaWe90] pp 172, "when ail the girders and braces are exposed 

the true complexity of an object is revealed." This may be no bad thing as it forces the 

language spécifier to consider exactly what properties he or she requires of each "girder", and 

certainly it is what allows us to define models of a sketch in an arbitrary category. Secondly 

the model of language based on sketches is essentially context free and programming languages 

are not. To explain, the meaning of the expression x + 1, where x is an identifier, dépends on 

exactly what value x is bound to when it is evaluated. In other words, in différent context s or 

environments, x + 1 will hâve différent meanings and so the language has a context sensitive1 

aspect. 

Since the categorical model of language describes the évaluation function of a programming 

language as a natural transformation we know that the diagram below commutes. 

ISyniA) - ISyn(B) 

eval/L evals 

E'{IStm)(A) E.{Isen)U) ' EVstm){B) 

The fact that eval A is a function, combined with the commutativity of the diagram above 

forces eval&(x), where x € Isyn(A), to hâve a constant value even when the term x is 

1This use of the term context sensitive refers to the semantics of the language and should not be confused 

with the term context sensitive as used to describe a language whose grammar falls into type 1 of the Chomsky 

hierarchy. 
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embedded in the larger term Isyn(f)(x)- This forces x to hâve the same meaning regardless 

of its context and thus forces the model to be essentially context free. To overcome this 

problem we hâve to introduce more cônes and auxiliary opérations to put terms like x into a 

correct context and then détermine the value of this context, rather than just the value of x. 

This can add a great deal of complexity to the sketch as illustrated by the semantics of Toy 

in appendix section A.2. We shall return to this problem in section 7.3. 

As it stands at the moment the model of language is unrealistic as it does not constrain the 

évaluation order of the language. In appendix A, for example, the semantics of Toy does not 

state whether Toy uses call-by-value or call-by-need semantics. This is a serious deficiency in 

any language spécification method, but is potentially disastrous if the spécification method is 

used to specify the semantics of a functional language like Toy. This information is missing 

because we use SET to model the sketch specifying the semantics of a programming language. 

Since we can construct our categorical model of language in any category we could rectify 

this omission by constructing a sketch of the semantics of Toy to be modelled in DOM, the 

category of domains and continuous functions. In moving to DOM we would, however, add 

to the complexity of the sketch without gaining any new insight into the technique for the 

construction of the self-interpreter. For this reason the work in this thesis has centred on 

models in SET only. 

A third criticism of the model of language concerns the nature of the learn transformation. 

Since learn lacks any form of naturality condition its usefulness is strictly limited. There hâve 

been a number of attempts to weaken the naturality condition from the définition of natural 

transformation. Several such weaker conditions are contained in [Copp80] and thèse should 

certainly be explored. 

In spite of thèse disadvantages the model of language we hâve constructed is not without 

merit. As we illustrated in section 5.4 we can include limits which are more complex than 

simple product s. Thèse limits can be included in both the syntax and the semantics, allowing 

us to capture the static semantics of a language in the spécification of its syntax if we wish. 

This is a considérable enhancement over the algebraic model developed by Rus. At the cost 

of moving away from initial models of the semantics we could also include colimits in the 

models of programming language semantics and further simplify the spécification of language 

semantics as Kortas and Quatrain demonstrate in [KoQu92]. 
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Finally, in [BaWe90], pp 171, Barr and Wells state: 

"A deeper différence is that there are no distinguished nodes or opérations in 

a sketch. The graph of the sketch for semigroups, for example, has three nodes, 

no one singled out, whereas in the usual définition of semigroup, the underlying 

set S ... is singled out and other things are defined in terms of it. Similarly in 

the graph there are various arrows; c is just one of them." 

In other words, "ail the objects and opérations specified by a sketch hâve equal status." This 

can cause a problem if we hâve something complex to specify. Just as it can be useful to hâve 

hidden sorts and opérations in an algebraic spécification it can also be useful to conceal parts 

of the inner structure of a sketch, either to specify the interface to a data sort or to formally 

draw attention to spécifie parts of a spécification. 

Although Barr and Wells are quite correct when they state that there are no distinguished 

nodes (or opérations) in a single sketch, proposition 4.3.1 which is used hère to specify the 

semantics of a programming language, in effect, provide a mechanism by which any nodes or 

edges of a sketch can be distinguished from the remaining parts of the sketch. 

To explain, when we construct the sketch morphism E : Syn -» Sem what we are actu

ally doing is picking out some of the nodes and edges of Sem as being of spécial interest. 

Formally, because E : Syn -» Sem allows us to use property 4.3.1 to construct the functor 

E* : Mod(Sem) -> Mod(5yn) we can use E* to construct a model of Syn. From proposi

tion 4.3.1 we know that this model of Syn, Em(Isem) - Syn —• SET has the properties of the 

given model of Sem, Isem ' Sem -+ SET, and can be used to specify the external interface 

of an abstract data type. We can therefore use proposition 4.3.1 to provide a mechanism to 

distinguish éléments of a sketch as being of spécial interest. 

7.1.2 The self-interpreter construction technique 

Suppose we hâve a language 

C = (Sem, Syn,E : Syn - • Sem, learn : E*(Isem) - • Isyn) 
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specified using the categorical model of language above. We can describe the function which 

an interpréter for this language computes using the expression 

interpréter = learn o eval 

where eval is the évaluation natural transformation 

eval :Isyn -^ E*(ISem) 

used in the construction of learn. 

If we then take a pair of transformations 

encode : ISyn — E*(ISem) 

décode : Em(ISem) — hyn 

which describe an encoding of the syntax of C within the semantics of C we can construct a 

family of arrows 

rep-interpréter = encode o learn o eval o décode 

which may also lie inside the semantics of C, if C is powerful enough to describe its own 

interpréter. It is then a fairly simple matter to use the structure of rep-interpreter and theorem 

6.1.1 to construct an C program, C-self-int, which computes the function rep -interpréter s, 

where Sis the start symbol of the grammar of C. The program C-self-int is the self-interpreter 

for the language C. 

This is the case because the spécification of a programming language, however given, must 

in some sensé be the description of an interpréter for that language. In the case of our 

categorical model of language this description is relatively clear as it exists in the form of 

the eval and learn transformations. As a resuit of this we hâve a fairly straightforward, 

if time consuming, process of symbol manipulation by which we can produce the function 

rep-interpreter. To transform the description of repJnterpreter into a self-interpreter is still, 
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unfortunately, something of an art form. We rely on a programmera intuition for the last 

step in the dérivation of the self-interpreter. 

As shown in section 6.3 the programmer is needed to supply the C syntactic forms of function 

définition, function application, and conditional. This is because there are simply too many 

différent ways of providing thèse constructs in a programming language. For example, con

ditional can be realised as: if . . .then, if . . .then .. .else, case, pattern matching, computed 

goto, etc. 

Thèse constructs ail generate significantly différent structures within the semantics of a pro

gramming language. To make matters worse there are very many différent mechanisms that 

the language spécifier may use within Sem to specify the semantics of any single one of thèse 

constructs, particularly if we allow the spécifier to work with models of Sem in catégories 

other than SET. This makes the construction of a gênerai analysis procédure to recognise 

the structure of conditional at least extremely difficult. It may even make it impossible. 

This begs the question: " of what value is the self-interpreter construction technique described 

hère?" In my view it is not likely to lead to a completely automatic process, but it still has 

value because it does produce a complète description of the C self-interpreter as a function 

within the semantics of C. Even if we cannot use the self-interpreter dérivation process to 

construct the actual program code we can still use it to construct a design of this code which 

is so highly detailed that any programmer who knows how to define and call functions and 

express conditionals in C can write the code for C-self-int with little need for extra intellectual 

effort. 

7.2 Partial evaluators and interpreters 

The true compiler generator system discussed in section 2.2 dépends on a pair of assumptions, 

re-stated below. 

Assumption 1. there is a technique which allows us to examine the spécification of a com

puter language, T , and from this spécification, calculate a T program which implements 

mix for the language T. 
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Assumption 2. given the spécifications of two languages, S, and T, it is possible to dérive 

an implementation of S in the form of an interpréter expressed as a T program. 

The self-interpreter calculation technique was originally proposed as a useful first step towards 

justifying thèse assumptions. In sections 7.2.1 and 7.2.2 we discuss exactly how large this 

first step is. 

7.2.1 Partial evaluators 

There are two distinct problems which need to be solved before a technique for deriving a 

self-interpreter can be converted into a technique for deriving a partial evaluator. 

Firstly, we must develop a method which allows us to dérive the binding time analysis phase 

of the partial evaluator. The work of Launchbury [Laun90] using dépendent sums to factorise 

domains into their static and dynamic values offers a promising starting point as it is a 

significant step towards the formalisation of the process of binding time analysis. It is, 

however, not at ail clear how to incorporate this work into the categorical method developed 

hère. 

The second problem is the transformation of a self-interpreter into the function spécialisation 

phase of a partial evaluator. In principle it should be possible to modify both the syntax and 

semantics of C by adding éléments to represent dynamic values. Since dynamic values are 

not reduced by the function spécialisation phase of a partial evaluator we would not need to 

alter the diagrams in the sketch describing the semantics of C. The process used to dérive the 

self-interpreter with the original semantics should now construct a function spécialiser when 

applied to the altered semantics. This is because a function spécialiser behaves exactly like an 

interpréter when it is working with static values, and suspends évaluation when it encounters 

a dynamic value. The original diagrams of the sketch of the semantics are therefore sufficient 

to deal with static values, and since dynamic values are not reduced, no new diagrams are 

required to describe their réduction. Unfortunately, without a complète description of the 

binding time analysis phase, we cannot begin to solve this second problem because we would 

hâve no clear idea of where a dynamic value could occur and so do not know where we need 

to add new values to the syntax and semantics of C. 
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Clearly, there is still a very long way to go before the automatic dérivation of a partial 

evaluator is a practical proposition. This is not the case with the second assumption as we 

explain below. 

7.2.2 Interpreters 

The fact that Assumption 2 fairs rather better than Assumption 1 is almost certainly due to 

the fact that the généralisation from self-interpreter to interpréter is much smaller than that 

from self-interpreter to partial evaluator. 

Because of the close relationship between an interpréter and a self-interpreter the techniques 

used hère to calculate a self-interpreter for language S can also be used to calculate an S 

interpréter in language T given sketch spécifications of both S and T. 

The extra generality of the technique arises because the composition of learn and eval spécifies 

the function to be computed by an S interpréter, not the S interpréter itself. To get from the 

function to the actual interpréter we need to construct a représentation of the syntax of «S as 

a data object within the semantics of S. The interpréter is then produced by implementing 

the function rep-interpreter. 

To recap: to represent the syntax of S within the semantics of S we require a pair of trans

formations 

encode : I§,n ^ E'(llJ 

décode : E'(I§em) - / | , n 

with the property that décode o encode = 1 is . The interpréter function is then embedded 
Syn 

within this représentation as 

interpret = encode o learn o eval o décode 

to move it within the semantics of S. 

To construct an S interpréter in the programming language T we can replace the représen

tation functions encode and décode by a pair of transformations which represent the syntax 
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of «S as a datatype within the semantics of the arbitrary language T: 

encodeT: / f , B - > £ - ( J j m ) 

décoder :E'(IU -+ /*„ . 

This allows us to move the S interpréter function into the semantics of T: 

interpret = encodej o learn o eval o decodej 

provided that T is sufïiciently powerful to express the interpréter for the language S. 

The remainder of the interpréter calculation process then proceeds exactly as before. The only 

extra requirement necessary to use the technique for the calculation of a gênerai S interpréter 

is that we can construct a représentation of the S syntax within the semantics of T. 

7.2.3 The true compiler generator 

The true compiler generator system discussed in section 2.2 is it seems still a long way off. 

We are still unable to dérive the actual program code of mix for the target language and we 

cannot dérive the code for int, the source interpréter, either. So hâve we actually advanced 

towards this goal at ail? The answer to this question is, I believe, yes! 

While we cannot, as yet, dérive a C self-interpreter we can at least dérive a définition of the 

function which an C self-interpreter computes. In section 7.2.2 above we indicated that we can 

even généralise this dérivation process to dérive the interpréter function for an S interpréter 

as a T program. To construct a true compiler generator of sorts we need only accomplish one 

more task. 

We need to be able to dérive the binding time analysis for the language T. If we can achieve 

this we can construct a true compiler generator because we can at least dérive the two func

tions below. 

1. repjmix the function which a T partial evaluator computes. 

2. rep-int the function which a T implementation of an S interpréter computes. 
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Provided we use a standard language, TZ, to describe thèse functions we can construct the 

compiler generator shown in figure 7.1. 

source language 
spécification (S) 

target language 
spécification (T) 

user specified 
TZ-+T 
compiler 

Compiler- Generator 
S —• T compiler 

Figure 7.1: A différent true compiler generator system 

This system accepts as input: the spécification of the source language S, the spécification 

of the target language T, and a compiler which translates from the internai représentation 

71 to the target language T. The process discussed in the preceding chapters can then be 

used to dérive the TZ représentations of rep-mix and rep-int. The given 71 —• T compiler is 

used to generate mix and int as T programs. We can then realise the S —> T compiler as 

mix^mix, int\ 

While this is not the compiler génération system envisagea in chapter 2 is is still an improve-

ment over the current situation because we do not need to specify the S —• T relationship. 

The burden of proof on the compiler writer is therefore reduced since they only need to prove 

the TZ —• T compiler correct rather than having to prove a différent S -+ T relationship for 

each language S. 

Even without the ability to calculate the binding time analysis for the language T we can 

construct a compiler generator (shown in figure 7.2) which does not require the user to define 

the S —• T relationship. 

The opération of this system is similar to the system shown in figure 7.1 except that mix is 

supplied by the user rather than calculated as part of the génération process. With this last 

system the compiler writer's proof obligations are again increased as they must now prove 

mix correct in addition to the TZ —• T compiler, but once again thèse proofs need only be 
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source language 
spécification (S) 

target language 
spécification (T) 

user specified 
7Z-+T 
compiler 

Compiler- Generator 
S —* T compiler 

user specified T 
implementation of 
mix 

Figure 7.2: A final true compiler generator 

carried out once for each target language T. 

There is an interesting parallel between the approach that both compiler génération Systems 

above use to construct the S —• T relationship (encoded in the program int) and the usual 

construction of a semantics directed compiler. Typically a semantics directed compiler is 

factorised into a front end which translates source language sentences into some universal 

intermediate language and a back end which translates from the intermediate language to the 

targetlanguage. 

Source 
Language 

front end Intermediate 
Language 

back end Target 
Language 

With the compiler génération Systems outlined in this section we factorise the construction of 

the S —• T relationship into a front and back end. The back end of this process is the 7Z-+T 

compiler provided by the user. We use a universal intermediate language TZ to describe the 

S —> T relationship. The front end is the process for calculating the rep-int function described 

in this thesis. 

Source 
Language _ 

Spécification 
S 

front end Description 
of rep-int 

in TZ 

TZ —p T compiler Description 
of int in 

T 
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In spite of thèse similarities there are two striking différences between the approach we propose 

and that of a semantics directed compiler. 

Firstly a semantics directed compiler factorises the actual process of translating individual 

sentences from S into T. Our approach opérâtes as a higher level and factorises the construc

tion of the S —• T relationship. 

Secondly, with a semantics directed compiler the front end is spécifie to a particular source 

programming language S. In our approach the front end is universal. 

7.2.4 Open questions 

Hère we examine some open questions about the true compiler génération technique. With 

the exception of question 4, ail the questions below are related to the single question, "Do we 

really want compilers which are produced without human intervention?" 

1. How much static computation is there in mix(mix,int) when both mix and int are 

machine generated? 

This is a very important question since the power of partial évaluation dépends on the 

ability to eliminate static computation. Consider the function 

/ (x ,y) = x + l + y 

Partial évaluation of the expression / (4 , y), where y is dynamic, produces the function 

A(y) = 5 + y 

because the expression x + 1 is static if x is static. If, on the other hand, / i s expressed 

as 

/ (x ,y ) = x + y + 1 

then there is no static computation because x + y is dynamic, unless both x and y are 

static, and so partial évaluation gives no improvement in the cost of Computing /4 . In 

other words, the improvement gained by partial évaluation of a program dépends on 
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the style in which that program is written. We currently do not know whether the style 

of a machine generated int and mix will be "partial évaluation friendly" or not. The 

problem of transforming "partial évaluation unfriendly" functions into "friendly" ones 

is addressed in [HoHu90] where the technique of obtaining "free theorems" from a func

tions polymorphic type, developed by Wadler [Wadl89], is used to dérive transformation 

rules. This technique is still in its infancy but seems like a good starting point for the 

related problem of synthesising "partial évaluation friendly" implementations of int and 

mix from language spécifications expressed as sketches. 

2. Can we ensure that a machine generated compiler will generate good quality object 

code? 

In some respects this question is related to the previous one. The more static compu

tation contained in the expression mix(mix,int) the better the object code generated 

by the compiler is likely to be. This, however, is not the only issue in the efïiciency 

of the generated target code, for example, a compiler generated from an interpréter 

written using labels and "goto" to express its control flow is likely to generate better 

target code than the code generated if the interpréter uses recursion exclusively. This 

issue will need to be examined in détail before the proposed true compiler génération 

technique becomes viable for the génération of "industrial quality" compilers. 

3. Is the technique applicable to imperative languages? 

The assumption that we are dealing with functional languages has been implicit through-

out the preceding chapters. Although the categorical model of language is capable of 

specifying an imperative language in theory, this has not been done yet. In [KoQu92] 

Kortas and Quatrain give a spécification of a subset of the pascal language, however the 

subset that they use avoids having to specify the store. It is in the spécification of the 

store (and of assignment) that the most serious problems are to be encountered so whilst 

this work provides a useful insight into this use of sketches it leaves several questions 

unanswered. Any problems encountered in the synthesis of mix and int for a func

tional language are likely to be at least an order of magnitude worse for an imperative 

language. This question cannot be answered without a great deal more work. 

4. Can sketches be implemented on a computer? 
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By using the techniques for constructing implementations of categorical constructs given 

in [RyBu88] we can certainly construct implementations of graph, diagram, cône, co

cone, and model (functor) which would allow us to implement a spécifie sketch. This, 

however, is not what we mean by implementation of sketches on a computer because for 

each sketch we would need to construct its implementation by hand. When we ask "can 

sketches be implemented on a computer" we mean: can we construct an computer pro

gram which will, given an arbitrary sketch, automatically generate an implementation 

of the datatype specified by that sketch? 

The answer to this question has to be a qualified no. Work has been undertaken 

in this area, for example Gray's work using Mathematica [Gray?], and the work of 

Yusop [Yuso91] using prolog. There are some quite serious problems with implementing 

sketches because, as with algebraic spécifications, it is possible to use sketches to specify 

objects which are simply unimplementable on a computer, or to write sketches in a 

style which is non-constructive therefore not directly implementable on a computer. 

The problems above are fairly gênerai problems with the implementation of formai 

spécifications. Of the problems spécifie to the implementation of sketches the most 

obvious ones are caused by the fact that sketches can be modelled in an arbitrary 

category and do not always hâve an initial model. This problem even arises in SET. 

It is true that every FL sketch has a term model but this is not the case for every 

class of sketch. Thèse problems will hâve to be addressed before a useful technique 

for the implementation of sketches can be developed. As a starting point we suggest 

the technique of dynamic évaluation developed by Duval and Raynaud [DuRa91] which 

provides an interesting and promising approach to this problem. 

5. Do we really want compilers which are produced without human intervention? 

This question is basically impossible to answer. In [Schm85] Schmidt briefly argues that 

a compiler génération system which requires more décisions from the implementor than 

is normal can be an advantage as the extra freedom of choice allows the implementor 

to orient the implementation towards the spécifie hardware and software available. It is 

indubitably true that when the user has to provide the implementation relationship such 

orientation is possible; what is less clear is that such orientation is not possible when 

the implementation relationship is automatically produced from the spécifications of the 

source and target languages. Sketches would seem to be an idéal method of representing 
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the source and target languages in this context since, by their very nature, every détail 

in a language spécification must be stated explicitly and is therefore readily available 

to any software for calculating an implementation relationship. Due to the categorical 

nature of sketches this software could also hâve some extremely powerful analytical tools 

available to it. To the best of my knowledge nobody has examined thèse issues in any 

détail. 

7.3 More science fiction: a better model of language? 

There is one fundamental problem with the categorical model of language discussed above. 

The language spécifications developed using this technique are far too large and unwieldy. 

The resuit of this is that a language spécification using sketches is almost impossible to work 

with. The reasons for this complexity are illustrated in section 5.4.2, explained in section 

7.1.1 and can be summarised in one sentence. 

Sketches cannot be used to specify functions as objects. 

If we could describe higher order objects using sketches, or some related tool, we could 

drastically reduce the complexity of the sketch describing the semantics of a programming 

language. A function is an extremely natural way to describe context sensitivity within 

a formai system. The context sensitive object becomes a function and its context can be 

passed into it as its argument. It is using this technique that a denotational semantics 

typically handles context sensitivity, the typical évaluation function for an expression looking 

something like 

S : Expression —> Environment —• Value. 

So the meaning of an expression, exp, is the function 

£(exp) : Environment —• Value 

which expects its context (the environment) and will only produce an actual value when given 

this context. 
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There are a number of extensions to the concept of a sketch which could possibly be used to 

solve this problem. The first of thèse extensions is the form which is described by Wells in 

[Well90]. A form is essentially a sketch but we hâve the additional ability to require diagrams 

to become instances of any essentially algebraic categorical construction when modelled. Al-

though there is insufïicient space to describe the approach in any détail hère the basic idea 

is to provide a uniform method for defining the primitive types and opérations on which the 

constructors specified within a sketch can operate. This allows the introduction of objects 

other than limits and colimits within the model of a sketch, in particular function objects 

can be specified for forms modelled in a cartesian closed category. Using this technique Wells 

hopes to be able to specify functional programming languages using sketches. A second ex

tension to the concept of sketch which may allow function objects to be introduced is the 

<*rame> described by Lair in [Lair87b]. 

The model of language developed in this thesis exists within an extremely gênerai framework 

and is, as a resuit, easy to extend. The model is not tied to any spécifie procédure for 

the calculation of models of Sem so we can easily incorporate developments like dynamic 

évaluation [DuRa91] to increase the power of the model by allowing the sketch Sem to be 

modelled in new ways. We can even replace the sketch Sem, describing the semantics of a 

programming language by any graph theoretic structure, X, containing cônes and diagrams. 

This is because the key components on which the model of language is based are property 4.3.1 

and the notion of learnability. Provided we can define a graph homomorphism E : Syn —• X 

which préserves diagrams and cônes we know both that property 4.3.1 holds and that the 

notion of learnability is still applicable. Extension of the model of language to use either 

forms or -CJrames» is as a resuit not likely to présent too many problems. 

Finally, sketches themselves should not be dismissed. We hâve been able to construct a model 

of language which exceeds the power of Rus9 algebraic model of language, which is itself a 

powerful language spécification tool with an impressive compiler technology of its own. This 

technology is now available for study in a categorical universe. There are likely to be many 

useful discoveries still to be made. This dissertation has only scratched the surface. 
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Appendix A 

Example: A Toy Self-interpreter 

Toy is a typeless first order functional language. Functions can only be declared at the top 

level and hâve one implicit argument, named arg within the body of the function. Function 

names are therefore the only type of identifier which can exist in a Toy program. The only 

data objects which can be processed by a Toy program are natural numbers and binary 

trees. Natural numbers can be tested for equality using the = operator. Binary trees may 

be constructed using the (_,-) constructor and dismantled using the f s t and snd operators. 

This restricted language is specified because it is amongst the simplest languages which are 

capable of expressing a self-interpreter. 

A.l The syntax of Toy 

Using conventional methods the syntax of the Toy programming language is described by the 

following set of production rules: 

(ident) -* x 

(ident) -+ x(ident) 

(num) —• 0 

(num) -• suce ((num)) 
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(decs) —> £ 

(decs) —• (ident) s (exp) ; (decs) 

(exp) - • arg 

(exp) —• error 

(exp) —• (num) 

(exp) —• f s t ((exp)) 

(exp) —> snd ((exp)) 

(exp) - • ((exp), (exp)) 

(exp) —• (exp) s (exp) 

(exp) —• i f (exp) then (exp) e l se (exp) 

(exp) —• c a l l (iden/)(exp) 

(p^) —• (c^p) where (decs) 

The corresponding sketch Toysyn, which describes the phrases of the Toy language is shown 

below. 
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A.1 .1 A sketch of the Toy syntax — Toysyn 

Graph — G s yn 

ident 

empty 

decs 

ident x exp 

j where exp x decs iL-i -prg 

if 
exp x exp x exp 

ident x exp x decs 

Note: projection arrows omitted for clarity. 

Cônes — Cs y* 

The six cônes shown below are required in the sketch Toysyn- Thèse cônes are required to 

construct the production rules: 

(ident) — x 

(num) —• 0 

(decs) -> £ 
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(exp) - • arg 

(exp) —• e r ro r 

(exp) -+ ((exp), (exp)) 

(exp) —• (exp) = (exp) 

(exp) —• if (exp) then (exp) e l se (exp) 

(exp) —• c a l l (ident) (exp) 

(decs) —• (iden/) « (exp) ; (decs) 

(prg) —• (exp) where (decs) 

exp x exp 

exp 

exp x exp x exp 

Pr14 \ P r I 5 

exp exp 

iden* x exp x decs 

pr27j 

/ 
ident 

pr2s \pr 29 

exp decs 

exp x decs tdent x exp 

ident exp 

Diagrams — Ds, yn 

Since the sketch Toysyn describes the syntax of a programming language and does not attempt 

to capture its static semantics the set of diagrams, Dsyn, is empty. Ds^ = 0-
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A. 1.2 The initial model Isyn ' Toysyn —• SET 

/Syn(T) = {0} 

IsVn(num) = {jIsyn(num)n,nÇ: {0 ,1 ,2 , . . . } 

where Isyn(nu™)o = {0} 

IsVn(num)n = {succ(x): x G Isyn(num)n-i} 

ISyn(ident) = \JISyn(ident)n,n G {0,1,2, . . . } 

where Isyn(ident)0 = {x} 

Isyn(ident)n = {xy : y € /syn(*'den*)n_;L} 

/5yn(exp) = UJsyn(e*p)n,ne {0,1 ,2 , . . . } 

where /5 y n(exp)0 = {arg,error} U {isjium(x): x € Isyn(num)} 

Isyn(exp)n = 

{f s t (x ) : x G /5yn(exp)n_i} U {snd(x): x G /syn(ezp)n-i}U 

{ (x ,y ) : (x,y) 6 /syn(exp)n_i x Jsyn(e*p)n-i}U 

{«(x ,y) : (x,y) € Isyn(exp)n-i * /syn(e*p)n-i}U 

{ i f (x ,y ,2 ) : (x,y,z) G /syn(exp)n-i x /syn(exp)n_i x Isyn(exp)n-i}U 

{ c a l l ( x , y ) : x € Isyn(ident),y G Jsyn^xp)*-!} 

Isyn(ident x exp) = Isyn(ident) x J5yn(exp) 

ISyn(exp x exp) = Isyni^p) x /5yn(exp) 

/5yn(exp x exp x exp) = /5yn(exp) x /5yn(exp) x /syn(exp) 

ISyn(decs) = U^5yn(^ecs)n,nG {0,1,2, . . .} 

where /5yn(decs)0 = {empty} 

/5yn(d€Cs)n = 

{bind(x,y ,z): x G Isyn(ident),y G /syn(exp),z G Jsyn(decs)n_i} 

Isyn(exp x decs) = Isyn(exp) x Isyn(decs) 

Isyn(ident x exp x decs) = Isyn(ident) x Isyn(exp) x Isyn(decs) 

Isyn(prg) = {where(x,y): (x,y) G /syn(e:rp) x JSyn(decs)} 

/syn(0 : T -+ num) = 0 ^ 0 

Isyn(succ : num -• num) = x -+ succ(x) 
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ISyn(x:T - ident) = 0 

Isyn{x- • ident — ident) = y -+ xy 

Isyn(arg : T — exp) 

ISyn(error : T -* exp) 

Isyn(is-num : num ->• exp) 

hyn{call : t'den* x exp — exp) 

ISynifst : exp -+ exp) 

Isyn(snd : exp — exp) 

/Syn(*7 : e a r P X e x P X eXP " eXÏÏ 

ISyn{=- exp x exp — exp) 

/ s V n(( , ) :expx e x p - e x p ) 

0 i-* arg 

0 i-+ error 

x —• is-iium(x) 

(x,y)-> c a l l ( x . y ) 

x -• f s t ( x ) 

x —• snd(x) 

(x,y,z) — i f ( x , y , z ) 

(x ,y)-» =(x,y) 

(x,y) — (x,y) 

/Syn(P»"ll : exP X e x P "* eXP) - (*' ») "* x 

/sVn(pr12 : exp x exp — exp) = (x, y) - y 

hynipru : exp x exp x exp — exp) = (x, y,z)-+x 

Isynipru : exp x exp x exp — exp) = (x, y, z) -<• y 

/5yn(pri5 : exp x exp x exp — exp) - (x, y, z) — 2 

ISyn(empty : T — <fe«) = 0 " «*pty 

/Syn(=; : *rfent x exp x decs — decs) - (x,y,z) — =;(x ,y ,2) 

/5yn(pr27 : t'dent x exp x decs -> tdent) = (x, y,z)-* x 

JSvn(pr28 : *'dcn* x exp x decs -+ exp) = (x, y, 2) -» y 

/5yn(pr29 : tdent x exp x decs -»• decs) = (x, y,z)-> z 

hyn{pTA7 '> exp x decs — exp) = (x, y) — x 

hyniprvi : exp x decs - • decs) = (x, y)-* y 

ISyn(Pr3 '• ident x exP ~* ident) 

Isyn(pu : ident x exp -* exp) 

(x,y)^x 

(x,y)^y 
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Isyn(where : exp x decs -+ prg) = (x,y) —• where(x,y) 

A.2 The semantics of Toy 

A.2 .1 The sketch ToySem 

Graph — Gsem 

The graph Gsem needed to describe the semantics of Toy is an extremely large and complex 

object. A pictorial représentation of this graph is not practical so the graph is represented in 

tabular from below. 

Nodes 

T ident num 

decs ident x exp x decs ident x ident 

num x num exp ident x decs 

ident x T exp x exp ident x exp 

exp x exp x exp exp x T T x exp 

num x exp ident x exp x exp exp x exp x exp x exp 

num x exp x exp iden* x num x exp x decs tden* x ident x exp x decs 

T x decs num x decs exp x decs 

exp x exp x decs exp x exp x exp x decs prg 

Edges 

x : T —* ident 

x . : iden* —• ident 

xo : ident -> ident 

idident ' ident -*• ident 

dispose ideni : ident —> T 
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empty : T —• decs 

=; : ident x exp x decs —> decs 

iddeca ^ ^cs —> decs 

pr27 : tden/ x exp x decs —• tdenJ 

pr28 : tden* x exp x decs —• exp 

pr29 : zden* x exp x decs —• decs 

(call o (pr27,P^28)^P^29) : ident x exp x decs — exp x decs 

(/e*c/i o (pr27,pr2g), apply o (pr28,pr29),pr29) : ident x exp x decs -* exp x exp x decs 

(pr27, pr2g) : ident x exp x decs —• ident x exp 

(pr27,pr2g) : ident x exp x decs —• idenJ x decs 

(Pr28,P^29) : tden* x exp x decs —• exp x decs 

prx : ident x iden* —• zden* 

pr2 : ident x ident —• ident 

(x,x) : T —• ident X ident 

x. x XQ : ident x ident -* ident x tdeni 

xo x x . : ident x ident —• ident x tden£ 

x. x x . : ident x ident -> tdeni x ident 

disposeidentxident : ident x iden/ —• T 

same : ident x ident —• num 

0 : T -> num 

suce : num —> num 

zéro : num -* num 

îdnum ^ ntim —• n u m 

dispose num : num —• T 
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pr$ : num x num —* num 

prio : num x num —» num 

(0,0) : T —» num x num 

suce x zéro : num x num —• num x num 

zéro x suce : num x num —> num x num 

suce x suce : num x num —• num x num 

equal : num x num —• num 

an/ : T —• exp 

unde/ : T -» exp 

is-num : num -» exp 

/st : exp —• exp 

snd : exp —• exp 

idcxp : exp -* exp 

dispose txv : exp —̂  T 

(, ) : exp x exp —• exp 

=: exp x exp -+ exp 

i/ : exp x exp x exp —• exp 

ca/Z : ident x exp —• exp 

isjnum x isjnum : num x num —• exp x exp 

is : exp —* prg 

pr7 : ident x decs —• ident 

pr& : ident x decs —• decs 

pr5 : ident x T -> ident 

pr6 : ident x T - ^ T 

idcrp x empty : ident x T -+ ident x decs 

dispose ident xT '• ^ent x T -• T 
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pru : exp x exp -» exp 

p r i 2 : exp x exp —* exp 

/st x idcxp : exp x exp —• exp x exp 

snd x id c r p : exp x exp —• exp x exp 

replace : exp x exp —• exp 

pf3 : ident x exp —• ident 

pr 4 : ident x exp —• exp 

pri3 : exp x exp x exp —» exp 

pri4 : exp x exp x exp —• exp 

pris : exp x exp x exp —• exp 

dispose c r p x c r p x c r p : exp x exp x exp — T 

((, ) o (p r 1 3 , p r 1 4 ) , p r i 5 ) : exp x exp x exp -> exp x exp 

(P r i3 , (, ) ° (pr i4,pr 1 5)) : exp x exp x exp — exp x exp 

(= o(pr 13,pr1 4) ,pr!5) : exp x exp x exp -> exp x exp 

U x id c r p x idc r p : exp x exp x exp —• exp x exp x exp 

(P ri3>pri4) : exp x exp x exp —• exp x exp 

( p ^ i P ^ i s ) • exp x exp x exp —• exp x exp 

(pr i4 ,pr i 5 ) : exp x exp x exp —• exp x exp 

(replace 0 (p r i 3 , p r 1 5 ) , rep/ace 0 (pr 1 4 ,p r i 5 ) ) : exp x exp x exp -> exp x exp 

pr 4 i : exp x T -> exp 

pr42 : exp x T - ^ T 

Werp x unde/ : exp x T - • exp x exp 

disposetx?xi : exp x T - * T 

pr 3 4 : T x exp -» T 

pr3s - T x exp - • exp 

dispose^xexT : T x exp - • T 

ary x td c r p : T x exp —• exp x exp 

unde/ x i d ^ : T x exp -> exp x exp 
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p7*36 • num x exp —• num 

pr37 : num x exp —• exp 

is.num x idc r p : num x exp —* exp x exp 

pr38 : ident x exp x exp —* ident 

pr39 : ident x exp x exp —> exp 

pr4 0 : ident x exp x exp —• exp 

(caZZ o (pr38,pr39),pr4o) : ident x exp x exp - • exp x exp 

(Pr38?P^39) • ident x exp x exp —• ident x exp 

(Pr39?P^4o) '• ident x exp x exp -> ident x exp 

(P^38, replace o (pr3 9 ,pr4 0)) : ident x exp x exp —• ident x exp 

prig : exp x exp x exp x exp — exp 

pr2 0 : exp x exp x exp x exp -* exp 

pr21 : exp x exp x exp x exp —> exp 

pr22 : exp x exp x exp x exp — exp 

(if o (pr*i9,pr2o,pr21),pr22) : exp x exp x exp x exp —• exp x exp 

((, ) o (pri9,pr2 0),pr2 1 ,pr2 2) : exp x exp x exp x exp —• exp x exp 

(Pri9,Pr2o) • exp x exp x exp x exp —• exp x exp 

(Pri9,P^22) • exp x exp x exp x exp —• exp x exp 

(pr2o,pr22) : exp x exp x exp x exp -> exp x exp 

(Pr2i9P^22) : exp x exp x exp x exp -> exp x exp 

(Pri9,pr20>Pr2i) : exp x exp x exp x exp - • exp x exp x exp 

(replace o (pr^,pr22), replace o (pr2o,pr22), replace o (pr21,pr22)) : exp x exp x exp x exp 

—• exp x exp x exp 

pr!6 : num x exp x exp - • num 

pri7 : num x exp x exp —• exp 

pr1 8 : num x exp x exp —• exp 

is.num o zéro x idexp x idcxp : num x exp x exp -> exp x exp x exp 

is-num o suce x idcrp x id^ : num x exp x exp -> exp x exp x exp 
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pr3o : ident x num x exp x decs —> ident 

pr3! : ident x num x exp x decs —• num 

pr32 : ident x num x exp x decs —• exp 

pr33 : ident x num x exp x decs —• decs 

idutnt x -ero x idtxv x id^CC3 : ident x num x exp x decs —> ident x num x exp x decs 

idutnt x succ x idex? x irf̂ ,.̂  : ident x num x exp x decs —• ident x num x exp x decs 

(P^30,P^33) : ident x num x exp x decs —• ident x decs 

/etcA : ident x decs —• exp 

get : ident x num x exp x decs —> exp 

pr^ : ident x ident x exp x decs -* ident 

pr24 : ident x ident x exp x decs -> ident 

pr25 : ident x ident x exp x decs -» exp 

pr26 : ident x ident x exp x decs —• decs 

(pr24>pf"25,pr26) : ident x ident x exp x decs -> ident x exp x decs 

(Pr23, =;o(pr24>pr25,pr26)) : wfen* x ident x exp x decs ~> ident x exp x decs 

(Pr23?P^24) : ident x ident x exp x decs —• ident x ident 

same o (pr23,pr24) : ident x ident x exp x decs —• num 

(Pr23>sameo (pr23,pr24),pr25,pr26) : ident x ident x exp x decs 

—• ident x num x exp x decs 

pr43 : T x decs - • T 

pr44 : T x decs - • decs 

dispose? xdecs : T x decs ™» T 

arg x id^ecj : T x decs —• exp x decs 

undef x idiCC5 : T x decs —• exp x decs 

pr+z : num x decs -+ num 

pr46 : num x decs —• decs 

is-num x id<jcc, : num x decs —• exp x decs 
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pr47 : exp x decs —• exp 

pr48 : exp x decs —• decs 

/st x id̂ fcc, : num x decs —• exp x decs 

snd x iddccs - num x decs -+ exp x decs 

appZy : exp x decs —*- exp 

pr4g : exp x exp x decs -* exp 

pr50 : exp x exp x decs -+ exp 

prs! : exp x exp x decs —• decs 

(G ) o (p^49,P^5o),P^5i) : exp x exp x exp -> exp x decs 

(= o(pr49,pr50),P^5i) : exp x exp x exp — exp x decs 

(apply o (pr49,pr5i), appZy o (pr50,pr5i)) : exp x exp x decs -> exp x exp 

(replace o (pr49,pr5o),pr5i) : exp x exp x decs -+ exp x decs 

(p^49,pr5o) : exp x exp x decs -> exp x exp 

(pr49?P7'5i) : CZP x exp x decs -+ exp x decs 

(pr50,prsi) : exp x exp x decs -> exp x decs 

(appZy o (pr49,pr5i), apply o (pr50,pr5i)) : exp x exp x decs -* exp x exp 

pr52 : exp x exp x exp x decs —• exp 

pr53 : exp x exp x exp x decs —• exp 

pr54 : exp x exp x exp x decs —> exp 

pr$$ : exp x exp x exp x decs —• decs 

(if o (pr52,pr53,pr54),pr55) : exp x exp x decs -> exp x decs 

(appZy o (pr52,pr55),pr53,pr54,pr55)
 : C*P x €XP x exP x dec5 "* exP x exP x exP x dec5 

(p^52,P^539P^54) : exp x exp x exp x decs -+ exp x exp x exp 

(p^52iPr55) : exP X exp x exp x decs —• exp x decs 

(appZy o (pr52,pr55),pr53,P^54,P^55) : exp x exp x exp x decs -> exp x exp x exp x decs 

where : exp x decs —• pn/ 

is"1 : pnj —• exp 

Cônes — Csem 

The twenty two cônes required in the définition of the semantics of Toy are shown below. 
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ident x ident 

ident ident 

ident 

ident x T 

ident 

ident x decs 

ident decs 

num x num 

num num 

exp x exp exp x exp x exp 

Pri4 \ p r i 5 

exp exp 

num x exp x exp 

pri7 \ p r i 8 

num exp 

exp x exp x exp x exp 

ident x ident x exp x decs 

ident ident exp decs 

ident x exp x decs 

/^27, P^28 \ P ^ 2 9 

ident exp decs 
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ident x num x exp x decs 

ident num exp decs 

T x exp 

exp 

num x exp 

num exp 

ident x exp x exp 

P^39 \ P ^ 4 0 

ident exp exp 

exp x T 

exp decs 

num x decs 

num decs decs 

exp x exp x decs 

P^50 \ p r 5 1 

exp exp decs 

exp x exp x exp x decs 

PÏ-53 

exp exp exp decs 

Diagrams — Dsem 

The 10 diagrams below are used to describe the opération same : ident x ident —• num. This 

opération is used to specify equality of identifiers. 
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fydident 

ident 

ident ident 

dispose ideni pr pr2 
<* ident {dent —^ ident x ident -

Xo XQ 

ident • ident pr\ 

Xo x X-

-ident x ident — 
pr2 

ident 

ident 

pr-i pr2 
ident* ident x ident » ident 

X . 

ident • 
pri 

x. x x0 £o 

-ident x ident—zzr—'ident 
pr2 

ident 
vri pr2 —-- ident x ident * ident 

ident -
pr\ 

x . x x. 

-ident x ident- pr2 

ident 

(x x) x x x -
— — - ident x ident ident x ident * ident x ident 

same 

num 

dispose ident X ident same 

T -*• num- suce 
• • n u m 

x . x x 
ident x ident ident x ident 

dispOSeidentxiient same 

— num- SUCC •+-num 

X - X X -

ident x ident aident x ident 

num 

Since the sets IScm(ident) and /sem(num) are, to ail intents and purposes the same 

we require a similar set of 10 diagrams to describe the equality opération on numbers, 

equal : num x num —• num. 
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num 

num «• P̂ 9 num x num pr\o -num 

dispose T 

num 
P̂ 9 Prio 

num- num x num •num 

zéro zéro 

num num*- P̂ 9 

zéro x suce 

-num x num-

succ 

pr\o — num 

pr9 pno 
num- num x num -num 

suce 

num — pr9 

suce x zéro zéro 

-num x num- pr\o -num 

prg Prio 
num* num x num -num 

suce 

num*- prg 

SUCC X SUCC SUCC 

-num x num- pr\o — num 

zéro x suce 
-num x num num x num num x num 

equal 

num 

dispose 
num x num equal 

— num- SUCC — num 

suce x zéro suce x suce 
num x num » num x num num x num •* num x num 

dispose 
num x num \equal 

— num- SUCC — num num 

The next collection of diagrams describe the opération =: exp x exp —• exp. This is the Toy 

language equality operator. Notice that 0 is the True value and that 1 is the False value. 
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equal 
num x num » num 

ts.num x isjnum xs.num 

exp x exp • — exp 

pr9 prio 
num- num x num » num 

is num ts.num x ts.num ts.num 

I 
e i p ' p r n " P x e x P " p n T ^ e x p 

(pri3,pri4) 
exp x exp » exp x exp x exp 

(.) <(,)°(Pr13,Pn4>,Pn5> v.Pr15 

exp •*- pr 11 « ? * « * > pru ' exp 

(pru,pri5) 
exp x exp x exp * exp x exp 

PT13y 
{pris,(,)° (pru,pris)) (,) 

exp •*- P^n 
-exp x exp pri2 — exp 

exp x exp x exp 

JWll P^12 

exp x exp x exp 

•• exp exp -• p n i P^12 

( ( , ) 0 ( p n 3 , p n 4 ) , p n 5 ) 
exp x exp x exp —exp x exp 

dispose exp X exp X exp 

undef — exp 

(pri3 , ( , )°(pri4 ,pri5)) 
exp x exp x exp *exp x exp 

dispose exp xexpx exp 

undef — exp 
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idexj> x undef undef x idtXp 
exp x T *• exp x exp T x exp exp x exp 

di*PO**expxT 

undef exp 

dispose^ xexp 

undef exp 

PUï 

exp^ 

prn 

p r 4 2 
,exp x T - T 

idexp x undef 

*exp x exp 
PH2 

undef 

— exp 

pr*K 

exp^ 

pr\jT 

. T x exp-
przA 

undef x id exp undef 

*exp x exp — -exp 

In total 6 diagrams describe the behaviour of the Toy opérations fst : exp —• exp and 

snd : exp —* exp. Note that both fst and snd behave as identity when applied to a num-

ber. 

undef undef 

ts-num ts-num 
num •* exp num *• exp 

is.num ts-num snd 
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(O (0 
exp x exp »• exp exp x exp *• exp 

We require 9 diagrams to specify the behaviour of if. thèse diagrams are shown below. Note 

that the True value is 0 and the false value is any non zéro value including a pair constructed 

exp x exp x exp 

dispose expxexpxexp 

U x idtXp x idcrj, 
•exp x exp x exp 

if 

undef •exp 

exp x exp x exp 
is.num o zéro x idexj) x idcr7, 

exp x exp x exp 

exp x exp x exp 
is.num o suce x idCXJ> x i d ^ 

— exp x exp x exp 

(d ) ° (pri9,pr2o),pr2i,pr22) 
exp x exp x exp x exp *• exp x exp x exp 

pr22 
if 

exp 
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exp— 

dispose^ 

T 

unde/l 

pri3 
-exp x exp x e x p ^ \ P r i 5 

I p r ^ 
U x id c x p x idexp exp 

I Pr14 
exp 

e x p — — exp x exp x expC^ pr^ 

num* 

zeroj 

num 
is.num^ 

exp— 

prie 
— num x exp x exp ^v v P r i8 

I p r j ^ 
is.num o zéro x ideXD x idexv

 exP 
P i P pri4 ' 

exp x exp x exp i>*" pr15 
pri3 

exp 

succj 

num 

is.num^ 
exp-— 

prie 
- num x exp x exp v ^ P r i 8 

pr i7^ 
is.num o suce x idea7> x id e x p 

pri4 
exp exp 

P^13 -exp x exp x exp £ ^ pr^ 

exp x exp x exp x exp 

exp** pr n 
exp x exp 

pri2 — exp 

(prX9,pr20) 
exp x exp- exp x exp x exp x exp\^>Pr22 

exp— 

I Pr21 ^ 
( ( 0 ° (P^19,P^20),P^21,P^22) exp 

I Pr14y 

exp x exp x exp £ ^ pri5 P^13 

exp 

Below are the diagrams necessary to describe the opération apply : exp x decs —• exp and its 

auxiliary functions. The purpose of this opération is to specify function application. Its 

opération is as follows. 

1. When a function call exists as a sub-expression it is replaced by the function body 

bound to the function in the decs part of its argument. This is the purpose of the fetch 

opération described below. 
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2. Ail occurrences of the sub-expression arg within the body of the function found at 1 

above are replaced by the function argument from the call of the function in 1 above. 

3. Together steps 1 and 2 produce an expression whose évaluation is described by the 

remaining diagrams of the sketch. 

arg xiddecs 
T x decs •* exp x decs 

dispose *£ x de 

arg 

apply 

— exp 

undef xiddecs 
T x decs »• exp x decs 

dispose f x de 

undef 

apply 

-exp 

is.num xiddecs M xiddecs 
num x decs —— exp x decs exp x decs exp x decs 

prAS 

num-

apply apply 

ts.num 
— exp exp- fst 

apply 

exp 

snd xiddecs 
exp x decs *• exp x decs 

apply 

* > 
exp-

snd 

apply 

exp 

(= o (jW49,pr5o),pr5i) 
exp x exp x decs •* exp x decs 

(apply °(pr 49, pr si), 
apply o(pr50,pr5i)) 

exp x exp 

apply 

exp 
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((i)0(Pr49,pr5o),pr5i) 
exp x exp x decs exp x decs 

(app/yo(pr49,pr51}, 
apply o(pr50,pr51)> 

exp x exp 
(,) 

apply 

exp 

{if ° (pr52,pr53,pr54),prss) 
exp x exp x exp x decs >- exp x decs 

(apply o (pr52,pr55),pr53,pr54,pr55) 

exp x exp x exp 

(if ° (pr52,pr53,pr54),pr55) 

1 . exp x decs 
appZy 

apply 

+ exp 

(callo(pr27,pr28),pr29) 
ident x exp x decs *• exp x decs 

(fetcho(pr27,pr29), 
apply 0 (pr28,pr29), 

pr2d) 
exp x exp x decs apply 

(replace o (pr49,pr5o),pr5i) 

exp x decs 
apply — exp 

arg 

pr43 T x decs < 

arg x idde 

J>r44 T « P r 4 3 T x decs 

decs undef 

exp — pr47 
exp x decs 'PUs 

undef x idde 

exp- PU7 
exp x decs 

vPr44 

decs 

'pr4% 

PT45 , 
num - num x decs « 

ts.num is.num x idde 

exp-

JUe 

decs fst 

Pr47 . 
exp - exp x decs \pr4S 

pr4i 
exp x decs 'PU* 

fst X idde decs 

exp — PU7 
exp x decs 'PUs 

pr47 , 
exp exp x decs \nr4s 

snd snd x idde 

exp — 

(PU9, pr so) 
exp x exp- exp x exp x decs^pr 

decs 

pr47 
exp x decs 'PU8 

(= o (pr49,pr5o),P^5i) 

exp — 

decs 

PU7 
exp x decs 'pr48 
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(pr49,pr5o) 
exp x exp- exp x exp x decs^pr51 

(,) {{,)° (pr49,prso),prsi) 

exp-
pr47 

exp x decs 

decs 

'pr48 

exp x exp x decs 

exp** pr ii 
exp x exp 

pr 12 exp 

pr s- exp x exp x exp x decs 
prsî\ 

exp (pr52,pr53,pr54) 

prïT-
pru 

exp x exp x exp 

(pr52 * pr53, pr54) 
exp x exp x exp - exp x exp x exp x decs \pr55 

if 

exp — 

(*/ 0 (pr52,P^53,P^54),P^55) 

exp x decs 

decs 

'pr48 
PU7 

exp — 

exp x exp x exp x decs 

l \ 
(pr52,Pr55) 

i 
exp x decs • Pf47 pr4s 

decs 

(prs2,prss) , 
exp x exp** exp x exp x exp x decs 

apply (aPPly°(Pr^Pr™)> \xp \xp \ecs 
prs3, prs4, prss) /rpr53 yfprbA yrpr55 

exp - — exp x exp x exp x decs 
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ident x exp x decs ident x exp x decs 

-decs exp — 
pr47 

exp x decs 
pr48 

ident x exp x decs 

(Pr2B- Pr29) 

I 
ident x exp PU — exp 

(pr 27, pr 28) 
tdent x exp- ident x exp x decsKpr29 

call 

exp — 

(call o (pr27.pr2$),pr29) decs 

pr47 

exp x decs ' P 48 

exp — PU7 

exp x exp x decs 

(pr 49, pr si) 

i 
-exp x decs- PUs 

exp x exp x decs 

(pr so, pr si) 

i 
exp x decs PUs 

(Pr49, Pr'51 ) , (P^50,P^5l) 
exp x decs « exp x exp x decs » exp x decs 

apply 

exp — 

{apply o (pr49,pr51).apply o {prS0,prSi)) apply 

exp x exp ^^ "exp 
pr n prii 

(pr27,pr29) {prM,prM) 
ident x decs tdent x exp x decs - exp x decs 

fetch 
(fetch o (pr27, p»^) - \ V \P r 29 
apply o (pr2s, pr-n), decs 

1 pr29> , /m 
exp — PU9 

exp x exp x decs 

apply 

prso exp 
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exp x exp x decs 

exp** pr n pr 12 

(PU9, prso) 
exp x exp exp x exp x decsKpr51 

replace (replace o (pr49,pr5o),pr5i) 

exp — pr47 
exp x decs 

decs 

'P?48 

Thèse diagrams describe the behaviour of fetch : ident x decs - • exp whose purpose is de

scribed above. 

iàent _ ^ L _ id€nt x T PT« T 

id^cnt *rfiien< x empty 

ident-
P^7 

ident x decs • 
prs 

empty 

decs 

idident x empty 
ident x T - tdent x decs 

dispose ident xT\ 
! 
t 

T undef 

fetch 

exp 

(P^23,=;°(P^24,P^25,P^26)) 
ident x ident x exp x decs -tdent x decs 

fetch 

—exp 

(pr23,same o (pr23,pr24),pr2s,pr26) 

ident x num x exp x decs get 

, ident x tdent x exp x decs 
P^25\ 

ident^ {pr24,pr 25, pr 2e) 

pr2 
pr™ 

ident x exp x decs 
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. , , . , , , (Pr24,pr25,pr26) ., A . 
PT23^^ tdent x tdent x exp x decs — * ident x exp x decs 

ident (pr23, =; o(pr2 4 ,pr2 5 ,pr2 6)) 

^ r 7 ^ " ^ ident x decs 
prs 

-+decs 

ident x ident x exp x decs 

(Pr23,pr24) 
tdent x tdent x exp x decs - tdent x tdent 

same o (pr2$,pr24) same 

num 

ident x ident x exp x exp 
P 2̂6 

same o (pr2$, pr24) 

exp (pr23^ same o (pr2 3 , pr2i), pr25, pr26)\ num 

pr32 

ident x num x exp x exp 

exp 

num-

zéro 

num+. 

pr3i 
ident x num x exp x decs 

ident idident X zéro x idexp X iddecs 

ident x num x exp x decs 
PT31 

ident x num x exp x decs 
pr32 

idident X zéro x idtxv x idde 

— exp 

get 

ident x num x exp x decs 
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num — 

SUCC 

num + 

pr3i • ident x num x exp x decs 

pr30/ 

ident idident x suce x idexv x iddecs 

ident x num x exp x decs 

ident x num x exp x decs 

pr3i 

ident x num x exp x decs 
(pr30,pr33) 

idident X SUCC X idtrp x idde 

t 
ident x num x exp x decs get 

-ident x decs 

fetch 

-exp 

This collection of diagrams are used to describe the replace : exp x exp - exp opération. 

arg 

pr34 T x exp v p f 3 5 

pr^A 
T — T x exp \ p r 3 5 

arg x ideXp 

exp — pru 
exp x exp 

exp 
/ 

/ P r 1 2 

undef undef x idtrp 

exp — prn 
exp x exp 

exp 

'pri2 

xsjnum 

o r pr a 
num mP 3 6

 num x exp s^r37 exp exp x exp \ ^ r i 2 

exp fst fst x id{ is-num x id{ axp 

exp — pr n 
exp x exp 

/prn 

exp 

\ 

exp — pr n 
exp x exp 

exp 

rpri2 

prn 
exp exp x exp \pn2 

(pri3,pri4) 
exp x exp exp x exp x exp \prl5 

snd snd x id{ exp 

exp — prn 
exp x exp 

exp 

/pri2 

(= o(pr13 ,pr14),pr15) 

exp ^n exP x exP 

exp 

/pri2 
prn 
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(pri3,pru) 
exp x exp - exp x exp x exp \prï5 

G) ( ( , ) 0 (pri3 ,pri4) ,pri5) 

exp-
pr u 

exp x exp 

exp 

/prx2 

p n 9 ^ exP x exP x exP x e x P 
pr2o\^ 

exp~ (pri9,pr20 ,pr21) 

pr iT 
exp x exp x exp 

(pr1 9 ,pr2 0 ,pr2 i) 
exp x exp x exp exp x exp x exp x exp v p r 2 2 

if 

exp-

(*/ o (pri9,pr2 0 ,pr2 i) ,pr2 2) 

exp x exp 

,e*P 

^ 1 2 
P^n 

ident x exp x exp 

•-exp 

(P^38,P^39) . , A 
tdent x exp** tdent x exp x exp \r>r40 

call 

exp — 

(caZZo (pr38,pr39),P^4o) 

exp x exp 

rexp 

/pr12 

pr n 

exp** 

exp x exp x exp exp x exp x exp 

prn pr 12 - exp exp *+ pr n 
exp x exp 

prn — exp 
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(pri3.pris) (pri4,pris) 
exp x exp - exp x exp x exp •• exp x exp 

replace 

exp** 

(replace o (pr^P^is), replace(prï4,pri5)) replace 

\ 
exp x exp - ^ -exp 

prn prn 

exp x exp x exp x exp exp x exp x exp x exp 

exp pr n 
exp x exp pr 12 — exp exp ** prn pri2 

exp x exp x exp x exp 

exp** prn pr 12 

exp x exp 

replace 

(pri9,pr22) 

(pr20,pr22) 
exp x exp 

replacel 
exp-

exp x exp x exp x exp (P^'P 7* 2 2/—* exp x exp 

replace 
(replace o (prx9,pr22), 
replace o (pr20,pr22), 
replace o (pr2i,pr22)) 

P7"14 _ ^ exp x exp x exp 

P^13 

pris 
exp 

ident x exp x exp 

exp •* prn pri2 
-exp 

(PT39,PT40) 
pr$*^ %dent x exp x exp* • exp x exp 

ident (pr38, replace o (pr39, puo)) 

P r 3 ^ ^ ^ ident x exp 
pr4 

replace 

exp 
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replace 

undef x idexp 
T x exp » exp x exp 

dispose^ xexp replace 

undef 

is.num xidt 

num x exp 

P 3̂6 

exp 

num-
ts.num 

—*-exp 

exp x exp 

replace 

—+ exp 

fst xidexp 
exp x exp *• exp x exp 

replace replace 

ezp — 

exp x exp 

replace 

fst 

snd xid. 

-*. exp 

exp 

— exp x exp 

replace 

exp- snd 
exp 

(call o (pr38,pr39),pr4o) 
ident x exp x exp *• exp x exp 

(pr38. replace o (pr39,pr40)) 

ident x exp 
call 

replace 

exp 
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(= o (pr13,pri4),pr15) 
exp x exp x exp - exp x exp 

(replace o (pr13,pr15), 
replace o (pr14,pri5)) 

exp x exp 

replace 

exp 

(G)°(Pri3,pri4),pri5) 
exp x exp x exp * exp x exp 

(repZaceo (pr13,pri5), 
replace o (pri4,pr15)) 

exp x exp (0 

replace 

exp 

( if ° (Pr19, Pr20, P̂ 21 ), P̂ 22) 
exp x exp x exp x exp •" exp x exp 

(replace o (pri9,pr22), 
replace o (pr20,pr22)), 
replace o (pr2i,pr22)) ,, 

exp x exp x exp 

replace 

if 
—*. exp 

Finally we describe the opération wAere : exp x decs -* pnp. This opération is used to place 

an expression within a context, (i.e. an environment) and thus allow the évaluation of function 

calls. The opérations is : exp -+ prg and is'1 : prg -> exp are used to force an isomorphism 

between the sets ISem(exp) and Isem(prg). 

exp-. 
ts 

is-1 ~prg 
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A.2.2 The initial model Isem ' Toyse SET 

/Sem(T) 

Isemiident) 

Isem(num) 

ISem(decs) 

= w 
= {0,1 ,2 , . . . } 

= {0 ,1 ,2 , . . . } 

= \JIsem(decs)n,ne {0 ,1,2, . . . } 

Isem(num x num) 

ISem(exp) 

where Isem(decs)0 = {empty} 

/sem(<*ecs)n = Iscmidecs^-! U {*;(x,y,z): (x,y, z) Ç 

Isem(ident) x ISem(exp) x /sem(decs)„_i} 

Isem(ident x exp x decs) = ISem(tdent) x Jsem(exp) x ISem{decs) 

Isem(ident x t'denf) = ISem{ident) x ISem{ident) 

= Iscm(num) x /sem(nu"*) 

= U/sem(exp)n ,ne {0,1,2, . . .} 

where Isem(exp)0 = {undef,arg} U { is_num(x) : x € Isem(num)} 

ISem(exp)n = /SemCexp^U 

{ f s t ( x ) : x € {î/ : y € /sem(exp)n-i A ->p(u)}}U 

{ snd(x) : x € {y : y € /sem(exp)„_i A ->p(y)}}U 

{ (x,y) : (x,y) € /sem(exp)„_i x Isem(exp)n_i}U 

{ =(x,j/), =(j/,x) : (x,y) G {z : z € /sem(exp)n_i A ->p(«)}x 

/Sem(exp)n_i}U 

{ i f ( x .y .x ) : (x,y,z) e{a:a£ Jsem(exp)n_i A -ip(a)}x 

/5em(exp)n_i X ISem(exp)n.-i}U 

{ calKt'.e) : (i,e) € ISem{ident) x /sem(exp)n_i} 

= False p(snd(x)) = False 

= True p(ca l l ( i , e ) ) = Fa/se 

p(=(x,î/)) = False 

p( i f (x , j / ,2 ) ) = Fa/se 

p(arg) 

p( undef) 

p(isjium(x)) = True 

p((x,y)) = True 

p(fs t (x) ) = False 
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hem 

ISem 

hem1 

hem 

hem 

*Sem 

*Sem 

+ Sem 

ISem 

*Sem 

+ Sem 

•LSem1 

ISem 

*Sem 

+ Sem 

hem 

hem 

*Sem 

*Sem 

ident x decs) = 

ident x T) 

exp x exp) = 

ident x exp) = 

exp x exp x exp) = 

exp x T) = 

T x exp) = 

num x exp) = 

ident x exp x exp) = 

exp x exp x exp x exp) = 

num x exp x exp) = 

ident x num x exp x decs) 

ident x ident x exp x decs) 

T x decs) = 

num x decs) = 

exp x decs) = 

exp x exp x decs) = 

exp x exp x exp x decs) = 

prg) 

hem(ident) x ISem{decs) 

hem{ident) X hem(T) 

hem(exp) X hem{exp) 

hem(ident) x hem{exp) 

hem(exp) X hem(exp) X hem(exp) 

hem(exp) X hem(T) 

hem(T) X hem(exp) 

hem(num) x hem(exp) 

hem(ident) x hem(exp) x hem(exp) 

hem(exp) X hem(exp) X hem(exp) X hem(exp) 

hem(num) X hem(exp) X hem(exp) 

= hem{ident) x hem(num) x hem(exp) x hem(decs) 

hem(ident) x IS(im(ident) x hem{exp) x ISem(decs) 

hem{T) X hem(decs) 

hem(num) x hem(decs) 

hem(exp) X hem{decs) 

hem{exp) X hem(exp) X hem(decs) 

hem(exp) X hem(exp) X hem(exp) X hem{decs) 

hem(exp) 

IScm(x : T - ident) 

hem{z-: ident —• ident) 

hem(xo ' ident - • ident) 

hem(idident : ident — ident) 

hem(disposeideni : ident — T ) 

0 ~ O 

x — x + 1 

x - + 0 

x —* X 

x - * 0 

hem(empty : T - • decs) = ¢ ^ empty 

hem(=; ' ident x exp x decs -+ decs) = (x,y,z) - • =; ( x , y , x ) 

hem(iddecs ' decs -» decs) = x-> x 
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hem(pr27 • ident x exp x decs -> ident) = (x, y, z) -+ x 

hem(pr28 - ident x exp x decs -• exp) = (x, y,z)-+ y 

hem(pr29 ' ident x exp x decs -* decs) = (x, y, z) -* x 

hem((callo (pr27,pr2S),pr29) : ident x exp x decs -+ exp x decs) 

= (x, y, z) — (hem(call)(x, y), z) 

hem((fetch o (pr27,pr29), apply o (pr28.pr29),pr29) : ident x exp x decs 

-• exp x exp x decs) 

= (x,y, z) -> (hem(fetch)(x, y), hem(apply)(y, z), z) 

hem((pr27,pr28) ' ident x exp x decs — ident x exp) = (x, y, z) -• (x, y) 

hem((pr27,pr29) ' ident x exp x decs — ident x decs) = (x, y, z) -+ (x, z) 

hem{(pr28,pr29) '- «dent x exp x decs — exp x decs) = (x, y, z) -> (y, x) 

hem(pri : ident x ident —> ident) = (x,y) —• x 

hem(pr2 : «dent x ident -+ ident) = (x,j/) -• y 

/S c m((x,x) : T -> ident x ident) = 0 •-> (0,0) 

hem(z- X zo ^ Wewt x ident — ident x ident) = (x, y) -• (x + 1,0) 

hem(xo x X. : ident x ident — ident x ident) = (x, y) -> (0, y + 1) 

hem{x- x x- : «dent x ident — ident x ident) = (x, y) -+ (x + 1, y + 1) 

Isem(di8po8elitnixiieni : ident x ident - T) = (x, y) -+ 0 

hem(same : ident x ident — num) = / 

where /(0,0) = 0 

/ ( * + l ,0) = 1 

/ ( 0 , x + l ) = 1 

/ ( x + 1,2,+ 1) = f(x,y) 

hem(0 : T -• num) = 0 ^ 0 

hem{succ : num —> num) = x —• x + 1 

hem(zero : num — num) = x —• 0 

/scm(Wnum : num — num) = x -> x 

J5cm(disposenmm : num -> T) = x — 0 
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Isemiprç • num x num -* num) = (x,y) -»• x 

JSem(prio : num x num -» num) = (x,y) ->• y 

/sem«0,0) : T -• num x num) = 0-+(0,0) 

ISem(succ x zéro : num x num — num x num) = (x,t/) -»• (x + 1,0) 

ISem{zero x suce : num x num -* num x num) = (x, y) ->• (0, y + 1) 

•Tsem(succ x succ : num x num -> num x num) = (x, y) -* (x + 1, y + 1) 

Is«n(di8pose%%mXn%m : num x num - T) = (x, y) - 0 

ISem(equal : num x num —• num) = / 

where / (0 ,0) = 0 

/ ( Ï + 1 , 0 ) = 1 

/ (0 ,x + l) = 1 

/(x + l , y+ l ) = f(x,y) 
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x = undef 

x = is-num(y) 

x = (a,6) 

hem(arg : T — exp) 

Jscm(unde/:T-* exp) 

hem(is~num : num — exp) 

hemifst : exp -> exp) 

where / (x) = undef, 

= x, 

= a, 

= f s t ( x ) , otherwise 

hem(snd : exp -+ exp) 

where / (x) = undef, x = undef 

= x, x - is-num(y) 

= 6, x = (a, h) 

= snd ( x ) , ot her wise 

hem(idexP • exp — exp) 

hem(disposetxv : exp -* T) 

/sem((,): expx exp — exp) 

/sem(=: exp x exp — exp) 

= 0 >- arg 

= 0 ^ undef 

= x —* is_num(x) 

= / 

= / 

= X — X 

= x ^ 0 

= (x,y) — (x ,y) 

= / 

where f(x,y) = is-num( Jscm(eçuaZ)(a, 6)), x = is-num(a) A y = is-num(6) 

= undef, x = (a,6) V y = (c,d) V 

x = undef V y = undef 

otherwise 

= / 

x = undef 

x = is-num(O) 

x = is-num(n + 1) V x = (a,6) 

x = is-num(x + 1) V x = (a,6) 

= i f ( x , y , z ) , otherwise 

hem{eall : ident x exp -> exp) = (i,x) -• c a l l ( i , x ) 

hem(is-num x isjnum : num x num —> exp x exp) 

= (s, y) —• (is-num(x),isjiuiii(y)) 

/5em(«5 : exp -• prg) = x — x 

= = (x ,y ) , 

hem(if : exp x exp x exp -+ exp) 

where f(x,y,z) = undef, 

= î/, 

= 2:, 
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IsemipTi • ident x decs —• ident) = ( I . J ) - » Î 

Isem(pr& : ident x decs — decs) = (x. y) — y 

/sem(/»-5 : "fent x T -• ideni) 

/5em(pr6 : ident x T - T) 

/sem(dt'sposeI<Jen<xT : »'<fen< x T — T) 

Isem(idtxr x empfy : ù/eni x T -* ident x decs) 

( x , y ) - > x 

(x ,y) -* î / 

( x , y ) - 0 

(x,y) — (x,empty) 

/sem(prn : exp x exp -• exp) = (x, y) -+ x 

Isem(pri2 : exp x exp - exp) = (x, y) -» y 

Isemifst x idexy : exp x exp -* exp x exp) = (x, y) -+ (-Tsem(/sO(x), y) 

Isem(snd x ùf exp : exp x exp - • exp x exp) = (x, y) — (/s«n(*n<0(*). y] 

Isem(replace : exp x exp -» exp) = / 

where /(arg, r) 

/(undef,r) 

= r 

= undef 

/(is_num(n),r) = is_num(n) 

/ ( f s t ( e ) , r ) = ISem{fst){f{e,r)) 

/(snd(e),r) = ISem(snd){f(e,r)) 

/ (= (x ,y ) , r ) = /sem(=)(/(x,r), /(y,r)) 

/ ( ( x . y ) , r ) = /sem((, ))(/(*, r) , /(y, r)) 

/ ( i f ( x , y , z ) , r ) = /sem(t/K/(x,r) , / (y,r) , / (2,r)) 

/ ( c a l l (»,e),r) = /sem(coW)(«»/(e'r)) 

Fsem(pr3 : ident x exp -» idenf ) = (x, y) - • x 

Isem(pr4 : «dent x exp -• exp) = (x, y) -» y 
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/sem(pri3 : exp x exp x exp -* exp) 

Isemipru • exp x exp x exp -• exp) 

/sem(pri5 : exp x exp x exp -» exp) 

/sem(d«*PO*Cezpxerpxerp : «Xp X exp X exp — T) 

= (x,y,z) — x 

= (x,y,z)-+y 

= (x,y,z)-*z 

= (x,y,*)-+0 

/Sem(((, ) o <Pfi3,pru) ,pr is) • exp x exp x exp -> exp x exp) = 

(x,y,*)— (/sem((,))(x,y),^) 

/Sem((pri3, (, ) ° <Pri4,P^is)) : exp x exp x exp -+ exp x exp) = 

(X, y, ̂ ) -» (X, /5em((, ))(î/, *)) 

/sem((= o<pri3,pri4>,P»-i5) : «xp x exp x exp -• exp x exp) 

(x ,y ,2r)^( / S e m (=) (x ,y) ,z ) 

/Sem( i/ x idtrp x ide ip : exp x exp x exp - • exp x exp x exp) = 

(x,y,z)-* (undef, y, z) 

/sem((pri3,pri4) : exp x exp x exp — exp x exp) = (a, 6, c) -» (a, 6) 

/Sem((pri3,pris) : exp x exp x exp — exp x exp) = (a, 6, c) — (a, c) 

•Tsem((pri4,pri5) : exp x exp x exp -» exp x exp) = (a, b, c) -* (b, c) 

Isem({replace o (pr13,pr15), replace o (pr14,pr15)) : exp x exp x exp - • exp x exp) 

= (x,y,z) - • (7sem(rep/ace)(x,r),/sem('«p/ace)(y,z)) 

Isem(pr4i : exp x T — exp) 

/5em(pr42 : exp x T - T) 

Isem(disposeetpxT : exp x T -* T) 

Isemiidtxp x unde/ : exp x T -» exp x exp) 

/Sem(pr34 : T x exp ^ T) 

Isemiprss : T x exp -» exp) 

»5em(disposeTxer}, : T x exp -* T) 

Isem(arg x »'d«, : T x exp -» exp x exp) 

Isem(undef x tde*p : T x exp - • exp x exp) 

•Tsem(p»"36 : "«"* x exp - • num) 

i5em(pr37 : num x exp -• exp) 

Isem{is.num x t'dez7 : num x exp —• exp x exp) 

x,y) — x 

x,y) — y 

x,y) — 0 

x,y) —* (x,undef) 

x , y ) - * x 

x,y)-> y 

x,y)-+ 0 

x , y ) ^ ( a r g , y ) 

x, y) - • (undef, y) 

x , y ) - > x 

x , y ) - * y 

x,y) - • (is_num(x),y) 
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-Tsem(pr38 : ident x exp x exp — ident) = (x, y, z) -* x 

hem(pr39 • ident x exp x exp — exp) = (x, y,z)^ y 

Isem(pr4o - ident x exp x exp - • exp) = (x, y, z) — 2 

/sem((«i// o <pr38,pr39),pr4o) : ident x exp x exp -» exp x exp) = 

(x, y, z) — (ISem(call)(x, y), z) 

Isem((pr38,pr39) • ident x exp x exp -> ident x exp) = (x, y, 2) - • (x, y) 

J5ern((pr39,pr4o) : ident x exp X exp -» ident x exp) = (x, y, z) -* (y, z) 

Isemdprx, replace o (pr39,pr4o)) : ident x exp x exp -• ident x exp) 

= (x, y, z) — (x, Isem(replace)(y, z)) 

/Sem(pri9 : exp x exp x exp x exp -» exp) = (o, b, c,d)^> a 

Isem(pr20 : exp x exp x exp x exp — exp) = (a, b, c,d)->b 

Isem(pr2i : exp x exp x exp x exp -• exp) = (a,b,c,d)-*c 

/Sem(pr22 : exp x exp x exp x exp -» exp) = (a ,b , c , d )^d 

Isem((if ° (pn», ^20,^21),^22) : exp x exp x exp x exp — exp x exp) 

= M , C , d ) - + ( J s e m ( « / ) K M , d ) 

/sem(((,)o (pr19,pr2o),pr2i,pr22) : exp x exp x exp x exp - • exp x exp) 

= (a, &,C,d)-+(/Sem((, ))(<*, &),C,d) 

/5«n(Oww,prao) : exp x exp x exp x exp -* exp x exp) = (a, 6, c,d) -• (a, 6) 

/sem((pn9,pr22) : exp x exp x exp x exp -• exp x exp) = (a, 6, c, d) — (a, d) 

Isem{(pr20,pr22> : exp x exp x exp x exp -* exp x exp) = (a, 6, c,d) -f (6, d) 

/sem«P»-2i,pr22) : exp x exp x exp x exp — exp x exp) = (a, 6, c, d) -» (c, d) 

/sem((pri9,pr20,pr2i) : exp x exp x exp x exp - exp x exp x exp) 

= (a,6,c,d)-+(a,6,c) 

Isem({replace o (pr19,pr22), rep/ace o (pr2o,pr22), replace o (pr2i,pr32)) 

: exp x exp x exp x exp -*• exp x exp x exp) 

= (a, b, c, d) - • ( Jstm(rep/«*)(«> d), /Sem(rep/ace)(6, d), /Sern(repface)(c, d)) 
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hem(pri6 : rium x exp X exp -» num) = (x, y, z) -> x 

hem{pri7 : num x exp x exp — exp) = (x, y,z)-> y 

hem{pri8 ' num x exp x exp — exp) = (x, y,z)-* z 

hem(is-num ° zero x ideXp x idexp : num x exp x exp —• exp x exp x exp) 

= (z, y, z) — (7sCm(is-num)( J5cm(2:ero)(x)), y, z) 

/5em(t*-num o suce x idtXp x *dcrp : num x exp x exp —> exp x exp x exp) 

= (x, y, 2) — (/5cm(^-num)(/5cm(succ)(x)), y, 2) 

hem(pr3o ' ident x num x exp x decs —• ident) = (a,b,c,d) —• a 

hem(pr3i : ident x num x exp x decs —• num) = (a,6,c, d) —> 6 

hem{prz2 • «dent x num x exp x decs —> exp) = (a, 6, c, d) -* c 

hem(prz3 : ident x num x exp x decs —• decs) = (a,6,c,d) —• d 

hem(idident x ^ro x idcrp x idrfCCj : ident x num x exp x decs 

—• ident x num x exp x decs) 

= (a,6,c,d) — (a,0,c,d) 

hem(idident x suce x ideXp x id decs : ident x num x exp x decs 

—> ident x num x exp x decs) 

= (a, 6, c, d) -+ (a, 6 + 1, c, d) 

Jsem( (1^30^33) - ident x num x exp x decs —• ident x decs) 

= (a ,6 , c ,d )^ (a,d) 

hemifetch : ident x decs —• exp) = / 

where /(x,empty) = undef 

f(x,= ; (y ,e ,d) ) = hem(get)(x, hem(same)(x, y), e, d) 

hem(get : ident x num x exp x decs —• exp) = / 

where / (x ,0 ,e ,d) = e 

/ ( x , x + l ,e ,d) = hem{fetch)(x,d) 
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/Sem(P'"23 : ident x ident x exp x decs —> ident) = (a,6,c,d) ->• a 

Isem{Pr24 '• ident x ident x exp x decs -+ ident) = (a,b,c,d) -* b 

ISem(pr25 • ident x ident x exp x decs -+ exp) = (a,6,c,d) -»• c 

/Sem(pr26 : ident x ident x exp x decs -+ decs) = (a,6,c,d)-* d 

IsemiiP*,24,P',25,pr26) : «dent x ident x exp x decs -> ident x exp x decs) 

= (a,6,c,d)-> (6,c,d) 

/5em((P',23,=;0(PT'24,pr25,pr26)) : ident x ident x exp x decs -• ident x exp x decs) 

= (a ,6 ,c ,d)-*(a ,= ; (6 ,c ,d)) 

/sem«P'"23,P',24) : ident x ident x exp x decs - • ident x ident) = (a,b,c,d) - • (0,6) 

/sem(*<"ne ° (Pr23,Pr24) : «dent x ident x exp x decs -»• num) 

= (a, 6, c,d) - • Isem{same)(a, b) 

Isem((pr23,same o (pr23,pr24),pr25,pr26) : ident x ident x exp x decs 

— ident x num x exp x decs) = (a,6,c,d)-> (a,Isem(same)(a,b),c,d) 

/sem(pr43 : T x decs ^ T) = ( x , y ) - x 

Isem(pr44 • T x decs -» decs) = (x, y) - • y 

/Sem(disposeTx( i e„ : T x decs - T) = (x, y) - 0 

Isemiarg x idieM : T x decs -f exp x decs) = (x, y) — (arg, y) 

JS e m(unde/ x W^e. : T x decs -» exp x decs) = (x, y) -» (undef, y) 

ISem(PUS ' num x <* C C 5 —" "« m ) = (x,y) —• X 

/5 e m(pr4 6 : num x decs -»• decs) = (x, y)-> y 

ISem(is-numx idiec, : num x decs -* exp x decs) = (x,y) -+ (is_num(x),y) 
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hem{pU7 : exp x decs -+ exp) = (x, y) - • x 

hem(pr48 ' exp x decs -> decs) = (x, y) - • y 

hemifst x iddecs '• num x decs -* exp x decs) = (x,y) — (hem(fst)(x),y) 

hem{snd x iddecs - rxum x decs -• exp x decs) = (x,y) -• (/sem(srcd)(x),y) 

hem(apply : exp x decs -+ exp) = / 

where /(arg. d) = arg 

/(undef, d) = undef 

/(is-num(x),d) = isjium(x) 

/ ( f s t ( x ) , d ) = /S e m(/st)(/(x,d)) 

/ ( snd(x) ,d) = ISem(snd)(f(x,d)) 

/ ( ( x , y ) , d ) = /sem((,))(/(x,d),/(y,d)) 

/ ( « ( x , y ) , d ) = /sem(=)(/(x,d),/(y,d)) 

/ ( i f ( x , y,z),d) = f(ISem(if)(f(x,d),y,z).d) 

/ ( c a l l ( i , e ) ,d ) = f(ISem(replace)(ISem{fetch)(i,d),f(e,d)),d) 

Isem(pr49 '• exp x exp x decs —•• exp) = (x. y.z) -* x 

Isem{prso : exp x exp x decs -+ exp) = (x. y.z)-+ y 

/sem(pr5i : exp x exp x decs —•• decs) = (x ,y . z ) -* z 

Isem{{(,)° (pr49,pr5o),pr5i) : exp x exp x exp -+ exp x decs) 

= (x ,y .2 )^(J S e m ( ( , ) ) (x ,y ) , z ) 

Isem((= ° {pr 49, Prso)*pr 51) : exp x exp x exp - • exp x decs) 

= ( x , y , z ) ^ ( / 5 e m ( = ) ( x , y ) , 2 ) 

Isem((apply o (pr49.pr5i), appty o (p^scP^si)) : exp x exp x decs -> exp x exp) 

= (x, y, 2) -<• (Isem(apply)(x, z), Isem(apply){y, *)) 

Isemdreplace o (pr49,pr5o),pr5i) : exp x exp x decs -»• exp x decs) 

= (x,y,z) — (Isem{replace)(x,y),z) 

Isem((pr49,prw) : exp x exp x decs -• exp x exp) = (x, y, z) -* (x, y) 

/sem((p»"495pr5i) : exp x exp x decs -* exp x decs) = (x, y, 2) -+ (x, z) 

Isem{{prso,prs\) : exp x exp x decs -> exp x decs) = (x, y, 2) - • (y, 2) 

Isem((apply o (pr49,prsi), app/y © (pr5o,pr5i)) : exp x exp x decs -> exp x exp) 

= (x,y,z) -» (Isem(apply)(x,z),ISem(apply)(y,z)) 
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hem(prs2 : exp x exp x exp x decs -> exp) = (a. 6. c,d) — a 

/sCm(p^53 : exp x exp x exp x decs -• exp) = (a. 6. c,d) -> 6 

hemipr54 - exp x exp x exp x decs -+ exp) = (a. 6. c, d) -+ c 

hem(pr55 ' exp x exp x exp x decs -• decs) = (a,6,c,d)-+ d 

hem{(if ° (pr52,pr53,pr54),pr55) : exp x exp x decs — exp x decs) 

= (a ,6 ,c ,d)- ( / 5 c T „( i / ) (a ,6 ,c) ,d) 

hem((apply o (prb2,prb5),pr53,pr54,pr55) : exp x exp x exp x decs 

-» exp x exp x exp x decs) 

= (a, 6, c, d) - • (he-i(apply)(a, d), b, c, d) 

hem((pr52,pr53,pr54) : exp x exp x exp x decs — exp x exp x exp) 

= (a,6,c,d) — (a,b,c) 

hem((pr52,pr55) > exp x exp x exp x decs -> exp x decs) = (a, 6.c,d) — (a,d) 

hem{(apply 0 (pr52,pr55),pr53,pr54,pr55) : exp x exp x exp x decs 

-+ exp x exp x exp x decs) 

= (a,b,c,d)-+ {he-XaPPly){a->d),b,c,d) 

hem(where : exp x decs -+ prg) = hem(is){htm{apph)) 

hemiis'1 : prg ^ exp) = x — x 

A.3 The eva/ and Zearn transformations 

We begin by specifying the sketch morphism E : ToySyn -* Tby5cn which allows us to specify 

the functor E* : Mod(ToySem) -> Mod{ToySyn). Using this functor we are able to define 

the model E*(hem) - ToySyn - • SET and the transformations eval : hyn
 A Em(hem) and 

learn : E*(hem) -» hyn-
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À.3.1 T h e sketch morphism E : ToySyn -> Sem 

E(T) = T 

JE'(num) = num 

E(ident) = ident 

E(exp) = exp 

E(ident x exp) = ident x exp 

E(exp x exp) — exp x exp 

E(exp x exp x exp) = exp x exp x exp 

E(decs) = decs 

E(exp x decs) = exp x decs 

E(exp x ident x decs) = ident x exp x decs 

E(prg) = prg 

E(0 : T -> num) = 0 

E(succ : num —• num) = suce 

i:(x : T -+ ident) = x 

£ ( x . : ident —• ident) = x. 

£(an7 : T —• exp) = arg 

E(error : T —• exp) = unde/ 

E(isjnum : num —• exp) = is_num 

E(call : ident x exp —• exp) = ca// 

£(/st : exp —• exp) = /st 

E(snd : exp —• exp) = snd 

£ ( t / : exp x exp x exp —• exp) = t/ 

£ ( = : exp x exp -* exp) = = 

E((, ) : exp x exp —• exp) = (, ) 

£"(Prii : exp x exp -» exp) = prn 

E(pri2 : exp x exp —* exp) = pri2 
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E(pri3 : exp x exp x exp - • exp) = prX3 

E(pru : exp x exp x exp -> exp) = prl4 

E(pris : exp x exp x exp — exp) = prXh 

E(empty : T — decs) = empty 

£ ( = ; : ident x exp x decs -* decs) = =; 

E(pr27 : ident x exp x decs —> ident) = pr27 

E(pr2S : ident x exp x decs -+ ident) = pr28 

E(pr29 : ident x exp x decs -* ident) = pr29 

E(pr47 : exp x decs —•exp) = pr47 

E(pr4S : exp x decs —•exp) = pr48 

E(pr3 : ident x exp — ident) = pr3 

E(pr4 : ident x exp — ident) = pr4 

E (where. : exp x decs -+ prg) = where 

A.3.2 The model E*(hem) 

The functor Em : Mod( ToySem) — Mod(7by5yn) is defined below. 

£*(M : Toy sem - SET) = M o E 

E*(f:M + N) = f : E*(M) + E*(N) 

From this we obtain the following définition of Em(hem) • ToySyn -> SET. 
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E'(ISem)(T) 

E'(ISem)(ident) 

E'(ISem)(num) 

E*(ISem)(decs) 

= W 
= {0,1,2 , . . . } 

= {0,1,2, . . . } 

= UIsem(decs)n,ne {0 ,1 ,2 , . . . } 

where Isem(decs)0 = {empty} 

Isem(decs)n = /5 e m (decs) n _iU{=;(x ,y ,2) : (x ,y ,2)€ 

ISem(ident) X Isem(exp) X /Sem(decs)n_i} 

E"(ISem)(ident x exp x decs) = ISem(ident) x Isem(exp) x ISem(decs) 

E'(ISem )(exp) = U hem(exp)n, n € {0, 1, 2,. . .} 

where Isem(exp)0 = {undef,arg} U { isjium(x) : x € /5em(num)} 

/Sem(exp)n = /sem(exp)n_1U 

{ f s t ( x ) : x € {y : y € Istm(exp)n-i A -'p(y)}}U 

{ snd(x) : x £ {y : y € /semtexp),,-! A ->p(y)}}U 

{ (x,y) : (x,y) € /5em(exp)„_i x /semtexpjn-iju 

{ =(x ,y) , =(y,x) : (x,y) € {2 : 2 € Isem(exp)n.i A ->p(2)}x 

/Sem(exp)n_1}U 

{ i f (x .y .x ) : (x,y,2) Ç {a : a £ Isem(exp)n-i A ->p(a)}x 

ISem{exp)n-i X /sem(exp)n_i}U 

{ call(i.e) : (i,e) € Is*n(ident) x /sem(exp)n_1} 

Fa/se p(snd(x)) = False 

True p(call(i,e)) = False 

p(=(x,y)) 

P(arg) 

p(undef) 

p(is_num(x)) = True 

p((.x,y)) = True 

p(fst(x)) = False 

E'(ISem)(exp x exp) 

-EVsemXident x exp) 

E*(ISem)(exp x exp x exp) 

£*(/sem)(expx decs) 

EVsem)(prg) 

= False 

p( i f (x ,y ,2 ) ) = False 

= Isem(exp) X Isem(exp) 

= /sem ( «dent ) x ISem ( exp) 

= ISem(exp) X Isemiexp) X Isem(exp) 

= ISem ( exp) X /Sem ( decs) 

= /Sem(exp) 

^*(/5em)(x : T -> ident) 

•E*(-fsem)(x-: ident -* ident) 

0 f - O 

x -*• x + 1 
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E'(ISem)(empty : T - decs) = 0 ~ empty 

£*(Jsem)(=;: ident x exp x decs - • decs) = ( x , y , x ) - • » ; (x ,y ,x ) 

£"(/sem)0w"27 : ident x exp x decs -» ident) = (x, y, 2) -» x 

£"(/sem)(p»"28 : ident x exp x decs - • exp) = (x, y,z)-^y 

E'(Isem)(pr29 • ident x exp x decs -> decs) = (x, y,z)-> z 

E'(ISem)(0:T->num) = 0 ~ O 

E*{Jsem)(succ : num -> num) = i - » i + l 
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Em(hem)(arg:T-+exp) = 0 - arg 

Em(hem)(error : T -+ exp) = 0 -» undef 

Em(hem)(is-num : num —• exp) = x —• isjium(x) 

Em{hem)(fst : exp — exp) = / 

where / (x ) = undef, x = undef 

= x, x = is-num(y) 

= a, x = (a,6) 

= f s t ( x ) , otherwise 

£*(/sCm)(s™* : exp — exp) = / 

where / (x ) = undef, x = undef 

= x, x = is-num(y) 

= 6, x = (a,6) 

= snd(x), otherwise 

E*(hem)((,)'-expx exp-* exp) = (x,y)-+ (x,y) 

-E*(/sem)(=: exp x exp -> exp) = / 

where / (x ,y ) = is-num(/sem(eçua/)(a,6)), x = is-num(a) A y = isjium(6) 

= undef, x = (a,6) V y = (c,d) V 

x = undef V y = undef 

= =(x,y) , otherwise 

Em{hem)(if • exp x exp x exp-+exp) = / 

where f(x,y,z) = undef, x = undef 

= y, x = i s Jium(O) 

= z, x = is-num(n + 1) V x = (a,6) 

x = is-num(x + 1) V x = (a,6) 

= i f ( x , y , z ) , otherwise 

Em{hem){call : ident x exp -• exp) = (i ,x) -* c a l l ( i , x ) 

Em(hem)(prn : exp x exp - exp) = (x,y) -> x 

£*(/5em)(pr12 : exp x exp - exp) = (x, y) ^ y 

E*(hem)(pr3 ' ident x exp -• ident) = (x,y) -> x 

£*(/sCm)(pr4
 : W c n* x e x? -* exP) = (*' ?) ~> » 
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E'(Isem)(pri3 : erp x exp x exp ~» exp) = (x,y,z)-+ x 

E'{Isem)(pri4 : exp x exp x exp -* exp) = (x,y, 2) — y 

•EVsemXpris : exp x exp x exp -• exp) = (x , j / , z ) - t2 

£*(/semXJW47 : exp x decs -» exp) = (x, y) -* x 

E*(Isem)(pr4& • exp x decs -» decs) = (x, y) -* y 

E*(Isem)(where : exp x decs -• prg) = /sem(is)(/sem(appty)) 
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A.3 .3 T h e eval natural transformation 

evali 

evalident 

evalnum 

eval exp 

eval 

eval 

exp X exp 

exp X exp x exp 

= U 
= / where / (x ) = 0 

/ (xy) = l + / (y) 

= / where / (0 ) = 0 

/ ( succ(y) ) = l + /(y) 

= / where /(arg) = arg 

/ (error) = undef 

/(is_num(n)) = is_num(eva/Bttm(n)) 

/ ( f s t ( x ) ) = ISem(fst)(f(x)) 

/ ( snd(x)) = ISem(snd)(f(x)) 

/ ( ( x , y ) ) = ( / (x ) . / (y ) ) 

/ ( = ( x , y ) ) = /sem(=)(/(x), /(y)) 

/ ( i f ( x , y , 2 ) ) = /Sem(t/)(/(x),/(y),/(2)) 

/ ( c a l l ( i . e ) ) = call(et;a/ i<ien<(i),/(e)) 

= (x,y)-*(evalexp(x),evalcxp(y)) 

= (x,y,2)-» (era/exp(x),et;a/erp(y),eva/eXp(2)) 

= (x, y) -* (et;fl/^eii«(x), evalexp(y)) evalidentx exp 

eval idtntxtxpx decs = (x,y,z)-~ (evalident(x), evalexp(y), evalitcs(z)) 

evalit 

eval expx decs 

evalprg 

= / 

where /(empty) = empty 

/ ( s ; ( x , y , 2 ) ) = -;(evalident(x), eval eXT(y), eval decs(z)) 

= {x,y)-+(evalexp(x),evalexp(y)) 

= / 

where /(where(x.y)) = ISem(apply)(evalexp(x),evaldecs(y)) 
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A.3 .4 The learn transformation 

learni = 1(} 

learnutnt = / w h e r e / ( ° ) = x 

/ (1 + y) = x/(y) 

learnnum = / where /(0) = 0 

/ (1 + y) = succ( / (y)) 

learntxp = / where /(arg) = arg 

/(undef) = error 

/(is_num(n)) = is_num(/earn„„m(n)) 

/ ( f s t ( x ) ) = f s t ( / ( x ) ) 

/ (snd(x)) = snd(/(x)) 

/ ( ( x . y ) ) = ( / ( x ) J ( y ) ) 

/ (= (x .y ) ) = =(/(x).f(y)) 

/ ( i f ( x , y , 2 ) ) = i f ( / ( x ) , / ( y ) , / ( 2 ) ) 

/ ( c a l l ( i . e ) ) = call(/earn^e n <(i),/(e)) 

learnexpxexp = (x,y) ^ (learnesp(x), learnexp(y)) 

learntxpXexpXeXp = (x,y,z)-^ (leam^x^learn^y^learn^z)) 

learnidentxezv = (x, y)-+(learniàerJx), learnap(y)) 

learnuentxerpxdecs = ( x , y , z ) - (learnueni(x),leamtxp(y),leamitc>(z)) 

learn decs — f 

where /(empty) = empty 

/ ( * ; ( x , y , 2 ) ) = =lUearnideni(x), learntxp(y), learn*«.(*)) 

learntxpxdecs = (x,y)-^ {learn^x^leam^y)) 

learnprg = f where / (x ) = where(/ecrnerp(x),empty) 

A.4 A Toy datatype to represent Toy programs 

The datatype is described as a pair of transformations: 

encode : /syn -•• E*(Isem) 

décode : E"(Isem) -* ISyn 
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such that décode o encode = l / s . 

encode? = 0 *-+ (0,0) 

encode^cnt = y -> (1 • /(»)) 

where / (x) = 0 

/(xy) = l + / (y) 

encodenum = y-» (2 , / (y) ) 

where / (0) = 0 

/ (succ(y)) = l + /(y) 

encodedees = d—>(3,/(d)) 

where /(empty) = (0,0) 

/ ( = ; ( i , e , d ) ) = (l,encode t^n ,xcrpx ,fcc ,(i,e,d)) 

encodeexp = z — (4 , / (x ) ) 

where /(arg) = (0,0) 

/(error) = (0,1) 

/(is_num(n)) = (l,encodenUTn(n)) 

/ ( f s t ( x ) ) = (2,encodecrp(x)) 

/ (snd(x)) = (3,6ncodecrp(x)) 

/ ( (* . ! / ) ) = (4,encodecxpxerp(x,y)) 

/ (= (* ,y ) ) = (5,encodecrpxCi7>(x,y)) 

/ ( i f ( x , y , z ) ) = (6,encodecrpxcrpxcxp(x,y,z)) 

/ ( c a l l ( i , e ) ) = (7 ,encodeidentxexp{i,e)) 

encodeexpxexp = (*,»)-+ (5, (encode^(x), encodecrp(y))) 

encode exp x exp x exp = (^»î/^)-* (6,(encade&rp(x), (encocfecxp(y), encode tXp(z)))) 

encodeidentxexp = (*,») — (7,(encodef-,*en,(x), encodecrp(y))) 

encode identx exp X decs = 

(x,y,*)-» (8,(encode,^nt(x), (encodecrp(y), encode^cs(z)))) 

encode «xy xdec* = (* ,» ) - • (9,(encodeexp(x), encode decs (y))) 

encodeprg = (where(e,d)) -• (10,encode ̂ x decs (e,d)) 
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décode? = ( ( 0 , 0 ) ) ^ - 0 

decodeident = (Cl . y ) ) — f(y) 

where / ( 0 ) = x 

/ ( 1 + y) = x / ( y ) 

decodenum = ( ( 2 , y ) ) - » / ( y ) 

where / ( 0 ) = 0 

/ ( 1 + y) = s u c c ( / ( y ) ) 

décode decs = ( ( 3 , d ) ) - / ( d ) 

where / ( ( 0 , 0 ) ) = empty 

/ ( ( l , x ) ) = = ; ( i , e , d ) 

where {i,e,d) = décodeidentx exp x decs (x) 

decodetXp = ( 4 , x ) - - / ( x ) 

where / ( ( 0 , 0 ) ) = arg 

/ ( ( 0 , 1 ) ) = error 

/ ( ( l , n ) ) = is-num(decoden t m(n)) 

/ ( ( 2 , x ) ) = f s t (décode txv{x)) 

/ ( ( 3 , x ) ) = snd(decodecrp(x)) 

/ ( ( 4 , x ) ) = (a ,6 ) 

where (a, 6) = décode c r p x grp (x) 

/ ( ( 5 , x ) ) = = (a ,6 ) 

where (a, b) = décode txpxcxp{x) 

/ ( ( 6 , x ) ) = i f ( a , 6 , c ) 

where (a, 6) = décode tXpx exp xcxp{*) 

= c a l l ( i , e ) 

where (i,e) = décode ident xcxp(x) 

= ((5,(x,y)))-^(decodeCx ï,(a:),decodeex,>(y)) 

= ( (6 , (x ,y ,z ) ) ) -^(decode c r p (x ) ,decode c i p (y ) ,decode c r p (z ) ) 

= ( (7 , (x ,y)) ) -^(decode l i c n t (x) ,decode e xp(y)) 

decodeuemxexpxdecs = ( ( 8 , ( x , (y ,2:) ) ) ) — (decodet<icn<(x), decodetXp{y), décode itcs{z)) 

décodeexpxdecs = ( 0 , U , î / ) ) ) ^ (decodecrp(x),dccoderfcC5(y)) 

/ ( (7 ,¾) 

décode exp x exp 

décode exp x exp X exp 

deCOde identx exp 

décode prg 
= ( ( 1 0 , x ) ) - > ¥here(e ,d) 

where (e,d) = décode exp x decs (*) 

166 



A.5 The Toy self-interpreter 

A.5 .1 T h e interpréter function 

This function interpréter : Isyn —• Isyn is defined as interpréter = learn o eval. This défini

tion expands to the one shown below. 

interpréter^ = 1Q 

interpréterident = lrSyn(ident) 

interpréter num = 1/Syn(„„m) 

interpréter txp = / 

where / (arg) = arg 

/ ( e r r o r ) = e r r o r 

/(is_num(n)) = is_num(n) 

/(fst(e)) = Ff3t..exp-.exp(f(e)) 

/(snd(e)) = Fsnd:exT^exV(f(e)) 

/((x.y)) = (f(x)J(y)) 
/ ( * ( x , y ) ) = F = : e ï p x e r p . - e r p ( / (x ) , / (y ) ) 

/(if(x,y,2)) = Fij:exJ)Xexpxexp^exp(f(x),f(y),f(z)) 

/(call(i.e)) = call(i,/(e)) 

interpréterexpxexp = (x, y)-* (interprétertxp(x), interprétertxp(y)) 

interpréter exfXtxpXexp = 

(x, y, 2) — (in«erpre*ereip(x), interprétertxp(y), interpréterez)) 

interpréter iitnixtXf = (x, y) -* (interpréteriient(x), interprétertxp(y)) 

interpréter iientxexpx decs -

(x,y, 2) -» ( interpréter l(fen<(x), in«erpreïererp(y), i n t e r p r e t e r ^ x ) ) 

interpréter dees = f 

where /(empty) = Feroj,<r.T-.,/ec,(«iipty) 

/ ( « ; ( i , e , d ) ) = ir=;:,,ien<x«pxiec»-.<iee«(i,in*erpreferM7(e),/(d)) 

interpréter^decs = (x>») ~> (interpréter^(x), interpréteriecs(x)) 

interpréterpry = (where(e.d)) - • Fu,Aere:erj.x</ec«-jrï(e,d) 
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The functions used in the définition above are defined by theorem 6.1.1 and are specified 

belo-RT. 

Fempty.T-decs = 0 ~ empty 

F=.:identxcxpxdccs^dccs = {x,y,z)^X^y\Z 

Ffsucxp-.cxp(x) = error, x = error 

= x, x = is-num(y) 

= a, x = (a,6) 

= f s t ( x ) , otherwise 

F3nd:exp-+exp(x) = error, x = error 

= x, x = is-num(y) 

= 6, x = (a,6) 

= f s t ( x ) , otherwise 

JT=:cjpxcrp^crp(x,y) = isjmm(eçiia/(a,&)), x = is-num(a) A isjmm(&) 

= error, x = (a,6) V y = (c,d) V 

x = error V y = error 

- =(x,y), otherwise 

where equal(0,0) = 0 

egua/(succ(x),0) = succ(O) 

egtia/(0,succ(x)) = succ(O) 

egtia/(succ (x) ,succ (y) ) = equal(x, y) 

Fif:expxexpxexp^exp(x,y,z) = error, x = error 

= y x •=•- isjuum(0) 

= z, x = is.num(succ(y)) V x = (a,6) 

= i f ( s , y , z ) , otherwise 

Fwhere:cxpxdecs->prg(x;y) = ^^^Favvîy,txpxdecs^exp{x, y), empty) 
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Fapply:expxdecs-+exp(zrg,d) = a r g 

Fapply:expxdec3^exp(^T0T, d) = error 

FaPply:expxdecs-^exp(iS-nUto(n) , d) 

= is-iium(n) 

Fapply\expxdecs-+exp\îs^'{e) ,d) = Ff3t:exp-*exp\Fapply:expxdcc3-+exp\e, d)) 

Fapply:expxdec3—*exp{811d\ej,d) = F3nd:exp —• exp(*app/y:expxdecs-*exp\e, a)) 

Fapply:expxdec3-+exp{(x » î/) , d) = (-fapp/y:expxdec5-»exp(£* d) $ -r app/y :expX(feca—exp(î/> d)) 

Fapply:expxdec3—*exp\s{x>y', ") 

= F=:exp x cxp->cxp{Fapply:expxdec3-+exp{x, d), ^ apply iexp X decs—>exp[y, <*)) 

Fapply:expxdec3->exp(îf \X 9y 9ZJ,d) 

= Fapply:expxdec3^exp\*if:expXcxpxcxp—*cxp\-rapply:expxdec3--+exp\x, &), V, z), &) 

Fapply:expxdec3-+exp ( c a l l (ife),d) 

= Fapply:expxdcc3-*cxp{Frep lace: exp x exp-+exp (vOdy, r apply:expx decs-• exp \e, a)), a) 

Where ftody = FfeUh:identxdccs-+exp(i,d) 

•Treplace:expx exp-+exp\ttg,T) = T 

irrCp/acC:CrPxCrp-Crp(error,r) = error 

Frcpiace:cxpxexp-+cxp(isjriymU) ,r) = is-aum(n) 

Freplacc:expxcxp-+exp\î S t ( e ) , r) — T fst: exp—* exp \f replace : exp X exp—* exp \e, r)) 

•*replace :expx exp-• exp(SD.d(e) , r) = r snd: exp x exp —*> cxp\*replace -.exp x exp —»• exp Ve, r)) 

f replace : exp X exp-* exp \~\x iV' ,r) 

= F=:expxcxp-+cxp\Freplace:expXcxp—>cxp\x, T), -^ rep la ce : exp x exp-* exp (V, r)) 

* rep la ce: exp x exp—*exp\ *x *y),r) 

= \Freplacc:expxexp->cxp\x, TJ ** rep lace: exp x exp-* exp \V, r)J 

Frcplacc'.cxpxexp-+cxp\tt\x »y »Z',T) = Fi}=ltxpxcxp x exp-*exp\x , V , z ) 

Where X; = Frtplace:expXexp^exp{x,r) 

V = r rep lace : exp X exp-* exp \V, T) 

Z = + replace : exp X exp—> exp \z,r) 

Freplace\expXexp—*cxp\t^-±{l*ej,r) = CallQt » J4 replace: exp x exp—* exp (e, r)) 
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Fjetchudent x decs-*exp (x ,empty) = e r r o r 

Fjetch:idcntxdecs-+ exp(x,= l (y,e,d)) 

= * gct:\dcntx num x exp X decs—* exp \x, * sameiident x idcnt-+num\x, y), e, d) 

* getiidcntxnum x exp x decs—>cxp\x,Q, e, d) = e 

* geUidentx num x exp X decs-* exp \x,SUCC ( n ) , €, d) = Ffetch:identx decs-* exp (x, d) 

F3amc:idcntxident-+num\Q,Q) = 0 

FSamc:idcntxidcnt-+num(sUCc(x),0) = SUCC(O) 

F3ame:ident X ident-^num (0,SUCC ( x ) ) = SUCC ( 0 ) 

FSame:ident X ident-* nttm(sUCc(x), SUCC ( y ) ) = Fsame:identxident-*num(x,y) 

A.5.2 The rep-interpréter function 

We now define the function repJnt : Em(Isem) -* £*(/sem)- This function is defined using 

the functions: interpréter, décode, and encode as rep.Ànt = encode o interpréter o décode. This 

définition expands to the one shown below. 
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rep.int^ - (0,0) *-• (0,0) 

rep.intidtnt = (1.x) - * ( l , x ) 

rep.intnum = (2,x) ->(2,x) 

rep.intexp = (4,x) — / (x) 

where / ( ( 0 , 0 ) ) = (0 ,0) 

/ ( ( 0 , 1 ) ) = (0 ,1) 

/ ( ( l , n ) ) = ( l . n ) 

/ ( ( 2 , x ) ) = rep_F/,<:erp_„J)(rep-in^zp(x)) 

/ ( ( 3 . x ) ) = rep-F,nd:exp-.exp(rep.intexp(x)) 

/ ( ( 4 , ( 5 , ( x , y ) ) ) ) = (4,(5,(rep_in*exj,(x),rep_inierj)(y)))) 

/ ( ( 5 . ( 5 , ( ¾ . y ) ) ) ) = rep.F=:e„,xerj>_exp(x,y) 

/ ( ( 6 , ( 6 , ( 1 , ( y , 2 ) ) ) ) ) = rep-F, / : e x p X e r j ) X e i p _ e i r p (x ,y ,2 ) 

/ ( ( 7 , (7. ( i . e ) ) ) ) = (7,(7,(i ,rep.in* e r p(e)))) 

r e p - i n t ^ x ^ = ( ( 5 , ( x , y ) ) ) -+ (5,(rep.in(e i p(x), rep.intexp(y))) 

rep.int txpXexpx txp = 

( ( 6 , ( x , ( y , 2 ) ) ) ) - > (6,(rep_in«eip(x),(rep.intexp(y),rep-inferp(2)))) 

reP-*^.,fen<xexP = ( ( 7 , ( x , y ) ) ) - * (7, (repJntidtnt(x),rep.inttxp(y))) 

^P-int ident xezpx decs = 

( 8 , ( x , ( y , 2 ) ) ) - • (8,(repJn* l ( ieBt(x),(repJnieip(y),repJn^e(:,(;:)))) 

rep.intdeca = (3,x) - • / ( x ) 

where / ( ( 0 , 0 ) ) = r e p J ^ ^ T ^ ^ ^ O . O ) ) 

/ ( ( l . ( 8 , ( i , ( e , d ) ) ) ) ) = 

repJp=...identxe^xdccs~icc.(i, rep.int(e), rep.intdeea(d)) 

rep-int^j^dec, = ( 9 , ( x , y ) ) - • O ^ r e p - i n ^ x ) , r e p . i n t ^ ( y ) ) 

repJntprg = ( 1 0 , ( 9 , ( e , d ) ) ) — repJ,
v/ktre.txpxieet^prg(e,d) 

The fonctions used in the définition above axe the transformed versions of those defined by 

theorem 6.1.1 and are specified below. 

rep_Femp<y:T^ee , = (0 ,0) ~ (3 . (0 ,0 ) ) 

repJ,
=;..>dtntxeipxdccs-+decs = (i,e,d) - • ( 3 , ( 1 , ( 8 , ( i , ( e . r f ) ) ) ) ) 
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rep_Ff,Ucxp^exp(x) = ( 4 , ( 0 , 1 ) ) , x = (4 , (0 ,1 ) ) 

= x, x = ( 4 , ( l , y ) ) 

= o, x = ( 4 , ( 4 , ( 5 , ( 0 , 6 ) ) ) ) 

= ( 4 , ( 2 , x ) ) , otherwise 

rep-F^^^x) = ( 4 , ( 0 , 1 ) ) , x = ( 4 , (0 ,1 ) ) 

= x, x = ( 4 , ( l , y ) ) 

= 6, * = ( 4 , ( 4 , ( 5 . ( 0 , 6 ) ) ) ) 

= ( 4 , ( 3 , x ) ) , otherwise 

repS=xtxpXtxp^txp(x,y) 

= (4,(l,rep.eguo/(o,6))), x = (4 , (1 ,o ) ) A y = (4 , (1 ,6 ) ) 

= ( 4 , ( 0 , 1 ) ) , x = (4 , (4 ,0 ) ) V y = (4 , (4 ,6 ) ) V 

x = (4 , (0 ,1 ) ) V y = ( 4 , ( 0 , 1 ) ) 

= ( 4 , ( 5 , ( x , y ) ) ) , otherwise 

where rep.eguo/( (2 ,0) , (2 ,0) ) = (2,0) 

rep.eguo/((2,x+ 1),(2,0)) = (2,1) 

rep.eguo/((2,0),(2,x + l ) ) = (2,1) 

rep_eguo/((2,x+ 1 ) , ( 2 , y + 1 ) ) = rep.eguo/(x, y) 

reP-FiJ.expx exp x eij>—exp (x> Vi z) 

= ( 4 . ( 0 , 1 ) ) , x = ( 4 . ( 0 , 1 ) ) 

= y, X = ( 4 . ( 1 , 0 ) ) 

= z, x = ( 4 , ( 1 , y + D ) V x = ( 4 , ( 4 , 0 ) ) 

= ( 4 , ( 6 , ( 6 , ( x , ( y , 2 ) ) ) ) ) , otherwise 

repJ^ere:e*px<<«,-We,<*) = (10 . (9 , (rep_F 4 p p / , : e x p x i e c ,_« p (x ,y) , (3 , (0 .0) ) ) ) ) 
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rep-FBppfr:«px&«-«*p((4. (0.0) ) , d) = ( 4 , ( 0 , 0 ) ) 

repJ^ o p p / y : e x p x r f e M - e x p((4,(0, l )) ,d) = ( 4 , ( 0 , 1 ) ) 

repJ^a p p ,y : e x p x r f e c J - e x p((4,( l ,n)) ,d) = ( 4 , ( l , n ) ) 

rep-Fapply.expxdec3^exp((4,(2,e)),d) = repJr
/ , , : erp-erp(repJr

opp/y:„pxdec ,_>exp(e,d)) 
rep-FappiV:exPxdeu-*exp( ( 4 , (3 , e ) ) , d) = rep-F , n J : e r p - e r p (rep_F o p p , y : e x p x d e c J _ e x p (e , d)) 

reP-FopP/v:«px<ie«-.exP( ( 4 , ( 4 , ( 5 , ( x , y) ) ) ) , d) 

= ( 4 , (4 , (rep J:,
app/y:e;cpX(ieca_ea.p(x, d), repJ*apply.expxdeca^exp(y, d)) ) ) 

rep.Fopp/y:eipX(iecJ_exp( (4 , (5 , (5 , (x , y) ) ) ) , d) 

= rep_r _:expxerp_exp(rep_i* app/y:expXj{ecJ_e:rp(x,a), rep_ropp;y:expX(jeca_exp(y,a)J 

rep_Fo p p / y : e x p X ( i e C3 - e x p( ( 4 , ( 6 , ( 6 , ( x , ( y , 2) ) ) ) ) , d) 

= rep_T o p p ; y : e x p x j e C 3_ e x p ( rep_F,y:erpx exp x e x p _ e r p ( rep.r apply.expxdecs—>exp(X, ") , y, 2), «) 

™P-F*pplviezpxdeu-*ezp( ( 4 . ( 7 , ( i , e ) ) ) , d) 

= rep_Topp/y:expx<(ec4_>exp(rep_/' Ttplace:ezpxexp-*exp("0dy'>reP-^ apply:expxdecs-*exp\e,d)),a) 

where 6ody = rep.FJtUh:idenixdec3^exp(i,d) 
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reP-f,rep/a«:erpxex7,-exp((4. ( 0 , 0 ) ) , r) = r 

rep-Fnplact:txpx ^ - ^ , ( ( 4 , ( 0 , 1 ) ) , 0 = ( 4 , ( 0 , 1 ) ) 

rep-Fr^c^rpx^-exp^.a.n))^) = ( 4 , ( l , n ) ) 

rep-Fnplace:expx « , - e « p ( ( 4 . ( 2 . e ) ) , r ) 

reP-Ffst;txp-~czp(reP-Frephce:exp X «p-erp (e , 0 ) 

rep-F«p/ace:erpXexp_exp((4,(3,e)),r) 

reP-T ind-.cxpxexp—cxpKTep-ï replacc:erpXerp-+crp\ei r)) 

rep-F„p/ace:erpXexp_erp((4,(5,(5,(x,y)))),r) 

= repJ? _.e x p x e x p_> e x p(rep_r rep/aee:expXerp^erp(X»0» *«p'«ee:expXe*p-»erp(y»r)) 

r e p - F „ p , a e e : e x p x e x p _ e r p ( ( 4 , ( 4 , ( 5 , ( x , y ) ) ) ) , r ) 

= (rep.r rep/ace:erpxexp—"•exp(X,r),rep_r r e p /a c e : e x p x erp—•erpli'' r ) ' 

r ep-F r e p / a « : e x p x e r p _ e ; r p ( (4 , (6 , (6 , (x , (y ,2) ) ) ) ) , r ) 

= rep_Fi/:expXexpxexp^erp(x',y',2') 

where x' = rep_Frep,Bce:expxexp^eX|,(x,r) 

» = reP-*1 replace:exp x exp•~>cxp\y,>T) 

Z = ^P—^ rep/ace:erpxexp—•expl'2'r) 

rep-Frep,ace:expxexp_exF((4,(7,(7,(i,e)))),r) = 

(4,(7,(7,( i ,rep_F„p / a c e : e x p x e x p_ e x p(e ,r))))) 

rep-F/e<cA:ieen<Xtt,c^eIp(x,(3,(Q,0))) = (4 , (0 ,1 ) ) 

rep-F/^ci^entx^c-e^CxiO.d^S^y^e.d)))))) 

= rep_r^el:ja
,
en<Xn1,mxexpx,jec,,_»exp(x, rep_r.a m e : ,^ e n < x^ e n <_> n t t m(x,yj,e,a) 

reP-Fgef.identxnnmxcxpxdccs—e*p(x»(l . 0 ) , e, d) = e 

reP-Fjet:i(<en<xn«mxerpx<iec»-exp(x»(l.n+ D , e , d ) = rep.Ffetch.identxdtel>^exp(x,d) 

rep-Ftamt:identxident^n%n((lt 0 ) , ( 1 . 0 ) ) = ( 1 , 0 ) 

»«pJ'. .m.:««.«xM«.«-. . .m((l .* + l ) .C l .<» ) ~ U » l > 

«pJ , .«me:«e. txW«H-.« .m((1.0) .<l .* + 1>) = C1»1) 

«P-fj.meM.'eiHxMeiU—a.roU1»1 + 1 ) , ( 1 , y + D ) = repJ? tamt.idtnt xjtfen*-n«m (x, y) 
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A.6 The self-interpreter program 

The rep .interpréter function is implemented in Toy by the program shown below. Note that 

we shall use numerical characters to represent numbers rather than the Toy représentation 

using suce and 0. For the sake of readability we also use meaningful identifiers rather than 

strings of x as the Toy syntax spécifies. 

•where(arg) where •where - ( 1 0 , ( 9 , ( • a p p l y ( a r g ) , ( 3 , ( 0 , 0 ) ) ) ) ) ; 

•apply = i f f s t ( f s t (arg)) • 4 then 

i f f s t ( s n d ( f s t ( a r g ) ) ) * 0 then f s t (arg) 

else i f f s t ( snd( f s t (arg ) ) ) = 1 then f s t (arg) 

else i f f s t ( snd( f s t (arg ) ) ) = 2 then 

*fst(*apply((snd(fst(arg)) ,snd(arg))) 

else i f f s t ( snd( f s t (arg ) ) ) * 3 then 

*snd(*apply((snd(fst(arg)),snd(arg))) 

else i f f s t ( snd( f s t (arg ) ) ) = 4 then 

(4 , (4 , (*apply( ( f s t ( snd(snd(snd( fs t (arg) ) ) ) ) , snd(arg) ) ) , 

*apply((snd(snd(snd(snd(fst(arg))))) ,snd(arg)))))) 

else i f f s t ( snd( f s t (arg ) ) ) = 5 then 

*=(*apply(( fs t (snd(snd(snd(fst (arg)) ) ) ) , snd(arg)) ) , 

•apply((snd(snd(snd(snd(fst(arg))))) ,snd(arg)))) 

else i f f s t ( snd( f s t (arg ) ) ) « 6 then 

•apply( (^ i f ( ( •apply( ( f s t ( snd(snd(snd(fs t (arg) ) ) ) ) , snd(arg) ) ) , 

( f s t (snd(snd(snd(snd(fs t (arg)) ) ) ) ) , 

snd(snd(snd(snd(snd(fst (arg))) ) ) ) ) ) ) , 

snd(arg))) 

else i f f s t ( snd( f s t (arg ) ) ) * 7 then 

•apply( ( •rep lace( ( • fe tch( f s t ( snd(snd( f s t (arg) ) ) ) ) , snd(arg) ) ) , 

•apply((snd(snd(snd(fst(arg))) ) , snd(arg))) ) ) 

else error 

e l se error; 
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*fst = if fst(arg) = 4 then 

if fst(snd(arg)) = 0 then 

if sdn(snd(arg)) = 1 then (4,(0,1)) 

else error 

else if fst(snd(arg)) * 1 then arg 

else if fst(snd(arg)) = 4 then fst(snd(snd(snd(arg)))) 

else (4,(2,arg)) 

else (4,(2,arg)); 

•snd = if fst(arg) • 4 then 

if fst(snd(arg)) = 0 then 

if sdn(snd(arg)) • 1 then (4,(0,1)) 

else error 

else if fst(snd(arg)) « 1 then arg 

else if fst(snd(arg)) • 4 then snd(snd(snd(snd(arg)))) 

else (4,(3,arg)) 

else (4,(3,arg)); 

*= = if *and((fst(fst(arg))=4,fst(snd(arg))*4)) then 

if *and((fst(snd(fst(arg)))*l,fst(snd(snd(arg)))=1)) then 

(4,(l,*rep.equal((snd(snd(fst(arg))),snd(snd(snd(arg))))))) 

else if *or((*and((fst(snd(fst(arg)))*4.fat(snd(snd(arg)))=4)), 

*and((*aud((fst(snd(fst(arg)))-0, 

snd(snd(fst(arg)))*l)), 

«•and((fst(snd(snd(arg)))-0, 

snd(snd(snd(arg)))=l)))))) then 

(4.(0.1)) 

else (4,(5,arg)) 

else error; 

•rep.equal « if »and((fst(fst(arg))=2,fst(snd(arg))=2)) then 

(2,snd(fst(arg))»snd(snd(arg))) 
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else error; 

•if = if fst(fst(arg)) = 4 then 

if •and((fst(snd(fst(arg)))=0,snd(snd(fst(arg)))=l)) then 

(4,(0,1)) 

else if •and((fst(snd(fst(arg)))=l,snd(snd(fst(arg)))=0)) then 

fst(snd(arg)) 

else if •or((fst(snd(fst(arg)))=1,fst(snd(fst(arg)))=4)) then 

snd(snd(arg)) 

else (4,(6,(6,(fst(arg),(fst(snd(arg)),snd(snd(arg))))))) 

else (4,(6,(6,(fst(arg),(fst(snd(arg)),snd(snd(arg))))))); 

•replace = if fst(fst(arg)) = 4 then 

if fst(snd(fst(arg))) = 0 then 

if snd(snd(fst(arg))) = 0 then snd(arg) 

else (4,(0,1)) 

else if fst(snd(fst(arg))) = 1 then fst (arg) 

else if fst(snd(fst(arg))) = 2 then 

•fst(•replace((snd(snd(fst(arg))),snd(arg)))) 

else if fst(snd(fst(arg))) = 3 then 

•snd(•replace((snd(snd(fst(arg))),snd(arg)))) 

else if fst(snd(fst(arg))) = 5 then 

•=((•replace((fst(snd(snd(snd(fst(arg))))),snd(arg))), 

•replace((snd(snd(snd(snd(fst(arg))))),snd(arg))))) 

else if fst(snd(fst(arg))) = 4 then 

(•replace((fst(snd(snd(snd(fst(arg))))),snd(arg))), 

•replace((snd(snd(snd(snd(fst(arg))))),snd(arg)))) 

else if fst(snd(fst(arg))) = 6 then 

•if((•replace((fst(snd(snd(snd(fst(arg))))),snd(arg))), 

(•replace((fst(snd(snd(snd(snd(fst(arg)))))), 

snd(arg))), 

•replace((snd(snd(snd(snd(snd(fst(arg)))))), 

snd(arg)))))) 
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else if fst(snd(fst(arg))) = 7 theD 

(4,(7,(7,(fst(snd(snd(snd(fst(arg))))), 

•replace((snd(snd(snd(snd(fst(arg))))), 

snd(arg))))))); 

•fetch = if fst(snd(arg)) = 3 then 

if fst(snd(snd(arg))) = 0 then (4,(0,1)) 

else if fst(snd(snd(arg))) = 1 then 

•get((fst(arg), 

(•same((fst(arg),fst(snd(snd(snd(snd(arg))))))), 

(fst(snd(snd(snd(snd(snd(arg)))))), 

snd(snd(snd(snd(snd(snd(arg)))))))))) 

else error; 

else error; 

•get = if fst(fst(snd(arg))) = 1 then 

if snd(fst(snd(srg))) = 0 then fst(snd(snd(arg))) 

else •fetch((fst(arg),snd(snd(snd(arg))))) 

else error; 

•same = if •and((fst(fst(arg))=l,fst(snd(arg))=D) then 

(l,snd(fst(arg))=snd(snd(arg))) 

else error; 

•and = if fst(arg) then snd(arg) else fst(arg); 

•or = if fst(arg) then fst(arg) else snd(arg); 
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