
DIAGRAMMES

A. C. REEVES
Towards a sketch based model of self-interpreters
Diagrammes, tome 33 (1995), p. I-178
<http://www.numdam.org/item?id=DIA_1995__33__R1_0>

© Université Paris 7, UER math., 1995, tous droits réservés.

L’accès aux archives de la revue « Diagrammes » implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impres-
sion systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=DIA_1995__33__R1_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

DIAGRAMMES VOLUME 33 ,1995

TOWARDS A SKETCH BASED MODEL

OF

SELF-INTERPRETERS

A. C. Reeves

Abstract

There has been a steady stream of research into compiler génération Systems since the late

1960's most of which has involved some sort of approach where the user spécifies the source

language, the target language and the source —> target relationship. This spécification of the

source —• target relationship is, in effect, a spécification of the compiler and the correctness

of the generated compiler dépends on the correetness of this relationship.

In this thesis we propose an approach, based on partial évaluation, which does not involve

the spécification of the source -• target relationship. Correetness of the generated compfl-

ers therefore dépends solely on the spécification of source and target languages and upon

the soundness of the theory underlying the technique. The method requires the automatic

dérivation of both a target partial evaluator and a source interpréter, expressed as a target

program. We attempt the development of a technique to calculate a self-interpreter, an £

interpréter which is itself an C program, for an arbitrary language, £, as this represents a

significant step towards the goal of the automatic dérivation of both partial evaluators and

interpreters.

Initially we examine an algebraic model of language which allows us to specify the function

which an interpréter for the language £ computes, solely in terms of the algebraic spéc

ification of the language £. The interpréter is described as the composition of a pair of

functions, learn : Semantics -* Syntax which forms part of the algebraic spécification of £,

and eval : Syntax —• Semantics which arises naturally from the language spécification due to

the properties of the category of algebras over a common signature.

Using the algebraic model of language the composition learn o eval, which is the £ inter

préter function, does not lie within the semantics of £ and therefore cannot easily be used to

construct the £ self-interpreter.

For this reason a category theoretic model of language based on finite limit sketches is devel-

oped. This model is similar to the algebraic model above and shares many of its properties

but has the advantage that learn is expressed as an indexed family of arrows from SET, the

category of sets, and that eval is a natural transformation whose components also lie within

SET. As a resuit of this the components of learn o eval can be brought within the seman

tics of £. We can then use the structure of the natural transformation eval to construct an

implementation of learn o eval as an £ program.

For Charles and Isobel.

Nobody could hâve better friends,

I am extremely lucky to hâve you as parents.

m

Acknowledgements

Over the course of the last five years I hâve received help and encouragement from numerous

people both inside the Computing departments at Stirling and Keele Universities and out-

side them. This support, not always with the technical problems in this work, has been of

indescribable value to me and I would like to thank you ail. Several people deserve spécial

mention.

First and foremost Charles Rattray, my friend and supervisor, whose support and encourage

ment, not to mention his, to my mind, irrational belief in me has not only kept me sane but

has helped to make this work something it could not otherwise hâve become, completed.

Teodor Rus deserves spécial mention for taking the time to discuss both his own work in the

context of mine and my work in the context of his. As do Christian Lair and Laurent Coppey,

whose boundless enthusiasm and penetrating questions helped to keep alive my interest in

this work.

I would like to thank David Budgen both for making it possible for me to attend "Journées

esquisses et types de structures" in Paris and for his encouragement over the time I hâve been

at Keele.

Thanks should also go to Jim Cowie, whose encouragement and comments on the initial

drafts finally got me to admit that I could actually start writing this document, and to Mike

Johnson who explained Kan extensions to me in a way I could understand.

The discussions I had with Samuel Kortas, Simon Jones, John Launchbury, Richard Quatrain,

and Peter Sestoft helped no end in improving my understanding of the problems I was trying

to solve.

Sam Nelson and Graham Cochrane deserve my thanks both for the excellent Computing

facilities and support and for being prepared to explain those facilities to me and listen to

my explanations of this work with a patience that I will never understand.

The office cricket club: Dave Harrison, Andrew Sinclair, and Paul Williamson not only helped

me to survive the trials and tribulations of life as a Ph.D. student but also provided useful

feed-back via many discussions.

iv

On a personal note I would also like to thank my friends Maria Shaw, Bill Stewart, Sarah

Willis-Culpitt, Tony Douglas, Andy Poxon. Anne Tweed, the other irregulars, and Aunty

Eleanor for being there when I needed them and for understanding when I was too busy.

Without you this thesis would never hâve reached (been battered into) submission!

Contents

Contents vi

1 A Brief Introduction and Guided Tour 1

2 Compiler Génération: A Science Fiction Story 4

2.1 The factual basis of the story 6

2.1.1 Syntax directed compiler generators 6

2.1.2 Semantics directed compiler generators 7

2.1.3 Algebraic directed compiler generators 9

2.1.4 Compiler génération by partial évaluation 10

2.2 A true compiler génération System 16

2.3 Fiction to fact: the requirements 18

3 An Algebraic Approach to a Self-Interpreter 20

3.1 An algebraic model of language 20

3.1.1 The spécification basis 21

3.1.2 The semantics algebra 21

vi

3.1.3 The syntax algebra 22

3.1.4 The learn and eval functions 23

3.1.5 Example: a language of numbers and additfon 24

3.2 The interpréter function 27

4 Sketches 32

4.1 Définitions 32

4.2 Example: lists 37

4.2.1 The sketch of lists 38

4.2.2 The semantics of List 41

4.3 Sketch morphisms and induced functors 45

5 A Categorical Model of Language 50

5.1 Using sketches to model language syntax 50

5.2 Using sketches to model language semantics 56

5.3 A categorical model of language 59

5.3.1 A categorical spécification of language 59

5.3.2 The language of natural numbers and addition 60

5.4 Describing language features using the model 66

5.4.1 A simple type scheme 66

5.4.2 The semantics 71

6 A Categorical Approach to a Self-Interpreter 72

vii

6.1 Construction of the self-interpreter 72

6.2 Moving into the semantics 75

6.3 The self-interpreter 77

7 Concluding Discussion 87

7.1 Summary 87

7.1.1 The model of language 88

7.1.2 The self-interpreter construction technique 91

7.2 Partial evaluators and interpreters 93

7.2.1 Partial evaluators 94

7.2.2 Interpreters 95

7.2.3 The true compiler generator 96

7.2.4 Open questions 99

7.3 More science fiction: a better model of language? 102

Bibliography 104

A Example: A Toy Self-interpreter 113

A.l The syntax of Toy 113

A.1.1 A sketch of the Toy syntax — Toysyn 115

A.1.2 The initial model ISyn : ToySyn -> SET 117

A.2 The semantics of Toy 119

A.2.1 The sketch ToySem 119

viii

A.2.2 The initial model ISem : ToySem — SET 145

A.3 The eval and learn transformations 156

A.3.1 The sketch morphism E : ToySyn —• Sem 157

A.3.2 The model Em{IStm) 158

A.3.3 The eval natural transformation 163

A.3.4 The learn transformation 164

A.4 A Toy datatype to represent Toy programs 164

A.5 The Toy self-interpreter 167

A.5.1 The interpréter function 167

A.5.2 The rep.interpréter function 170

A.6 The self-interpreter program 175

IX

Chapter 1

A Brief Introduction and Guided

Tour

This dissertation describes a method for calculating self-interpreters for arbitrary program-

ming languages, i.e. an interpréter for the language C which is an C program. On the face

of it an C self-interpreter, C-self-int, is a singularly useless program, it cannot provide an im-

plementation of the language C because an implementation of C is required before C-self-int

can be run. Even then C-self-int can only make C programs run slower by adding an extra

layer of unnecessary interprétation to the implementation. So what is the purpose of an C

self-interpreter?

The calculation of C-self-int is a step towards the ability to calculate an interpréter, int, for C

as a program in the arbitrary language T. Calculation of C-self-int is also a reasonable starting

point if we wish to calculate the partial evaluator mix [Ersh82, Jone88] for the language £.

Given the ability to calculate int and mix for arbitrary languages we can construct a compiler

génération System which requires no user input other than the spécifications of the source

and target languages.

In chapter 2 we set the scène by outlining the development of compiler-compilers and make

the distinction between a compiler spécification language which requires the user to specify the

relationship between the source language S and the target language T, and a true compiler

génération System which requires no such spécification of the S —> T relationship. We attempt

to show that a true compiler génération system can be constructed based on partial évaluation

and the ability to calculate the appropriate int and mix programs for the languages S and T.

The main purpose of chapter 2 is to motivate the subséquent chapters which deal with the

calculation of C-self-int.

The algebraic model of language developed by Rus [HaRu76, Rus76, RuHe84, Rus85, Rus87,

Rus90, Rus92] is discussed in chapter 3. Using this model of language it is possible to

describe the function computed by C-self-int in terms of the spécification of C. The function

interpréter, computed by C-self-int is described as the composition of certain functions which

form part of Rus' algebraic model. There is no obvious way to turn the interpréter function

into an C program because the functions used to describe it are not within the semantics of

C. In spite of this the algebraic approach is not a complète blind alley, it provides a gentle

introduction to the category theoretic approach used subsequently.

In chapter 4 we describe aspects of the theory of sketches [Ehre68] which are used in chapter

5 to construct a categorical model of language which has similar properties to Rus' algebraic

model of language. For reasons of space we hâve assumed that the reader is familiar with

basic category theory, an understanding of (at least) the concepts of category, functor, natural

transformation, and adjunction are required before reading further. Readers unfamiliar with

category theory are referred to [BaWe90, Gold84, Macl71, RyBu88].

We describe a categorical model of language based on sketches in chapter 5 and discuss some

of its implications for the way in which we specify certain language constructs.

Chapter 6 concerns the dérivation of a self-interpreter. Using the categorical model of language

the function computed by C-self-int is described as the pointwise composition of a pair of

indexed collections of arrows in the category of sets and functions. Thèse collections can be

calculated from the sketch spécification of the language C. This version of the interpréter

function also lies outside the semantics of C but, because it is structured as a collection of

arrows in SET, we can construct an analogue of each component arrow of the interpréter

function which acts on a représentation of the syntax of C and is within the semantics of C.

This allows us not only to convert the interpréter function into an C program but also, at

least partially, to formalise the notion of expressive power required for C to express C-self-int

We do not attempt to dérive a représentation of the syntax of £ as an £ datatype as this is

a relatively trivial problem.

The final chapter, chapter 7, re-examines the method used to calculate the self-interpreter,

points out some of its shortcomings, and suggests possible extensions to allow the calculation

of partial evaluators and interpreters.

Finally appendix A contains an example of the calculation of a self-interpreter.

Chapter 2

Compiler Génération: A Science

Fiction Story

The compiler génération system described in this chapter is a work of fiction but, in common

with many other science fiction stories, its roots are firmly planted in science fact. Since the

birth of formai language spécification attempts hâve been made to produce Systems which

generate compilers from formai descriptions of the source and target languages. A conven-

tional compiler génération system requires the user to specify the relationship between the

source and target languages h addition to the source and target languages themselves, see

figure 2.1.

user specified
S-+T
relationship

source language
spécification (S)

Compiler- Compiler

target language
spécification (T)

S —• T compiler

Figure 2.1: A conventional compiler spécification system

Given this fact, conventional compiler génération Systems could perhaps be more correctly

described as compiler spécification languages. The major drawbacks of the approach are:

1. the spécification of the S —> T relationship requires a great deal of time and effort.

2. If the user incorrectly spécifies the S —• T relationship, the compiler-compiler will

usually generate an incorrect compiler. As a resuit if the user wishes to guarantee the

correetness of the generated compiler they must prove the correetness of their S —> T

relationship [BuLa69, Morr73, ThWW80, Wand80, C0II86]. This proof is likely to be

rather involved and just as prone to errors as the original spécification of the S —* T

relationship.

The process could perhaps be improved somewhat by providing machine assistance for the

correetness proof. but even then the process of compiler spécification is still a long and involved

task.

A true compiler génération system, in the opinion of the author, should require no user input

other than the spécifications of the source and target languages.

source language
spécification (S)

target language
spécification (T)

Compiler- Generator
S —• T compiler

Figure 2.2: A True Compiler Generator

If such a system had a sound basis in mathematics it would not only provide considérable sav-

ings both in user time and effort but would also generate compilers which could be guaranteed

correct by construction.

The remainder of this chapter attempts to answer the question, uHow could a true compiler

génération system operate?"

2.1 The factual basis of the story

Before attempting to answer the question above we should examine the main approaches to

the implementation of compiler spécification languages which are currently available.

2.1.1 Syntax directed compiler generators

Probably the simplest form of compiler spécification system is the syntax directed compiler

generator. Using this technique the source language is specified as a context free grammar. A

semantic action is associated with each production rule of the source grammar and the com

piler is produced by generating a parser for the source language. The parser is constructed in

such a way that it exécutes the semantic action associated with a production rule whenever it

recognises a phrase generated using that production rule. One of the first attempts to produce

a syntax directed compiler generator was the STAGE2 system [Wait70]. Other examples of

syntax directed compiler generators include YACC [John78], DELTA [Lorh82], and SYNTAX

[Boul80]. Of thèse YACC is probably the most generally available as it is distributed as

part of the UNIX1 operating system. The most obvious shortcoming of the syntax directed

technique is that the semantic action associated with a production rule does not describe

either the semantics of the source language phrase, or the target language construct used to

implement the source language phrase. In fact the target language of the generated compiler

is not specified at ail using the syntax directed approach.

What the semantic action actually spécifies is the action to be taken by the generated compiler

on recognising the source phrase associated with each action. This effectively obscures the

S —• T relationship by hiding it within the implementation détails of the compiler, making

its construction and correetness proof much harder.

Since the only objects which are formally specified are the source syntax and (in some cases)

the meta-language used to express the compiler spécification, the correetness proof requires

a great deal of additional information: i.e. source semantics, target syntax, and target se

mantics. The requirement for additional information also makes the correetness proof much

more difficult. It could be argued that the requirement for additional information makes the

!UNIX is a trademark of AT & T Bell Laboratories

syntax directed compiler spécification technique a semi-formal compiler spécification method

rather than a formai one.

2.1.2 Semantics directed compiler generators

A second approach to compiler spécification is the semantics directed compiler génération

technique. Compiler writing using this approach is based on a formai description of the

source language as input data, and the target language as output data. Usually the source

language is described as a context free grammar where each source phrase has an associated

target language construction which describes its semantics.

The détails of compiler spécification vary from system to system but, in gênerai, aJl semantics

directed compiler spécification Systems conform to one or other of the approaches given in

[Moss76].

"Choose a fcuniversaT object code with a well defined semantics. Then to

generate a compiler from a given denotational semantics for some programming

language. find code séquences which simulate the abstract meanings of the phrases

of the language. and construct a compiler which produces thèse code séquences"

or

"Take a more abstract view of compiling: instead of

Compiler : progs —* code

consider

Compiler : progs —>input-output-fns.

Thus an abstract compiler does not transform an (abstract) program text into

an (abstract) séquence of instructions; rather it transforms it into the abstract

input-output-fn represented by those instructions. The concrète version of such

an abstract compiler produces denotations (i.e. représentations) of input-output-

fns from denotations of programs — it is just an implementation of a denotational

semantics."

Although Mosses was referring specifically to semantics directed compiler spécification Sys

tems based on denotational semantics the same thing applies to Systems based on attribute

grammars [Boch78] or on algebraic semantics [Desc82].

Most commonly semantics directed compiler generators are based on the denotational ap

proach to programming language semantics [ScSt71, Stoy77, Schm86], and there is a great

deal of literature dealing with this type of semantics directed compiler spécification system,

for example: [Ganz79, Moss79, RaTu79, JoSc80, Schm85, Wand85, Roye86, Vick86].

Of thèse [Roye86] is of particular interest because it attempts to dérive a target semantics

from a source denotational semantics in, "the most constructive way possible." The technique

described by Royer is still a compiler spécification technique rather than a true compiler

génération system because the user has to supply the S —• T relationship in the form of a

collection of target domains which are used to implement the source domains, together with

a congruence relation for thèse domains.

In [Schm85] Schmidt also constructs a semantics directed compiler directly from the standard

denotational semantics of a programming language rather than a continuation style denota

tional semantics as is more usual. This has the advantage that the semantics used to specify

the programming language is at a much higher level. The approach used is to transform the

semantics so that operational properties of the semantics become clearer. The transforma

tions used are focussed on the operational properties of the particular réduction strategy used

to implement an interpréter for the denotational semantics définition. Using this technique

the implementor has to supply rather more information about the S —> T relationship than

is the case if a continuation semantics were used. This may in fact be an advantage because

the user can use implementation "tricks" to produce a much more optimal implementation,

however; it also moves further away from the goal of this chapter.

The compiler spécification system described in [JoSc80] consists of a back end compiler <p :

LAMC - • STM which translates a dialect of the lambda calculus, (LAMC), into a language

of state transition machines, (STM). The front end is defined by providing a denotational

définition, A, of the source language, «S, using the LAMC language, this defines a mapping

A : S —• LAMC. The compiler is then specified as the function (fi o A.

In gênerai semantics directed compilers are specified as the composition of front and back

ends.

Source fwnt end Intermediate back end , Target
Language Language Language

This leads to a problem in the correetness proof because the intermediate language is not for-

mally specified as part of the génération process and must therefore be specified as additional

information during the correetness proof.

2.1.3 Algebraic directed compiler generators

The T.I.C.S. System developed by Rus [Rus83, RuHe84, Rus90, Rus92] is, to the best of

the author's knowledge, the only working example of the third class of compiler spécification

system, namely Algebraic directed compiler spécification Systems. The system is based on the

"commuting square" notion of compiler correetness [BuLa69, Morr73, ThWW80, Wand80],

and dépends on an algebraic model of language also developed by Rus [HaRu76, Rus76,

RuHe84, Rus85, Rus86, Rus87].

This algebraic model of language is described in détail in chapter 3 but can be summarised

hère as follows. A program iiing language C is a triple

(Sem(E),Syn(E),/earn : Sem(E) -+ Syn(E))

where Syn(Z) spécifies the syntax and is the word algebra generated by the signature E. The

semantics is specified by the similar algebra Sem(E) and the Syntax «-> Semantics associa

tion is specified by the function learn : Sem(E) — 5yn(E) and by the initiality of 5yn(E),

which gives rise to an homomorphism eval : Syn(E) —• 5em(E). If S is a programming lan

guage specified over Ei and T is specified over E2 then a compiler C : S —• T is specified as

a pair of homomorphisms, compile and encode, such that the équations

encode = era/2 o compile o learn\

compile = eval\ o encode o /earri2

both hold in figure 2.3.

, ^ v compile
5yn(Ex) £ * Syn(E2)

learn\ eval\ learn2 evalo

5 e m (E l) l^de " 5 e m ^ 2)

Figure 2.3: The algebraic directed view of a compiler

In the T.I.C.S. System the S -* T spécification takes the form of a set of parameterised macro

expressions, one for each opération in Ei. Each macro expression is the target code to be used

to implement the source opération. Compilation begins by identifying patterns in the source

string which correspond to the generators of Syn(H{) and replacing them by their target

représentations. On the subséquent passes through the source string the compiler attempts

to identify source opérations whose arguments hâve already been replaced by their target

représentations. When the compiler recognises such a source opération it uses the embedded

target représentations to parameterise the associated macro opération and replaces the source

opération by the resuit of the macro expansion. Compilation is complète when there are no

source opérations left to translate.

In [Reev87] Reeves attempts to show the relationship between this approach and the semantics

directed approach by using a tree of partially expanded macro expressions as the intermediate

language of a semantics directed compiler spécification system.

The algebraic basis of the T.LC.S. System makes the spécification of T.I.C.S. generated

compilers particularly amenable to the usual methods for proving the correetness of the

S —• T relationship.

2.1.4 Compiler génération by partial évaluation

Partial évaluation [Futa71, Ersh77] or mixed computation can be described informally as the

process of "doing as much évaluation as possible with, possibly, incomplète input." If p is a

program whose input can be divided into two classes: S - static i.e. input which is fixed at a

particular value, and D - dynamic i.e. input which is not fixed and may vary over ail possible

10

values of the correct type, the program p can be evaluated fully only if it is given both S and

a particular value of D.

If only S is available the process of partial évaluation can be applied to p. The part of the

computation of p which dépends only on S is performed. The resuit of this process is a new

specialised version of p whose input is the dynamic part of the input of p, D, and which, when

it is applied to D, produces the same output as p applied to both S and D.

p(S,D) = ps(D)

This specialised function ps is known as a residual program. For example consider the function

power

power x n = 1, if n = 0

= x * power x (n — 1), otherwise

This function raises x to the power of n. Suppose the value of n is fixed at 3 but the value of

x is dynamic. Spécialisation of power to its static input n = 3 produces the residual program

power' x = x * x * x * 1

because ail computation except multiplication by x, which is dynamic, can be performed at

partial évaluation time.

Beckmann et al [BHOS76] and Futamura [Futa82] describe some of the potential applications

of partial évaluation. Thèse include:

• Automatic theorem proving. It is possible to use a partial evaluator to produce a

spécifie theorem prover by specialising a gênerai theorem prover to a spécifie set of

axioms [Futa82].

• Construction of small specialised utility programs from more gênerai routines [BHOS76].

• Construction of spécifie parsers from gênerai parsing routines [Futa82]. If there is a

gênerai parsing algorithm P : BNF-grammar x text -» parseJree, and S is the BNF

11

grammar of the language S. A spécifie S parser P$ can be produced by specialising P

to S by partial évaluation.

• Compilation and compiler génération. This use of partial évaluation is discussed in

détail below.

In gênerai partial évaluation is a useful technique where there is a need to construct a fast,

spécifie, algorithm to do a particular job and a slower more gênerai, data driven, algorithm

already exists.

Partial évaluation and compilation

The use of partial évaluation as a compiler construction technique is described in [Futa71,

Ersh77, Ersh82, Futa82, JoSS85, JoSS89]. A brief overview of the technique is shown below.

Suppose that mix is a self-applicable partial evaluator for the target language T, i.e. mix

is a T program which implements a partial evaluator for the language T. Because mix is a

partial evaluator the following équation holds for ail T programs t with static input istatic

and dynamic input idynamic

tfcstatic, idynamicl = (wïiartt^M^toticDPdynomicl

where mix[[*]][[i5taticl is the residual program produced from t and i3tatic

Now assume int is an interpréter for the programming language S and is written in the target

language C. If s is an S program which takes i as its input and produces o as its output then

4*1 = o

represents running the program s on an S machine with input t. The same output can be

produced using a T machine by running int and giving it s and î as its input.

int^s* i]] = o

12

Since int is a T program and s is some of its input we can use mix to produce a specialised

version of int which can only interpret the program 5 by setting s as static input for int and

: as dynamic input.

int9 = mix[[tnf]][[s]]

Now using ints and a T machine we hâve

ints
rJl = o

furthermore ail the computation in int which applies only to the analysis of the program s

is done at partial évaluation time and does not hâve to be done when int3 is executed. The

T program int3 has the same input/output relation as the S program s and is, in fact, a

compiled version of s.

Since mtx|[int]|[[$] is a compiled version of s and mix is a T program, an S to T compiler

can be produced using mix and int by regarding int as static input for mix and leaving s as

dynamic input.

comp = fnix[[mîx]]|[in*]]

This is easy to verify because:

compW = (rotzJmixl[tnt])|[sD

= inta

lf we remember that the basic function of a partial evaluator is to eliminate redundancy from

a partially bound T program it is easy to understand how thèse results arise. By définition

an S interpréter, int, must contain the T expressions necessary to exécute any S program

with any input data in addition to the T expressions necessary to parse an S program and

exécute its static semantics. If the program argument of an interpréter is bound to a particular

S program, q, it is possible to exécute the parsing and static semantics components of the

13

interpréter as they only dépend on the S program text. The code segments of the interpréter

which actually simulate the run time behaviour of q dépend on the input data for q as well

as the program text and therefore become part of the residual program intq. This reasoning

extends to the construction of mixint in the obvious manner.

Partial évaluation Systems

There is a large, and growing, body of literature on the subject of partial évaluation as a

compiler génération technique.

In [MaBe85] partial évaluation is used to dérive a compiler and an object interpréter from an

operational semantics given using the V.D.L. spécification language. However the approach

used needs to place several restrictions on the style of V.D.L. spécification and does not appear

to généralise to the automatic génération of compiler generators in any obvious manner.

The first working version of a fully self-applicable mix was produced by Jones et al [JoSS85,

Sest85, JoSS87, JoSS89]. This project identified the process of binding time analysis as critical

to the effective opération of a partial evaluator.

To spécialise the power function given above to some fixed value of n the partial evaluator

need only unfold recursive calls of power until the value of n falls to 0. Now consider the spé

cialisation of power to some fixed value of x (say 5) rather than n. The obvious spécialisation

is

power" n = 1, if n = 0

= 5 * power"(n - 1), otherwise

but this spécialisation cannot be produced by repeated unfolding of recursive calls because

the value of n is dynamic and therefore never falls to 0. Spécialisation by repeated unfolding

will actually cause non-termination of the partial evaluator as it attempts to produce the

infinité residual program shown below.

14

power"1 n = 1, if n = 0

= 5 * 1 , if n - 1 = 0

= 5 * 5 * 1 , if n - 1 - 1 = 0

= 5* - * 5 * 1 , otherwise

The problem arises because the expression power 5 n where n is dynamic is itself dynamic

and must not be unfolded at partial évaluation time. To overcome this problem a partial

évaluation system must perform a process of binding time analysis on the program to be

specialised to détermine which sub-expressions in its body are static (reducible) and which

are dynamic (irreducible) at partial évaluation time.

In [JoSS85] the binding time analysis is done "by hand", but in later versions the process is

automated, ail be it in a fairly ad hoc manner.

The treatment of binding time analysis given by Launchbury [Laun88, Laun89, Laun90] using

a domain theoretic construction of dépendent sums which allows aspects of binding time

analysis to be expressed as domain projections is particularly interesting but for reasons of

space cannot be discussed hère.

Another interesting example of partial évaluation is the work of Turchin et al [Turc80,

TuNT82, Turc85, Turc86] on the supercompiler concept. A supercompiler is a generalised

from of partial evaluator. Supercompilation consists of a process called driving in which a

T program, p, is run in a generalised form (with unknown values for some of the variables

of p) to produce a graph of states and state transitions of the possible configurations of the

Computing system specified by p. To keep this driving finite the supercompiler examines the

configurations of p and généralises them until a set of generalised configurations are produced

which are capable of describing the whole of the Computing system, p. This généralisation

process replaces the binding time analysis of the more traditional partial évaluation system.

Because the driving and généralisation process has access to more information than a simple

partial evaluator a supercompiler can carry out transformations to the program p which are

not possible using partial évaluation alone. On the other hand self-application is much harder

to achieve because of the increased complexity of a supercompiler.

Other work on partial évaluation includes: compilation of pattern matching [Bond88. Jorg90]

15

by partial évaluation. The extension of partial évaluation to lazy functional languages

[Bond90b] and partial évaluation of higher order languages [Goma89, Bond90a, Cons90].

Compiler génération by partial évaluation is included as an example of a compiler spécification

system where the S —• T relationship is specified as an «S interpréter expressed in the language

T. To be a fully formai compiler spécification technique we require formai spécifications of

the S and T languages and a formai description of the process of partial évaluation, in order

to prove the correetness of mix. In reality the technique is much more powerful than simple

compiler génération, it is probably better described as a program transformation technique

but in its guise as a compiler spécification system it provides the inspiration for the fictional

true compiler generator described below.

2.2 A true compiler génération system

By making two, rather large, assumptions we can now take a look inside the "compiler

generator" box in figure 2.2 and speculate about its internai workings, based on a partial

evaluator.

Assumption 1. there is a technique which allows us to examine the spécification of a com

puter language, T, and from this spécification, calculate a T program which implements

mix for the language T.

Assumption 2. given the spécifications of two languages, S, and T, it is possible to dérive

an implementation of S in the form of an interpréter expressed as a T program.

By allowing assumption 1 only, we could implement a compiler spécification language in the

following way:

1. examine the target language spécification, T, and compute the implementation of mix

for this language.

2. Accept a source interpréter, int, written as a target program and compute the value

mix\mix,int\

16

3. Output the value mix^mix, int^ as the generated compiler.

This system is still a compiler spécification system rather than a compiler génération system

because the user has to supply the S —• T relationship in the form of the source interpréter,

int

If we also allow assumption 2 we can implement a true compiler generator system by calcu-

lating the source interpréter from the spécifications of S and T, rather than accepting it as

input.

The proposed overall structure of the "compiler generator" box in figure 2.2 is shown in figure

2.4.

source language
spécification (S)

target language
spécification (T)

calculate int

calculate mix

int

compute mix§mix,int§

S-+T
compiler

mix

Figure 2.4: The anatomy of a true compiler generator

The boxes labelled "calculate mix" and "calculate int" are implementations of assumptions

1 and 2 respectively. The last box, labelled "compute mix^mix,intY is a parameterised

Simulator which accepts the following inputs:

1. a language spécification T.

2. A T program which implements mix for the language T.

3. A T program, int, which is a programming language interpréter.

When given the spécification of the language T the "compute mix\mix,intY component

becomes a T interpréter and computes the value mix^mix,inï§ which it constructs from its

17

remaining inputs. This last component is relatively trivial to construct as it is basically an

interpréter for the meta-language used to specify T.

2.3 Fiction to fact: the requirements

How unreasonable are the assumptions in section 2.2? The short answer to this question

is currently very unreasonable. Taking each assumption in turn, for assumption 1 to be

reasonable we need to be able to:

1. construct a représentation of the syntax of an arbitrary language T as a data type of

the language T. This is required because mix must hâve some way of representing the

T programs it processes.

2. Construct a binding time analysis phase from the spécification of the semantics of an

arbitrary language T.

3. Construct the function spécialisation phase for an arbitrary language T. This is proba

bly the easiest of the three requirements necessary to justify assumption 1. The function

spécialisation phase of a T partial evaluator is very closely related to the évaluation func

tion of the programming language T and is basically a T program which reduces other

T programs to their canonical form with respect to the static input and binding time

analysis.

The requirements necessary to justify assumption 2 are:

1. given arbitrary programming languages S and T we must be able to construct a T

data type which represents the syntax of S. Hère again this is required because the

interpréter, int, must be able to represent any S program to process it.

2. The ability to dérive an S interpréter, int, as a T program. To dérive an S interpréter as

a T program we must be able to implement the S évaluation function as a T program.

We will concentrate on the development of a technique which allows us to calculate a self-

interpreter for the arbitrary language T, i.e. an interpréter for the language T which is itself

18

a T program. The reason for this is that the calculation of a self-interpreter is a reasonable

step on the road to both the calculation of an S interpréter as a T program. and toward the

calculation of a function spécialisation phase for the language T.

The problem of constructing a T data structure to represent the S programs can be reduted

to the problem of implementing binary trees in T, since any tree structure can be transformed

into a binary tree and any S program can be represented as its dérivation tree. A less efficient

but more straightforward représentation technique could be constructed by implementing n-

ary trees in T, where n is the largest number of subtrees possible for a node in the dérivation

tree of an S program. From this point on wre will assume that one or other of thèse techniques

is used to construct a représentation of S programs as a data type in the arbitrary language

T. This will be required for the construction of a self-interpreter, (both S and X are the same

language for a self-interpreter).

19

Chapter 3

An Algebraic Approach to a

Self-interpreter

The algebraic model of language developed by Rus [HaRu76, Rus76, RuHe84, Rus85, Rus87,

Rus90, Rus92] can be used to specify a programming language as a triple

C = (Sera, Syn, learn : Sem —• Syn)

where Sem and Syn are algebraic structures over a common signature and learn is function

which associâtes an expression in Syn with eath meaning in Sem. There is an associated

homomorphism eval : Syn -• Sem which defines the évaluation of expressions in Syn. The

model is described in section 3.1 and in section 3.2 we show how the properties of the model

can be used to construct the function computed by a self-interpreter.

3.1 An algebraic model of language

Rus describes an algebraic model of language based on two properties of many sorted algebra.

Given the category of E algebras C(E):

1. the word algebra W is unique up to isomorphism and coïncides with the initial algebra

in C(E).

20

2. Any function defined on the generators of W returning values in the carrier of a similar

algebra A extends to an unique homomorphism £ : W —• A.

The construction of the model is shown below.

3.1.1 The spéc i f ica t ion basis

The three components of the spécification basis are:

1. a set of names of the abstract objects specified in the language, denoted by /.

2. A finite set of reserved words denoted by S.

3. A finite set of opération schemes E. The opération schemes, a £ E specify opérations

on families of sets (indexed by /) and are denoted by a triple.

a = (n,s0si ...sn,ii...ini)

The components of the triple are:

• n > 0, the arity of the opération.

• The opération symbol SQSI .. .sn, Sj 6 S.

• The operand sorts i\.. .in, ij € / and resuit sort of the opération i 6 / .

A proof that every context free grammar générâtes a basis B and every finite basis B générâtes

a context free grammar is given in [Rus87].

3.1.2 The semant ics algebra

The semantics of a programming language is given as an algebra specified by some ba

sis B over a family of sets A = { J 4 I , J 4 2 , . . . } . The family A represents the collection

of abstract objects which are denotable within the language semantics. The algebra

Sem(B,A) = (Sem(I), Sem(S), 5cm(E)) is constructed as follows:

21

1. Sem(ik) = Ak.ik € / . Sem(I) is then a family of sets chosen from A and indexed by /,

allowing Sem{B,A) to be constructed as a many sorted algebra.

2. Sem(S) = 5. The purpose of this set is to fix the symbols used to express constructions

over Sem(I).

3. The set of opérations on Sem(I) is denoted by Sem(E) and Va G E,<7 = (n, so^i - - - ^ ,

i l . . .in*)> Sem(a) is an opération

Sem(a) : Sera(z'i) x . . . x Sem(in) -• Sem(i)

The tuple (s0 ,si , -. -,sn) is used as the opération symbol and for a* € Sem(ik), k =

1,...,71 Sem(a) applied to appropriate a* is denoted 5 0ai5ia 2 . . .sn-\ansn and is of

sort i.

This construction of Sem(B,A) as a many sorted algebra with opération symbols which

distribute over their operands provides a very natural association between the semantics

algebra and the phrases of a context free grammar.

3.1.3 T h e syntax algebra

The set W(X, E) = {W{(X, E), i G / } is the family of well formed expressions freely generated

from the family of finite symbol sets X = {Xi, i € / } by the signature E. Détails of this con

struction are given in [Higg63, Rus90]. The algebra Syn(B,W) = (Syn(I),Syn(S),Syn(T,))

is constructed as follows:

1. Syn(I) = { W i (X , E) , i € J } .

2. Syn(S) = 5.

3. The set of opérations on Syn(I) is denoted by 5yn(E) and Va € E,cr = (n, s0si ...sn,

il.. .ini), Syn(a) is an opération

Syn(a) = Syn(ii) x . . . x Syn(in) — Syn(i)

defined by the rules for well formed expressions in Wi(X,T,) as

22

VÎT, G W t j (X ,E) , j = l,...n,Syn(<r)(wi,...,wn) = s0wis1 ...sn-iwnsn G W t(X,E).

Note that for any context free grammar G, the language generated by G is the set of words

W(Q,B(G)) where B(G) is the basis generated by G [HaRu76].

3.1.4 T h e learn and eval functions

Given a basis B = (I, S, E), a family of abstract objects A = {Ai,..., An}, and a family of

symbol sets X = {Xi, i G / } . Syn defines an algebra of words on W(X, E) and Sem defines a

similar algebra on A.

A = ({Ai,ieI},X,Sem(Z))

W = ({Wt-(Jr, E), i G / } , E, 5î/n(E)}

The triple £ = (Sem(B, A), Syn(B, W(X, E)), learn : Sem(£, A) - Syn(B, W(X, E))) spéc

ifies a programming language with semantics Sem(B, A), and syntax Sj/n(i?, W^X, E)).

The purpose of the learning function is to specify the process of sentence construction carried

out by a sender Communicator using the language C. The other communication process,

understanding, is modelled by the eval : Syn(B,W(X,Y,)) - • Sem(B,A) homomorphism

given by property 2 above. A construction for the eval homomorphism is given in [Rus92].

For the sake of clarity we shall give a simpler, and less gênerai, construction hère, by assuming

learn to be injective1.

1. Let Syn0 = {Synio,i0 G / } be the indexed family of free generators of the algebra

Syn(B,W(X,E)). For each w G Synio, a = (0,w,io) G E is an opération scheme

and a G At0 a unique value with learn(a) = w. Define eval0 : Syn^ - • Sem(B,A) as

eval0(w) = a. For any a1 = (0, w', i) jt a such that Sem(a') = a, set eval0(w') = a.

2. Extend eval0 homomorphically to eval: Syn(B,W(X,i:)) - • Sem(B,A).

When the algebras Syn(B,W(X,Z)) and Sem(B,A) are finitely generated, i.e. when X and

A are finite collections, learn and et?a/ are constructed such that eval o learn = idSem(B,A)^

11\ÛS assumption is not unreasonable as we would not expect more than one meaning to be expressed by

any single programming language sentence.

23

where o dénotes function composition. In the case of a conventional programming language

both A and X are finite.

3.1 .5 Example: a language of n u m b e r s and addition

The algebraic model of language described above provides a formai définition of the three

components of a programming language (Syntax, Semantics, and the Syntax <-• Semantics

association) within the single framework of universal algebra. This section illustrâtes the

model using a simple expression language of natural numbers with an addition operator.

Expressions in the language are generated according to the BNF grammar.

(Exp) — 0

{Exp) —• succ((£xp))

(Exp) — (Exp)+(Exp)

The semantics of this language are the expected semantics for natural numbers and addition:

0 is the syntactic expression denoting the number 0, suce dénotes the function Xx.x + 1, and

the symbol • is the addition operator.

Spécification basis

To specify this language algebraically we must first define the basis B. The language contains

only one abstract object, namely Exp, so the set / = {Exp}. There are four reserved words:

'0', csucc(\ ') ' , and *•', together thèse reserved words form the set S. Each of the three BNF

rules adds the opération scheme shown below to the set E.

BNF rule

(Exp) -» 0

(Exp) -* s\icc((Exp))

(Exp) -* (Exp)*(Exp)

opération scheme

<0,<0\£xp)

(l,'succ(")',£xp£ip>

(2, e'+'e, ExpExpExp)

Note that the opération symbol for the third opération scheme contains two occurrences of

the empty string e. The spécification basis B is the triple:

24

5 = (/ = {Exp},S = {0,succ(,),+},

E = {(0,iO\Exp),(l,is\iccC)\ExpExp),(2,e^€,ExpExpExp))

Semantics algebra

To specify the semantics algebra Sem(B, A) we must first define the family of abstract objects

A. The only object required for the semantics is the set of natural numbers, Nat, constructed

by the signature below:

zéro : -• Nat

suce : Nat —> Nat

the family A is therefore A = {Nat}. The construction of Sem(I) is Sem(I) =

{Sem(Exp)} = {AExP} = {Nat}, and Sem(S) is constructed as Sem(S) = {0,succ(,),+}.

We can now construct Sera(E). The set of opérations of the algebra Sem(B,A), i.e.

{Sem(a),a G E}, is constructed by the assignment shown in the table below.

Sem((W,Exp))

Sem^UsMCcV'YExpExp))

Sem((2, c'+V. ExpExpExp))

opération signature

—• Sem(Exp)

Sem(Exp) -> Sem(Exp)

Sem(Exp) x Sem(Exp) -• Sem(Exp)

opération

zéro

suce

/

where the opération / : Nat x Nat —• iVa/ is defined as addition on natural numbers.

f(zero,x) = x

f(succ(x),y) = succ(f(x,y))

Using this assignment the set Sem(E) is defined as Sem(E) = {zéro,suce, /} , this complètes

the définition of Sem(B, A).

Syntax algebra

Since the expression language is generated by a context free grammar, the family W(X, E)

for the syntax algebra is freely generated from the family of symbol sets X = {0} by the

25

signature E. Following the rules for the construction of W(X, E) in [Rus90] we obtain an

unchanged set S (Xis the family of empty sets). The set WEXP(X, S) is described below.

WExpo(X.Z) = {0}

H W X . S) = WExPn_1(X,2)U{siicctwy.w€WEXPn_1(X,'Z)}

U{e«;1 + w2e : (w1,w2) € ^ ^ . , (^ , 2) x WE^^X ,Z)}

WExp(X,Z) = \JWExPn(X,Z),ne {0,1,2,. . .}

So W(X,X) = {WExP{X,i:)}. The family Syn(I) is defined as {WExp(X,?,)} and the set

Syn(S) is {0,succ(,),+}. The éléments of the set 5j/n(£) are described in the table below.

Syn((0SO\Exp))

5î/n((l , tsucc(") , ,£xp£xp))

Syn((2, e'+'e, ExpExpExp))

opération signature

—• Syn(Exp)

Syn(Exp) —• Syn(Exp)

Syn(Exp) x Syn(Exp) —> Syn(Exp)

opération

0

9

h

The opérations g :WExp(X,Z)-+WExp(X,Z) and /i : WExp(X,X) x W^*P(*,E) - .

WExp(X, E) are defined as:

g(w) = succ(ttf)

h(wi,W2) = CU?I+W2É

5yn(E) is therefore defined as 5yn(E) = {0,5,/1} and the définition of the algebra of words

Syn(B,W(X, E)) is complète.

The learn and eva/ functions

The function learno : Sem0(B,A) -+ Syno(B,W(X,T,)) is defined as: learn0(zero) = zéro.

This function can be extended through the signature E as follows:

learn(zero) = zéro

learn(succ(a)) = suce (learn(a))

learn(f(ai,a2)) = elearn(ai) + learnfa)*-

26

Since the value /(ai,02) is constructed by the opérations zéro and suce for ail values ai,02 G

5em(i4) this définition simplifies to:

learn(zero) = zéro

learn(succ(a)) = succ(/earn(a)).

We can now define the eval homomorphism as follows:

1. define eval0 : Syn0(B,W(X, E)) - • Sem0(B, A) as: eva/0(zero) = zéro.

2. Extend eva/o homomorphically to eval.

eval(zero) = zéro

eval(succ(w)) = succ(era/(tu))

et;a/(eit;i • W2t) = f(eval(w\),eval(w2))

3.2 The interpréter function

The conventional définition of an C interpréter is a program which, when given an C program

/ and input i for the C program as its input, produces the same output as / produces when

given input i. If the interpréter is itself an C program it is called an C self-interpreter. For

the purposes of the algebraic model above this définition must be made a little more précise.

Définition: An C self-interpreter.

An C self-interpreter is a term int such that:

1. eval(int) is a function interpréter :Q -+ Q, where W(X, E) Ç Q.

2. For every term w G W(X, E), eval(w) = eval(interpreter(w)) and no further réduction

of interpreter(w) is possible. O

In other words an C self-interpreter is an C program which takes C syntactic terms as input

and delivers maximally reduced C syntactic terms as output while preserving the meaning of

thèse terms during the réduction process.

27

The algebraic model of language outlined above can be used to describe the interpréter func

tion.

Proposition 3.2.1 If C is a programming language:

C = (Sem{B, A), Syn(B, W(X, E)), learn : Sem(B, A) — Syn(B, W(X, E)))

with évaluation homomorphism:

eval : Syn(B, W(X, E)) - Sem(B, A).

The interpréter functions for C is defined as

interpréter = learn o eval

Proof: The eval homomorphism defines an équivalence relation on Syn(B,W(X, E)).

Vwi,u;2 G Syn(B, W(X, E)) : ui = u>2 ̂ eva/(u;i) = eval(u2)

This relation can be used to construct a quotient algebra Syn(B, W(X, E))/= where each

élément of Syn(B,W(X,T,))/= is not an C program but the complète collection of ail £

programs which hâve a given meaning. For example, in the expression language above, the

équivalence class which contains the term esucc(O) + suce (suce (0))c will also contain the

term succ(succ(succ(0))) , and ail other terms which evaluate to succ(succ(succ(zero))).

This suggests a mechanism for the Computing the interpréter function.

1. Identify the équivalence class containing the term to be specialised.

2. Select a pre-determined term from this équivalence class and use it as the resuit term.

There is an isomorphism between Syn(B,W(X,Y,))/= and Sem(B.A) so if a term w G

Syn(B,W(X, E)) can be uniquely identified as the preferred syntactic représentation of each

28

élément of Sem(B,A) the interpréter function can be described using the eval homomor

phism. The learn function from the définition of C performs exactly this task and so the

function computed by a self-interpreter can be described as: interpréter = learn o eval. •

The effect of proposition 3.2.1 is to define a family of functions Fa on the syntax algebra

which correspond to the opérations Sem(a) of the semantics algebra, for each a G E.

Theorem 3.2.1 For each opération scheme o = (n,s0Si. ..sn,ii. ..ini) G E the function

Fa : Syn(ii) x ...x Syn(in) - • Syn(i)

defined as

Fa = interpréter o Syn[a)

has the same behaviour on syntactic objects as Sem(a) : Sem(ii) x . . . x Sem(in) —• Sem(i)

has on semantic objects.

Proof: Fa is defined as:

Fa(wi, ...,wn) = (learn o eval)(Syn(a)(wi,..., wn))

= learn(eval(Syn(a)(wi,..., wn)))

= learn(Sem(o)(eval(wi),. ..,eval(wn)))

for each a = (n,sQsi ...sn,i'i.. .ini) G E, n > 0. Fa is defined as:

Fa = (learn o eval)(w)

for each a = (0, w, i) G E. D

Returning to the example from section 3.1.5 the interpréter function can be defined as:

interpréter = learn o eval. Using theorem 3.2.1, this définition can be expanded as:

29

as indexed collections of arrows whose components can be brought within the semantics of

the specified language.

31

interpreter(zero) = (learn o era/)(zero)

= learn(zero)

= zéro

interpreter(succ(w)) = (learn o eva/)(succ(tr))

= learn(succ(eval(w))

= succ((/earn o eva/)(tr))

= s\icc(interpreter(w))

interpreter(ewi • W2O = (learn o ei;a/)(eu;i • u^c)

= learn(f(eval(wi), eval(w2)))

= ir(2,^e,£:xpErpExp>(^^rPr^er(it;i),interpr6<er(u;2)).

The function F(2,c+€,ExpExpExp) : Syn(Exp) x Syn(Exp) -> Syn(Exp) given by theorem 3.2.1

is the syntactic équivalent of the semantic opération / : JVaJ x Nat —• iVa* and is defined in

figure 3.1.

F(wi, W2) = learn(f(eval(w{), eval(w2)))

F(zero, it;) = it?

.F(suce (wi),w2) = succC^it?!,^))

Figure 3.1: The opération F(2,c+c,ExpExpExp)

Although the interpréter function is completely described in terms of the définition of the

programming language C it is not a description of a self-interpreter for the simple reason

that it is not an C program. In fact the interpréter function is not actually an élément

of the algebra Sem(B, A) and so there is no guarantee that an C program to compute the

interpréter function actually exists. The following chapters describe a categorical model of

language based on finite limit sketches [BaWe85]. The categorical model of language exploits

the fact that finite limit sketches modelled in the category of sets and functions (SET) exceed

the expressive power of many sorted algebraic théories and hâve ail the properties used above.

Using finite limit sketches we can therefore construct analogues of the learn and eval functions

30

Chapter 4

Sketches

The concept of a sketch originates with Ehresmann and is described in [BaEh68]. Sketches

hâve been studied extensively by several groups Worldwide, mainly in France and Canada, and

a gênerai introduction to the work can be found in [Ehre68, BaEh68, Lair75, GuLa80, CoLa84,

BaWe85, Gray87, \VeBa87, Ba\Ve90]; this list of références is by no means complète. The

formalism used hère most closely follows that of Barr and Wells [BaWe85, BaWe90, WeBa87]

as thèse are more widely distributed than the majority of the other références.

4.1 Définitions

Sketches provide a formai spécification technique based on graphs and, "as such are the intrin-

sically categorical way of providing a finite spécification of a possibly infinité mathematical

object or class of models" [BaWe90] (ppl61). The définition used in [WeBa87] is given below.

Définition: Directed Graph.

A directed graph, G, is a pair of sets Go — nodes, and Gi — edges, together with two

functions: src : Gi —• Go, which returns the source node of a given edge, and function

trg : Gi —> Go maps the edges to their target nodes. D

For example:

32

file:///VeBa87

• b • c

with Go, Gi , src, and trg defined as:

G0 = {a,6,c} Gi = {f,g,h}

src(f) = a trg(f) = 6

src(g) = b trg(g) = c

src(h) = c trg(h) = c.

The définition of a sketch requires the définition of a diagram. To define a diagram we must

first define a graph homomorphism.

Définition: Graph Homomorphism.

A graph homomorphism H : G —» E is defined as a pair of functions Hi : G,- —» £, , t = 0,1

such that the following properties hold:

Ve G Gi : H0(src(e)) = src(Hi(e))

Ve G Gi : H0(trg(e)) = trg(Hi(e)).

That is to say /7 préserves the connectivity of the graph G. D

A diagram can now be defined.

Définition: Diagram.

If d and G are graphs, a diagram of shape d in G is defined as a graph homomorphism

D:d-+G. D

d = G =

r n

9

u
33

D:d-G = (DQ,Di)

where D0 and Di are defined as

D0(w) = D0(xj - p

D0(y) = D0(z) = q

Di(f) = Di(j) = s

Di(g) = r

£1(/1) = t

A directed graph and a set of distinguished diagrams in that graph form two of the components

of a sketch. The remaining two components are a set of cônes and a set of cocones, defined

below.

Définition: Cône.

A cône in a graph G consists of:

1. a diagram of shape d in G, D : d -• G. This diagram is called the base of the cône.

2. A node v of G, called the vertex of the cône.

3. A family of projection edges p = {p,; : v — D(i)} indexed by the nodes of d.

A cône with vertex v and base D is referred to as a cône from v to D or as cône p:v -^ D. •

Any cône p:v -> D can be indicated by a diagram of the form

34

In the category C, a cône p : v —• D is a limit cône if it has two additional properties:

1. for every arrow a : i —• j of d, D(a) opi = pj where o is the composition operator of C.

A cône with this property is called a commutative cône.

2. If ç : s —• I? is a différent commutative cône there is a unique arrow w : 5 —• v such that

Pi o u = qi for ail nodes t of d. In the category of commutative cônes over diagram D,

the limit cône is the terminal object.

A limit cône over a discrète diagram, in any category, is called a product cône and its vertex

is known as the product of the objects in its base. In SET, the category of sets, for example,

the vertex of a limit cône over a discrète diagram is the cartesian product of the sets in its

base.

A cocone is defined to be the dual of a cône.

Définition: Cocone.

A cocone in a graph G consists of:

1. a diagram of shape dm G, D : d —• G. This diagram is called the base.

2. A node v of G, called the vertex.

3. A family of injections in = {ini ' D(i) -» v} indexed by the nodes of d. D

The colimit cocone over diagram D in the category G is defined as the initial object in the

category of commutative cocones over diagram D. That is to say, if j : D —• v is the colimit

cocone over diagram D : d -+ G and k : D —• s is another commutative cocone over D there

is a unique arrow u : v —• s such that fc, = u o j t .

In any category the colimit cocone over a discrète diagram is the sum (coproduct) of the

objects in its base. In SET, for example, the vertex of the colimit cocone is the disjoint union

of the sets in its base.

Thèse définitions of directed graph, diagram, cône, and cocone are combined to give the

définition of a sketch.

35

Définition: Sketch.

A sketch is a 4-tuple (G, Di,C,Co) consisting of a graph G, a set Di of diagrams on G, a se:

C of cônes on G, and a set Co of cocones on G. C

Définition: FP Sketch.

A sketch is called an FP (finite product) sketch if it contains no cocones and ail cônes are

over finite discrète diagrams. C

Définition: FL Sketch.

A sketch is called an FL (finite limit) sketch if it contains no cocones and ail cônes are over

finite diagrams. Clearly every FP sketch is also an FL sketch. C

Définition: Sketch Morphism.

If Si = (Gi,2)ti,Gi,Coi) and 52 = (G2,£*2,C2,Co2) are sketches then a sketch morphism

F : Si —• 52 is a graph homomorphism such that:

1. for each diagram D : d —• Gi in Dii, F 0 D : d —• G2 is a diagram in Di'2.

2. For each cône p : v —• D in Ci, the cône F(p) : F(v) -* F o D belongs to C2.

3. For each cocone j : D —• v oiCoi, the cocone F(j) : F 0 D —» F(v) is a cocone belonging

to Co2. C

That is to say that F : Si —* 52 takes the diagrams of 5i to diagrams of 52, the cônes of 5i

to cônes of 52, and cocones of 5i to cocones of 52-

Given any category C, there is a sketch underlying C defined as (G, Di, C, Co) where G is the

underlying graph of C, Di is the set of ail commutative diagrams of C, C is the set of ail limit

cônes of C, and Co is the set of ail colimit cocones. This leads to the final définition in this

section.

Définition: Model of a sketch.

A model of a sketch, S, is a sketch morphism M : 5 -» \V\ where \V\ is the sketch underlying

some category V (typically SET). It follows that the diagrams of S will be taken to com

mutative diagrams of V, and the cônes (cocones) of S will be taken to limit cônes (colimit

cocones) of V. C

36

Although M : S -* \V\ is actually a graph homomorphism, it is sometimes convenient to

regard it as a functor M : S —• V where S is the free category generated by the sketch 5.

The models of a sketch 5 in category V, M : S —• V also form a category denoted Modp(5) .

The objects of this category are the models M and the arrows are natural transformations.

The category Modp(5) is a full reflective subcategory of the functor category [5,2?]. The

category of models of 5 in SET is denoted by Mod(5) .

4.2 Example: lists

Currently, interest is growing in the use of sketches as a tool for the spécification of abstract

data types. Sketches offer a spécification tool wThich is far more powerful than any which is

currently available. Two reasons for this are:

1. the diagrams of a sketch contain no variables and become commuting diagrams (équa

tions) when the sketch is modelled in any category, î>; equational reasoning is therefore

greatly simplified for the model of a sketch.

2. The existence of a set of cocones in a sketch allows the user to specify sorts as sums,

this can drastically reduce the complexity of a sketch. To quote from Wells and Barr

[WeBa87].

"Having the ability to form disjoint unions makes it easy to define op

érations . . .which are undefined on part of the datatype. We don't need to

give it some artificial value such as 'error' — we just don't define it on the

embarrassing part of the datatype, and in any model it is then not defined

there and thus gives no trouble."

Gray [Gray87] shows how sketches of simple datatypes may be combined to form more complex

datatypes such as: SETofNAT, and SETofSETofNAT, and is currently developing a tech

nique for implementing sketches using the computer algebra package Mathematica [Gray?].

A simple example, a sketch of lists of natural numbers with a distinguished error number,

is included hère to give a flavour of the use of sketches in the spécification of abstract data

37

types.

The sketch of the abstract data type List has seven opérations:

empty

cons

head

tail

—• List

Data x List —* List

List —• Data

List —» List.

which operate on lists and

zéro

error

suce

—• Data

-> Data

.Data — Z)ata

The opérations empty and cons are constructors, /iead : List —• .Data and tai/ : Zt$* -* List

are described by the functions below.

head(empty) = error

head(cons(d,l)) = (f

tail(empty) = empty

tail(cons(d,l)) = /

For the sake of simplicity the tail function is defined so that the tail of an empty list is the

empty list rather than an error. Defining tail in this manner is done to avoid the need include

cocones in the sketch.

To force the Data sort to contain a unique error élément we also require:

succ(error) = error.

4.2.1 T h e sketch of lists

The sketch List comprises a graph G with four nodes, and nine edges. There are two cônes

and five diagrams.

38

Graph - G

The graph of the sketch of lists contains a node for each sort and an edge corresponding to each

opération mentioned in the signature above. The nodes of the graph are: Data, List, T, Datax

List and the edges are empty : T —> List, cons : Data x List —• List, head : List —• Data,

and tail : List —• List. In addition to the edges above the graph of the sketch also contains

edges: error : T —• Data, zéro : T —> Data, and suce : Data —• Data. The complète graph

is represented pictorially below.

JData x List

tail Q List

cons//prLi*%

head

PrData

Data j suce

empty

The construction of the objects T, and Data x List, and arrows prnst and prData is described

below.

The set of cônes - C

The cônes for the sketch List are:

the cône over the empty diagram. For any model, M, in category C, M(T) will be the vertex

of the limit cône over the empty diagram, so M(T) must be the terminal object of C. The

second cône is used to specify the object Data x List as a product.

39

Data x List

PrData, ^PrList

Data List

Any model. M, in category C, will take this cône to the product cône

M(Data x List)

M(prData)/ \M(prList)

M(Data) M (List)

so the présence of this cône spécifies that M (Data x List) = M (Data) x M (List) with the

arrows M(prnst) and M(prj^ata) as the coordinate projections. It should be emphasised that

the node Data x List in the graph G is not a product, in spite of its name, it is merely a node

of the graph.

The set of diagrams - D

The sketch of lists requires five diagrams: two to specify the behaviour oîhead : List — Data,

and two to specify tail : List —• List.

List
head

Data
Data x List

cons A JPTData
empty error

List

(«)

head

W

Data

Together thèse diagrams specify the behaviour of head since any model, M, will force the

diagrams (a) and (6) to commute. By (c) we obtain the équation M(head) o M(empty) =

M (error) and (b) gives rise to the équation M (head) o M(cons) = M(prData). The diagrams

40

List
tail

List
Data x List

empty" empty
^PrList

List
tail

List

(<0 (d)

specify the behaviour of tail. Again because any model, M, forces (c) and (d) to

commute, we obtain the équations M(tail) o M(empty) = M(empty), from (c), and

M(tail) o M(cons) = M(prn5t), from diagram (d).

One final diagram is required to specify the behaviour of the suce opération:

Data suce Data

error error

(e)

which gives rise to the équation M (suce) o M (error) = M(error). This diagram will be used

to force the Data sort to contain a unique error value. The sketch contains no other diagrams.

Since the sketch List is an FP sketch it contains no cocones and is fully described as the

4-tuple

List = (G, Z?,C,0).

4.2.2 The semantics of List

A set valued model of an FP sketch S is called a term model if it is the initial object in the

category Mod(5). FP sketches always hâve a term model [Barr86] as do FL sketches. To

41

provide a semantics for the sketch List we take its term model. / : List - • SET. To do this

we must first define a congruence relation.

Définition: Congruence relation.

A congruence relation ~ is an équivalence relation on the arrows of a category C such that:

1. if / ~ ff, then / a n d g hâve the same source and target.

2. In the diagram:

*ft \C -D

if / ~ 05 then f ° h ~ g o h and k o f ~ k o g.

The congruence class containing the arrow / i s denoted [/]. D

In [BaWe90] Barr and Wells give a set of rules for the construction of the term model J : S -»

SET for the FP sketch S = (G,D,C,Q). The terms are constructed as congruence classes of

strings of tuples of composable arrows from the graph G and the rules recursively construct

terms from an alphabet which consists of: the arrows of G, and ail finite length tuples of thèse

arrows. For each cône c € C of the form:

1. If / : a -> b is an arrow of G and [x] € I(a), then [fx] € I(b) and I(f)[x] = [fx].

2. If (/ i , - . - , /m) and (gu.. .,gn) are paths, a ->+ b, in a diagram d € D and [x] € / (a) ,

then

(/ (/ 0 o . . . o I(fm))[x] = (/(Si) o . . . o I(gn))[x]

in /(6).

42

3. If for i = 1 , . . . , n, [xt] € I(ai), then [c(xx,..., xn)] G I(q) is a congruence class of strings

consisting of the cône, c, followed by a tuple of arrows, so if n = 0 there is only one

élément [c()] for the empty product.

4. If for i = l , . . . , n , [xi],[yi] € /(a,-) and [x,] = [y,-], then c (x! , x n) = c(ya , . . .,j/n).

5. For i = l , . . . , n , [p,c(xi,.. . ,xn)] = [x,].

By rules 1 and 2 each / (/) : I(a) -* 7(6) is forced to be a function which respects the diagrams

D. From rule 3 the vertex I(q) of a cône is forced to contain an élément corresponding to each

tuple (/ (a i) , . . . , I(an)). Rule 5 forces I(pi), i = 1 , . . . , n to be the coordinate projections and

from rules 1 and 5 we obtain

I(pi)[c(xi,...,xn)] = [x,-],V* = l , . . . , n .

Rule 4 extends the congruence relation to cover tuples.

We can now construct the term model, I : List —• SET. The alphabet is constructed as:

Ai = {empty, zéro, error, suce, cons,prust, pra>ata, tail, head}

An = A1} = {(ai,...,an) : a,; G Ai,i = 1, . . . ,n}

A = L M n , n € { l , 2 , . . . } .

Together rules 1, 3 and 5 define I(Data x List) as the set I(Data) x I(List), and I(prList),

I(PrData) are the coordinate projections giving I(List) and I(Data) respectively. The func

tions I(prnst) and I(prData) cannot construct any éléments of I(List) and I(Data) and will

be ignored below, except where they form part of a diagram.

By rule 3, / (T) is a singleton set, I(empty) is an élément of 1(List) which we shall naine nil,

while I(zero) and I(error) are éléments of I(Data) which we name 0 and err respectively.

From rule 1, the set I(Data) is inductively defined as:

43

I(Data)0 = {0,err}

I{Data)n = {succ(x) : x € I(Data)n-!} U {head(x) : x <= I(List)}

I(Data) = [JI(Data)n,nÇ: {0.1,2,...}.

Notice that from rule 2 and diagrams (a) and (b) we obtain:

I(head) o I(empty) = I(error) and

I(head) o I(cons) = /(pr0ota)

so the set {/iead(x),x € /(lis*)} adds no new éléments to I(Data)n and can be ig-

nored. Similarly, by rule 2 and diagram (e), I(succ) o I(error) = /(error) so I(Data) =

{O,succ(0),succ(succ(0)),...} U {err}, i.e the set of natural numbers with a distinguished

error élément.

By rule 1, the set I(List) is constructed as:

I(List)0 = {nil}

I{List)n = /(XwO»-iU

{cons(x,y) : (x,y) G I{Data) x Z(/is*)n-i} U {tai/(x) : x € Z(Iist)„_i}

/ (l i «0 = U / (M n , n £ {0,1,2,...}.

From rule 2 and diagram (c), we obtain /(toi/) o I(empty) = I{empty), therefore tail{nil) =

nil. Similarly rule 2 and diagram (d) produce I(tail) o I(cons) = I(prLiat), so the set

{tail(x),x € I(List)n-i} adds no new éléments to I(List)n. The description of I(List) can

therefore be simplified to

I(List)0 - {nil}

I(List)n = J(List)n-i U {cons(x, y) : (x, y) € I(Data) x / (I i50„-i}

I(List) = U/(£*«*)n,n€ {0,1,2,...}

the set of séquences of éléments of I(Daia) terminated by the value nil, i.e. Lists of natural

numbers with a distinguished error number. The opération I{head : List -* Data) is specified

by the équations generated by diagrams (a) and (b) as:

44

(a) I(head)(nil) = err

(b) I{head)(I(cons)(x,y)) = x, V(x,y) € I{Data) x I{List)

and I(tail : List - • List) is specified by (c) and (d) as:

(c) I(tail)(nil) = ni/

(d) /(*a«7)(J(cons)(x,y)) = y, V(x, y) € J(Z?a*a) x / (I M *) -

In other words, the expected head and tail opérations.

4.3 Sketch morphisms and induced functors

In this section we examine some of the properties of sketches and their models. The construc

tion of the categorical model of language in chapter 5 is based on thèse properties.

Property 4.3.1 IfhiS -+T isa sketch morphism it induces a functor between the catégories

of models ofS and T, h' : Mod(T) -* Mod(S) .

Proof: h* : Mod(T) — Mod(S) is defined as

h'(M) = M oh

h*(f:M-+N) = fh:h'(M)^h'(N)

We can use property 4.3.1 to construct models of a sketch, S, which play the rôle of datatypes

with hidden sorts and opérations.

Proposition 4.3.1 Let S = (G,I>,C,0) be an FL sketch, T = (G', £>', C , Co') be a sketch,

andhxS^Tbea sketch morphism. For each model, M :T — SET, of T, the datatype

h*(M) : S -* SET has the saine behaviour as M except that each object n' € G'0 which is not

the image in h of some object n € Go becomes a hidden sort ofh"{M) and each edge e' € G\

which is not the image in h of some edge e € G\ becomes a hidden opération.

45

Proof: If n € Go then h(n) € G'0 and from property 4.3.1 h*(M)(n) = M(h(n)) are the same

sort. If n1 6 G'0 and there is no n 6 Go such that h(n) = n' then hu(M)(n) is undefined so

the sort M(n') is hidden.

Similarly if e € Gi then h(e) 6 G[and from property 4.3.1 hm(M)(e) = M(h(e)) are the same

opération. If e' 6 G^ and there is no e G Gi such that /i(e) = e' then /i*(M)(e) is undefined

and the opération M(e') is hidden. a

A second property allows us to map the initial model of S to the model h*(M).

Property 4.3.2 If S is an FL sketch then for any sketch, T, and sketch morphism h : S -+ T

we hâve a unique natural transformation, e : /5 -A h*(M), where Is : S -> SET is the initial

model of S and M :T -+ SET is any model of T.

Proof: IS:S - SET is initial in Mod(S) . D

For FL sketches S and T and sketch morphism h : S -> T the construction in Mod(5) is

shown in figure 4.1

\
\

Figure 4.1: The category Mod(S)

where Is : S — S E T is the initial raodel of 5, M : T - • SET is a model of T, and hm :

Mod(T) -> Mod(5) is given by h : S - • T and property 4.3.1. The natural transformation

e : / 5 A h*(M) is given by property 4.3.2. Our intention is to use Mod(5) to construct a

model of language where /5 models language syntax, hm(M) models language semantics and

e : Is -^ h*(M) models the évaluation of programs.

46

To construct this model of language with properties similar to Rus' model of language we

need to establish:

1. that Is can be used to model a language syntax.

2. That h*(M) can model a language semantics and

3. the conditions under which we can construct an arrow learn : h*(M) —• / 5 .

We will leave 1 and 2 for the next chapter and concentrate hère on 3, the construction of

learn.

To discuss the conditions sufficient to allow the construction of learn we must first define

what sort of object learn is. In order to impose as few conditions on S,T, and h : S —• T as

possible we define learn as a transformation [Copp80].

Définition: Transformation.

Let F : C - • V and G : C - • V be functors. A transformation t : F - • G is defined as any

collection of arrows / c : F(c) -+ G(c) indexed by the objects, c, of C. D

This définition is simply a much weaker form of the définition of natural transformation where

the naturality condition has been completely removed. The composition of transformations

we require is the horizontal composition given in [Copp80] and is defined below.

Définition: Composition of transformations.

Let F, G, H : C — V be functors and s : F — G, t : G — H be transformations. The

composition of t and s is defined as the transformation t 0 s : F - • H given by the collection

of arrows tcosc: F(c) -+ H (c) indexed by the nodes, c, of C. D

If learn : hm(M) -+ /5 is a transformation then to construct and analogue of Rus' learning

function we require that e o learn = 1&»(M)- TO ^ e a ^ e t o construct learn we require a

relationship between S and T which is illustrated in figure 4.2

In the situation where the arrow g e T is not the image in h of an arrow from S it must be

the case that the arrow M(g) adds no new éléments to the set M(h(y)). Additionally we also

require that the set M(h(y)) contains no éléments which are not constructed by some arrow

47

-^- y

h(f)
-=>

T h(x) ^ h(y)
g

Figure 4.2: Generalised arrows in sketches S and T.

M(p) where p is a path in 7\ i.e. we can ensure this by insisting the M : T -> SET is the

initial model IT - T —• SET of T.

When the sketches S and T hâve the relationship described above we will say that S is

learnable from T. That is to say we can construct the sketch S by deleting parts of T without

removing éléments from the sets constructed by models of T from objects of T which are

common to both S and T. We can now describe the construction of the transformation

learn : h*(Ij) —• Is-

Proposition 4.3.2 If S and T be an FL sketches and h : S -+T is a sketch morphism such

that S is learnable from T. We can construct a transformation learn : hm(Ij) -+ Is where

Is : S -> SET and IT -T -+ SET are the initial models of S and T respectively.

The natural transformation e : Is + h*(Ij) given by property 4.3.1 defines an équivalence

= s on the set Is(s) for each node s e S.

Vx.y e Is(s) :x=sy& es(x) = e3(y)

We can therefore construct a quotient set /5(5)=, where each élément [x] £ Is(s)=, is the

class of terms t G /5(5) which are équivalent under = , . Since S is learnable from T there is an

isomorphism between the sets /5(5)=, and h*(IT)(s) so to construct an arrow l5 : h*(IT)(s) -»

Is(s), set ls(x) = y for each x G h*(IT)(s) where y is a member of the équivalence class, [y]

such that es(y) = x. The arrows /5 form the transformation learn : h*(Ir) -+ / s - D

48

Obviously the arrows la are not unique as we can choose an arbitrary y from [y] but regardless

of the choice of y we know, by construction, that e3 o ls = lh*(iT)(s) and therefore e o learn =

l / i*(/ r)-

We now hâve ail the components necessary to construct a categorical model of language with

similar properties to the algebraic model of language discussed in chapter 3.

49

Chapter 5

A Categorical Model of Language

The categorical model of language described in this chapter is a development of the model

discussed in [ReRa89], and is used to construct a category Mod(S) , where Sis an FL sketch

describing the syntax of a programming language. The category, Mod(S), is generated by

an FL sketch and, as a resuit, has properties similar to those of the category of E-algebras,

C(S). The category of E-algebras is actually équivalent to the models of FP sketches, so by

using the FL class of sketches (which includes ail FP sketches) we can increase the power

of the model of language. The model of language described therefore has similar properties

to Rus' algebraic model of language discussed in chapter 3 while having a greater expressive

power.

5.1 Using sketches to model language syntax

To model the syntax of a programming language, C, we construct a sketch which describes

the abstract syntax trees of C programs. To define the abstract syntax trees of C we will

assume that the syntax of C is described by a context free grammar, CFG.

Définition: Context Free Grammar.

A context free grammar, CFG, is defined as a 4-tupie \N,T, P,S) where:

50

1. the set N, called the set of nonterminal symbols, is a set of names used to name the

types of phrases of the language, L(CFG), described by the context free grammar.

2. The set T, of terminal symbols, is the set of symbols which may appear in a sentence

of the language, L. The set of strings of terminal symbols is denoted by T + .

3. P, called the set of production rules, is a non-symmetric, non-transitive binary relation,

P : N -*RHS, where RHS is the set of strings which can be constructed from the set

NuT.

4. The start symbol S G N is a distinguished nonterminal symbol such that:

Vs G T + : s is a sentence in L & S —>+ s

where —•+ is the transitive closure of P.

The set, L(CFG) = {x : x G T + A S -++ x}, describes the language generated by the context

free grammar, CFG. D

Using this définition of context free grammar the abstract syntax trees generated by CFG are

defined below.

Définition: Abstract syntax tree.

An abstract syntax tree is a labelled, ordered, rooted tree such that:

Abs-1. if tis a string in T + and there is a production rule, p : N —> t, then t is an abstract

syntax tree describing a phrase belonging to type N.

Abs-2. Let p : N —• Co . . . cx, x > 0, be a production rule such that, c t , . . . , c*, . . . , Cj, 0 <

i < k < j < x,is the séquence of nonterminals from the string co.. .cx . If

ti is the abstract syntax tree of a phrase of type c,,

tk is the abstract syntax tree of a phrase of type c&, and

tj is the abstract syntax tree of a phrase of type Cj,

an abstract syntax tree, t, rooted by p is constructed by setting U,..., tk,..., t:; in order

as the children of node p. The abstract syntax tree, t, describes a phrase of type N.

51

Abs-3. Nothing else is an abstract syntax tree. D

Theorem 5.1.1 shows that we can construct an FP sketch, S, which describes the abstract

syntax trees of the language generated by the arbitrary context free grammar, CFG.

Theorem 5.1.1 For every context free grammar, CFG, there is an FP sketch. S, such that

each node, n, which is not the vertex of a cône, is mapped to the set phrases of type n G N of

L(CFG) by the initial model, Is : S — SET, in Mod(S).

Proof: The FP sketch, S, describing the abstract syntax trees of L(CFG) is constructed as:

1. set S = (G,0, C,0) where G is the graph containing exactly one node, T, and no edges,

and Cis the set of cônes containing just the cône over the empty diagram. e : T —• G.

2. For each nonterminal symbol, n G N, add a node n to the set of nodes, Go-

3. For each production rule, p : n — t,t G T + add an edge, p : T —> n, to the set of edges,

Gi.

4. For each production rule, p : n — co . . .c x , where c t , . . . , c*, . . . , c:, 0 < i < k < j < x is

the séquence of nonterminals from co .. . c r :

(a) if i ^ j , add a node named. c, x . . . x c* x . . . x Cj, to Go-

(b) If i ^ j , add a cône pr : c t x . . . x c* x . . . x Cj —• D over the discrète diagram

Ci . . . Ck . . . Cj

to the set of cônes, C.

(c) If i = j , add the edge p : c, —• n to G\.

If i ^ j add the edge, p : c, x . . . x c* x . . . x Cj —• n to Gi.

5. Nothing else belongs to S.

We must now show that each set Is(n), n G Go, where n is not the vertex of a cône is the set

of phrases of type n G AT of L(CFG).

52

From Abs-1 we know that each phrase of type n, t, which has no subtrees is generated by

a rule of the form p : n —> t. Rules 1, 2, and 3 above ensure that the sketch, S, has an edge

p : T —• n corresponding to each production rule p : n —• t. Since S contains no diagrams we

know that the arrow Is(p) - / s (T) —> /s(n) uniquely identifies a term in Is(n), corresponding

to the phrase, t.

From rule Abs-2 we know that each phrase, t, with subtrees U,..., tk,..., t3 is constructed

by a production rule p : n —> CQ...CX where c,-,.. . ,c* , . . ,,Cj, 0 < i < k < j < x are

nonterminal symbols such that: U is a phrase belonging to type ct, tk is a phrase be-

longing to type c*, and tj is a phrase belonging to type Cj. Rule 2 ensures that the

sketch, S, contains a node, n, while rules 4a, and 4b ensure that Is(ci,.. . , c* , . . .,Cj)

is the product Is(ct) x . . . x Is(ck) x . . . x Is(cj)- By rule 4c we obtain an edge in G,

p : a x . . . x Ck x ... x Cj —• n, corresponding to each production rule p : n -+ CQ . . .cx. Since,

5, contains no diagrams the arrow Is(p) : Is(ci) x . . . x Is(ck) x . . . x Is(cj) -+ /s(^) con-

structs terms such that for each y = (U,...,tk,...,tj) G /5(^1) x . . . x Is(ck) x . . . x Is(cj),

Is(p)(y) is uniquely identified as a term in Is(n) and has subterms, in order, / , - , . . . , ^ , . . . , tj.

The term Is(p)(y) corresponds to the phrase, t.

From rule 5 we know that each Is(n) contains no other terms. •

The simple expression language in chapter 3 with syntax:

(Exp) — 0

(Exp) —• succ((Exp))

(Exp) — (Exp)+(Exp)

has the abstract syntax trees shown.

exp-treeso = {0}

exp-treesn = {succ(x): x €exp-treeSn-i}\J

{+(x,y): (x,y) eexp-treesn-iXexp-treesn-i}

exp-trees = \Jexp-treesn. n G {0,1, . . .}

53

The sketch, Exp, which describes this set of abstract syntax trees has 3 nodes, T, exp, and,

exp x exp. and 5 edges:

0

suce

pr\

pr2

+

T—• exp

exp —* exp

exp x exp —• exp

exp x exp -» exp

exp x exp —• exp

The edge, 0 : T -* exp arises from the production rule (Exp) —• 0, because of rule 3. The

production rules (Exp) -» succ((£xp)). and (Exp) —• (Exp)+(Exp), together with rule 4

force the existence of the edges suce : exp —» exp and + : exp x exp —* exp respectively. The

edges pri : exp x exp —• exp and pr2 : exp x exp —• exp arise solely because of rule 4b, as they

are the projection edges of a cône.

There are just 2 cônes:

the cône over the empty diagram, and

exp x exp

which is forced to exist by rules 4a and 4b and, when modelled in SET, forces M(exp x exp)

to be the product M(exp) x M(exp). The sketch is represented pictorially below.

succ\
•exp —

prx

+ •exp x exp

pr2

54

The sketch, Exp contains only one node which is not the vertex of a cône, namely exp. Using

rules for constructing the term model, Ï£zv : Exp — SET, of Exp given in section 4.2.2 we

obtain the set, ÏExP(exp), shown below.

IExp(exp)o = {W°)(0)}
lExp(exp)n = {IEXP(SUCC)(X) : x € lExP(exp)n-i}U

{lExP(pri)(x) : x £ lExp{exp)n-i}\J

{lExp{pr2){x) •• x € lExP(exp)n-i}U

{lExP(+)(Xny) : (x,y) € lExP(exp)n-i x lExP(exp)n-i}

lExP(exp) = \JlExP{exp)n, n € {0 ,1 , . . . }

The sketch contains no diagrams and so lExp{0)jExp(succ),IExp{+) uniquely construct terms

in IExp(exp). The arrows Isxpipri) and Isxpipri) are forced to be the coordinate projections

of the product lExp(e*P x exp) and as a conséquence do not construct terms in /£x p(eip).

The description of iExp(exp) can therefore be simplifled to:

lExp(exp)0 = {0}

lExp(exp)n = {succ(a:):z G/£xP(earp)n-i}U

{+(x,y): (x,y) € lExp(exp)n-i x lExP(exp)n-i}

lExP(exp) = {JlExp(exp)n, n € {0 ,1 , . . . }

and so lExp(exp) S cxp-trees.

In section 5.4 we will show that by using FL rather than FP sketches to model language

syntax we can simplify the process of language spécification by capturing the static semantics

of a programming language within the spécification of the syntax.

55

5.2 Using sketches to model language semantics

In this section we show how a sketch can be used to construct the semantics of a programming

language. To describe the senantics of a programming language we must actually describe

the computational uni verse in which the language exists. To describe this uni verse we simply

view it as a complex abstract data type and construct an FL sketch, Sem, which has this

datatype as its initial model.

The semantics of the simple expression language is given by an FP sketch, Nat, which describes

the natural numbers with an addition opération. This sketch has nodes, T, nat, and natxnat,

and edges:

There are two cônes:

and

0

dispose

suce

pr\

pr2

+

idnat

(ï.idnat)

SUCC X idnat

: T— nat

: nat -• T

: nat —• nat

: nat x nat —> nat

: nat x nat —• nat

: nat x nat -+ nat

: nat —• nat

: nat —> nat

: nat —• nat x nat

: nat x nat —• nat x nat.

nat x nat

nat

56

Thèse cônes force the objects, M(T), and M (nat x nat) to be the sets, {0}, and M (nat) x

M(nat) respectively. The graph of the sketch is shown below.

(z, idnat)

suce

dispose
idnai

s + —nat*

[3 a

-nat x nat
SUCC X idnat

We require six diagrams to complète the spécification of the semantics.

nat nat

dispose idnat

nat

(b)

From diagram (a) we obtain the équation

M(z) = M (0) o M (dispose)

For the initial model of Nat, I^at : Nat —• SET, this équation forces //Vot(^) to be the func

tion, x -+ lNat(0)(lNat(T)), i.e. x -* 0. Diagram (6) forces lNat(idnat) to be the function

1 /Nat(noO'

nat

(2, idnat)

pri nat x nat — — nat

(c)

57

The équations:

M(pri)oM((z,idnat)) = M(z)

M(pr2) o M((z, idnat)) = M(idnat)

are obtained from diagram (c). Together, thèse équations force lNat((z, idnat)) to be the

function: x -+ (lNat(z)(x),INat(idnat)(x)).

PT\ PT2
nat -* nat x nat -nat

suce

nat-

SUCC X idnat

pri
nat x nat •

id< nat

pT2
•nat

(d)

From diagram (d) we obtain the équations:

M(pri) o M (suce x idnat) = M (suce) o M(pri)

M(pr2) o M(succ x idnat) = M(idnat) o M(pr2)

so lNat(succ x idnat) is the function, (x,y) -> (lNat(succ)(x), lNat(idnat)(y)).

A (*,idnat) .
nat •- nat

nat

nat x nat

+ SUCC X idnat

nat x nat •

-nat

suce

nat

(e) (/)

The final two diagrams (e), and (/) provide the équations:

58

M(+)oM((z,idnat)) = M(idnat)

Àf(+) o M(succ x idnat) = M(succ) o M(+)

which force Ixat(+) to be addition on natural numbers. The sketch, Nat, is discussed in

greater détail in [BaWe90], chapter 7, and Ijsjat describes the semantics of the simple expres

sion language of natural numbers and addition. In section 5.3 below we show how to combine

the sketches Exp and Nat to produce a complète description of this language.

5.3 A categorical model of language

5.3.1 A categorical spécification of language

Recall that Rus' algebraic model of language spécifies a language as a triple

(Sem, Syn, learn : Sem —• Syn)

where Syn is the initial algebra over signature E and Sem is a similar algebra. The

function learn : Sem —• Syn is defined on the carrier sets of Sem and Syn such that, if

eval : Syn —• Sem is an homomorphism given by the initiality of Syn then evalolearn = l 5 e m .

To construct a categorical model of language with properties similar to Rus' algebraic model

we specify it as a 4-tuple

(Sem, Syn, E : Syn - • Sem, learn : E*(Msem) - • Isyn)

where Sem and Syn are FL sketches, and E : Syn —• Sem is a sketch morphism such that Syn

is learnable from Sem. The transformation learn : E*(Isem)(Sem) —• Isyn(Syn) is constructed

by following the procédure given in the proof of proposition 4.3.2 and is described in greater

détail below.

By theorem 5.1.1 we know that for every context free grammar, CFG, we can construct an

FL sketch (actually an FP sketch but the extra power of FL sketches can be used to describe

the static semantics) whose initial model in SET describes the abstract syntax trees of the

59

language, L(CFG). The sketch, Syn, is just such a sketch and we take its initial model in

SET, Isyn • Syn -• SET to be the abstract syntax of the language, L(CFG).

The semantics of L(CFG) is specified by the sketch, Sem. but we do not regard the

initial model, Isem • Sem —> SET, as the semantics because there is no obvious way to

describe the évaluation of programs if Isem is the semantics. To construct the seman

tics of L(CFG) we use property 4.3.1. The sketch morphism E : Syn —• Sem in

duces a functor E* : Mod(Sem) —• Mod(Syn), and so by proposition 4.3.1 the model

E*(Istm) • Syn -+ S E T e Mod(Syn) spécifies a datatype which is équivalent to Isem with

hidden sorts. We use the model Em(IsCm) € Mod(Syn) as the semantics of L(CFG).

The évaluation function, eval : ISyn -^ E*(Isem), is the natural transformation which is

known to exist because of property 4.3.2.

To complète the spécification of L(CFG) we specify learn : E*(Isem) -> Isyn as a transfor

mation such that, eval o learn = l£*(/Sem), w ^ e r e ° *s composition of transformations. Since

Syn, Sem, and E : Syn — Sem are such that Syn is learnable from Sem proposition 4.3.2

guarantees the existence of learn. The 4-tuple

(Sem,Syn, E : Syn —• Sem, learn : Em(Isem) —• Isyn)

therefore completely spécifies the syntax, semantics and syntax *•* semantics association of

the language, L(CFG).

5.3.2 The language of natural numbers and addition

We hâve already constructed sketches, Exp, and Nat, which we will use to specify the syn

tax and semantics of the simple expression language from section 3.1.5. To complète the

spécification we must:

1. construct a sketch morphism E : Syn -+ Sem such that Exp is learnable from Nat.

2. Construct the transformation learn : E*(Isat) - 4 lExp-

60

The construction of E : Syn —• Sem follows a fairly simple procédure. We simply map

éléments from the syntax (the sketch Exp) to the corresponding éléments from the semantics

(the sketch Nat) which we wish to use to express the meanings of the syntactic objects. In

this way we can construct E : Syn —> Sem as:

E(T)

E(exp)

E(exp x exp)

= T

= nat

= nat x nat

E(0 : T — exp)

E(succ : exp —• exp)

E(pri : exp x exp —> exp)

E(pr2 : exp x exp -+ exp)

E(+ : exp x exp —• exp)

0 : T -* nat

suce : nat -* nat

pri : nat x nat —• nat

pr2 : nat x nat —* nat

+ : nat x nat —• nat.

This leaves us with the following edges of Nat which are not the images in E of edges of Exp.

dispose

z

idnat

(Z, idnat)

SUCC X idnat

nat-* T

nat —* nat

nat —• nat

nat —• nat x nat

nat x nat —* nat x nat

To show that Exp is learnable from Nat we need to show that none of thèse arrows construct

éléments of the sets /Not(T), iNat(^at), or lNat(^at x nat).

We know that except for dispose : nat —* T, the model I^at maps each of the above edges to

functions which are defined in terms of /;vot(0), iNat(succ), and l/Nat(naQ- ^ s a resuit none

of thèse functions produce éléments of /^at(T), iNat(nat), or Itfat(nat x nat) which are not

constructed by some combination of lsat(0) and Isat(succ). Since we also know that //Vat(T)

is terminal we know that I^at(dispose) : iNat(nat) —> -̂ Not(T) can only be the function x —• 0

so it cannot construct éléments either. We therefore know that Exp is learnable from Nat.

We must now construct the transformation learn : Em(Ijsrat) -* lExp-

61

The component arrows of learn are constructed so that they are right inverses of the eval

natural transformation. Obviously to specify learn we must first calculate eval.

The eval natural transformation

From property 4.3.2 we know that eval is the unique natural transformation eval : IEXP - •

Em(ljvat) given by the initiality of IEXP- We therefore know that the diagrams below commute.

WT)"

evalrç

hrP(0)
- lExp(exp)

eval, exp

E*(lNat)(T)
E"(lsat)(0)

E*(INat)(exp)

(a)

From the définitions of IEXP and Iffat we know that IEXP(T) = £*(/)vat)(T) = {0} and so

evalf = 1{0}

From diagram (a) we obtain the équation

evalexp o IEXP(0 < = E*(lNat)(0) o eval?.

We know from the définitions of IEXP, and Isat that IEXP(0)(9) = 0 where 0 is a syntactic

term, and E*(lriat)(0)(to) - 0, i.e. the number 0, so from the équation above we obtain

evalexp o IET7(0) = (0 •-» 0) o 1 { 0 }

eval^ o (0 — 0) = 0 -* 0.

From this final équation we can partially define evalexp as: eva/eip(0) = 0.

62

IEXP(MCC)
iExp(exp) * ÏExpiexp)

eval, exp eval exp

E*(INat)(exp) —
E*(INat)(sUCC)

Em(INat)(exp)

(b)

From diagram (b) we obtain

eval^ o IEXP(SUCC) = Em(I^at)(succ) o evalexp

By the définitions of IEXP and ^Nat we know that IEXP(SUCC), and Em(lNat)(succ) are respec

tively the functions x —• s u c c (x) and x —• z + 1. From this we obtain:

evaltxpo(x - • s u c c (x)) = (x — x + l) o eval^p

which allows us to partially define evalexp as: ei?a/e x p(succ(x)) = evalexp(x) + 1.

r , x IExP(pri)
lExP(exp x exp) - lExp(exp)

eval exp x exp eval
exp

E'(INat)(exp x exp) — * E'(INat)(exp)
E (lNat)(pri)

(c)

The commutativity of diagram (c) gives us the équation:

eval^p o iExp(pri) = Em(lNat)(pr\) o evalcxpxexP

63

while commutativity of diagram (d) gives us:

evalexp o IEXP(P^2) = E*(Itfat)(pr2) ° evalexpxexP.

w „, x el?) W£!î> . W M F)

eva/, exp x exp eval exp

Em(Isat)(exp x exp)
E'(lNat)(pr2)

- Em(INat)(exp)

(d)

Since lExP{pr\) and IEXP(P^2) are the co-ordinate projections for iExp(exp) x iExp(exp) and

Em(Ixat)(pri) and Em(Isat)(pT2) are the co-ordinate projections for iNat(nat) x iNat(nat),

diagrams (c) and (d) define evalexpxtaep: evaltxpxexP(z,y) = (e v a W x) > e v a W î O) -

lExP(exp x exp)-

evalexpxexp

W+)
- /£xp(e*p)

eva/. exp

E"(lNat)(exp x exp) —
£•(/*.«)(+)

E'(Isat){exp)

(e)

This final diagram adds one last équation which allows us to complète the définition of evalexp-

evalexp o J E * P (+) = Em(INat)(+) o evalexpxexp-

From the définition of J ^ p we know that IEXP(+) is the function (x, y) -* +(x ,y) which con

s t r u i s syntactic expressions involving the plus operator from pairs of expressions. Similarly

64

we know from I^at that E*(Iwat)(+) is addition on natural numbers. Using diagram (e) we

can dérive the équation

evalexp(+(x>y)) = evalexp(x) + evalcxp(y).

By collecting the various parts of the définition of the eval natural transformation together

we construct the following:

evalf = 0 i—• 0

evalexp = / where / (0) = 0

/ (succ(x)) = / (x) + l

/ (•<*, y » = f(x) + f(y)

evalexpxexp = (x, y) — (evalexp(x), evalcxp(y))

Having calculated the eval natural transformation we can now specify learn : Em(Isat) -* lExp

so that

Vn € Exp : evaln o learnn = l£'(/Nût)n-

The components of learn : Eu(Iwat) —* ^Exp are specified as:

learnj^ = 0 i—• 0

learnexp = l where 1(0) = 0

/ (x + 1) = succ(/(x))

learneXpxexp = (*, y) - • (/earncxp(x), learnexp(y)).

The language of natural numbers and addition is therefore completely specified by the 4-tuple:

(Nat, Exp, E, learn)

65

where Nat is the sketch from section 5.2, Exp is the FP sketch given in section 5.1, E : Syn —

Sem and learn : E*(Ijvat) -> lExp are, respectively, the sketch morphism and transformation

shown above.

In the remainder of this chapter we discuss some of the implications the sketch based model

of language has for the way in which we specify certain language features while in chapter 6

we will discuss the process by which we arrive at a self-interpreter for the arbitrary language

C specified using this model.

5.4 Describing language features using the model

The categorical model of language described above allows the language spécifier to use limits

which are not simple products in a language spécification. The use of such constructs can

drastically simplify the spécification of certain types of language construct.

In [KoQu92] Kortas and Quatrain use the categorical model of language described above to

specify a subset of the pascal programming language. The spécification that they provide is

interesting because it uses thèse features to construct a spécification which is both clear and

less complex than can be achieved using conventional methods.

In this section we show how the model of language can be used to construct a spécification

of the type scheme for a simple FP [Back78] like language.

The spécification that we construct demonstrates some of the extra power which is available

within the categorical model of language, and shows that while the model has a great deal in

common with Rus' algebraic model it is significantly more powerful.

5.4.1 A simple type scheme

The language we describe hère constructs programs as the composition of functions. The

language has two basic types: nurn and char and two basic opérations:

1. ord which returns the ordinal number of a given character.

66

2. chr which will return the character with the ordinal number of its argument.

We also hâve one structured type constructor, list, which allows us to construct lists of any

depth. The function map takes a function f of type

f : * —> **

and constructs a function of type

map f : * list —• ** list.

Functions are composed using the o operator. This operator is a partial operator since the

composition f o g is only defined if the source type of the function f is equal to the target

type of the function g.

We can describe this aspect of the semantics of our language using a very simple sketch whose

graph contains only 4 nodes: T, exp, type, and exp x exp. we require 12 edges:

ord

chr

map

o

num

char

list

src

trg

pri

pr2

pr3

T -• exp

T -* exp

exp —• exp

exp x exp -» exp

T — type

T — type

type -+ type

exp —• type

exp —• type

exp x exp —• exp

exp x exp -H- type

exp x exp -» exp

to produce the graph shown pictorially as:

67

Pn

P?3

• exp x exp

pr2

We require four diagrams to describe the src arrow:

src src

type

(a) (b)

which give us the équations:

M (src) o M (ord) = M (char)

M(src) o M(chr) = M(num)

In other words the source type of the function ord is char and the source type of the function

chr is num. From diagram (c)

68

src

map
exp x exp

src pr$

exp src

exp

src

type

(c) (d)

we obtain the équation:

M(src) o M(map) = M(list) o M(src).

This tells us that the source type of the expression map f is * list where * is the source type

of f, while diagram (d) gives us the équation:

M(src) o M(o) = M(src) o M(pr^)

which states that the source of the composition f o g is equal to the source of g. Four similar

diagrams are needed to describe trg.

We now hâve only the partial nature of the o operator left to describe. This is done using the

cônes. There are two cônes. Firstly the cône over the empty diagram

and secondly the cône

exp x exp

exp exp

When this cône is modelled we obtain an équation

69

M(src) o M(pri) = M(pr2) = M(trg) o M(pr3)

and the cône becomes a new kind of limit known as a pullback. In SET the vertex of this

cône is a restricted form of product containing only those pairs which conform to certain

properties. In this case the restricting property is given by the commutativity of the cône so

we know that the set M (exp x exp) is

{(x, y) : (x, y) £ M(exp) x M(exp) A M(src)(x) = M(trg)(y)}.

This allows us to specify o as a total operator since the only members of the set M (exp x exp)

are those pairs of functions whose types make them composable.

Contrast this with a spécification given using FP sketches or using Rus' algebraic model. In

the case of an FP sketch the node exp x exp would be defined by the cône

exp x exp

exp exp

and so M (exp x exp) would contain very many pairs of non-composable functions. We would

need to add several diagrams to the sketch to describe the behaviour of o when applied to

thèse pairs, which would need to be mapped to a new expression value type-error. We

would then need to add a new arrow type-error: T -* exp and several more diagrams to

describe the behaviour of src, trg, and map applied to this value. We would also need to add

another arrow error-type: T —• type so that we could define the source and target type of

the expression type-error. The resuit is a sketch (or an algebraic spécification) which is

drastically more complicated than the one given above and in which the simplicity of the

type scheme we are trying to specify is consequently obscured. The inclusion of a cône which

is modelled as a pullback allows us simply to ignore incorrectly typed programs because our

syntax cannot contain them.

70

5.4.2 The semantics

The simple language described hère is a higher order language which présents us with some-

thing of a problem since we cannot use any type of sketch directly to describe a higher

order construct. We can, however, still describe the semantics of our language indirectly by

describing the effect of applying programs to data objects.

To explain: we construct a node, data, whose model Isem(data) contains ail well formed (i.e.

type correct) data objects which can be processed in our language. We also define an edge

typ : data — type

with appropriate diagrams so that the function Iscm(typ) returns the type of any élément of

Isem(data) to which it is applied.

Using the data node and the typ : data —•> type edge we can construct the cône

exp x data

exP — 1 Ï T ^ 'w* ~tjiï— data

whose vertex Isem(exp x data) contains ail pairs of programs and the data objects to which

they can be applied.

If we now add an edge

run : exp x data —• data

we can construct diagrams which describe the effect of applying programs to data objects and

thus describe the semantics of the language. The resulting sketch is, however, rather complex

and there is little to be gained by showing it hère.

71

Chapter 6

A Categorical Approach to a

Self-interpreter

So far we hâve constructed a model of language based on FL sketches which while it has

many properties in common with Rus' algebraic model of language is, as we demonstrated

in section 5.4, significantly more powerful. In this chapter we use the properties which our

sketch based model of language shares with Rus' model to construct a self-interpreter.

6.1 Construction of the self-interpreter

It was shown in section 3.2 that using Rus' algebraic model of language, the function computed

by the interpréter for the programming language

C = (Syn(B, W(X, E)), Sem(B, A), learn : Sem(B, A) - Syn(B, W(X, E)))

is defined as

interpréter = learn o eval.

This is also true for the categorical model of language.

72

Proposition 6.1.1 If C is specified using sketches

C = (Sem, Syn, E : Syn -• Sem, learn : E*(Isem) -* hyn)

the interpréter function is described as

interpréter = learn o eval.

Proof: Since Sem, Syn, and E : Syn —• Sem are such that Syn is learnable from Sem we

know that for each object S G Syn there is a quotient set Isyn(S)=s defined by eval s and that

Isyn(S)=s = Em(Isem)(S). From the construction of learns we know that for each meaning

m e E*(Isem)(S), m 2 [x], where evals(x) = m, learns(m) 6 [x] is the preferred syntactic

représentation of m. The function interpréter = learn o eval therefore maps programs to their

preferred syntactic form (whilst preserving their meaning) and is an C interpréter. •

Proposition 6.1.1 is an exact analogue of proposition 3.2.1 stated in section 3.2. We also

obtain an analogue of theorem 3.2.1 shown below

Theorem 6.1.1 For each edge, f :a -+ b, from the graph of the sketch Syn, the function,

Ff:a^b : ISyn(a) -> ISyn(b)

in SET, defined as

Fj:a-+b = interpréter o hyn(f)

has the same behaviour on syntactic objects as Em(Isem)(f) '• Em(Isem)(a>) -> Em(Isem)(b) has

on semantic objects.

Proof: Fj:a-*b is defined as:

Ff-.a-*b = interpréter o ISyn (f)

= learnb o evah o hyn(f)

= learnb o E*(Isem) (/) ° evala

73

This theorem can in fact be generalised to include ail arrows g : E(a) -• E(b) from the graph

of Sem where E : Syn —• Sem is the sketch morphism, given in the language spécification,

and defines Em.

F9:E(a)^E(b) = l^arnb ° Em(IScm)(g) o evala

This généralisation allows us to construct arrows which correspond to the hidden opérations

defined on the objects of E*(IScm)(Syn). °

In the example language given in chapter 5 the interpréter function for the language:

C = (Nat, Exp,E: Exp — Nat, learn : Em(INat) -> IErp)

is therefore specified as:

interpréter^ = learn^ o eval^

= 0.-0

interpréterexp = learneXp ° evalexp

= / where f(0) = 0

/ (succ(x)) = succ(/(x)

f(+(x>y)) = ir+:expxcxp-cxp(^?î/)

interpréterexpXexP = lea>rnexpxexp ° evalexpxexp

= learneXpxexp ° (*> y) -+ (et>aJexp(s), evaleXp(y))

= (x, y) — ((/ear7icxp o eva/^pXx), (learnexp o evalexp)(y))

= (*, y) — (mterpreter^x), interpréterexp(y))

The function, F+:cxpxc*p-e*p : /syn(exp) x Jsyn(exp) — /syn(esp), used in the définition of

interpréter exp above is given by theorem 6.1.1 and is defined exactly as in figure 3.1.

F+:expxexp-*exp = k<*™exp ° + ° evaleXpxexp

F+:expXcxp—*exp(Qiy) = S

ir+:cxpXcxp-cxp(sUCC(x),î/) = SUCC(ir
+:Cxpxcxp^cxp(^i î /))

74

As with the algebraic description of a self-interpreter in section 3.2 the components of the

interpréter function above lie outside the semantics of the language C. The remainder of this

chapter deals with the process by which the interpréter transformation is converted into an

C program.

6.2 Moving into the semantics

The first step in the process of converting interpréter into an C program is to construct a

datatype which exists within the semantics of C and is capable of representing the abstract

syntax trees of C programs. Although the construction of this représentation is not addressed

in this thesis we still need to provide a définition of such a représentation since we require

certain properties for the construction of the self-interpreter.

Définition: A représentation of syntax.

Given a language spécification

C = (Sem, Syn, E : Syn — Syn, learn : E*(Isem) -* Isyn)

a représentation of the syntax of C is defined as a pair of transformations

encode : ISyn - • E*(IStm)

décode : Em(Istm) -+ hyn

such that décode o encode = l/5yn . D

Each object, Isyn(t), of the syntax must be taken to an object, rept, of the semantics. The

objects reps and rept need not be distinct if they represent différent objects from the syntax.

The only restriction required is that where a semantics object represents more than one syntax

object the représentations form disjoint subsets. In this way the syntax of C is represented

in the semantics of £ with no loss of information. The choice of thèse arrows is dépendent on

the exact représentation chosen for the syntax of £ and is outside the scope of this discussion.

An example représentation may be found in appendix A.4.

75

Once the représentation of the syntax has been constructed the interpréter function can be

moved within the semantics of £ by composing it with the encode and décode transformations.

rep-interpréter = encode o interpréter o décode

For each function Fj:a-+b ' Isyn(a) —> Isyn(b) we can also construct the function repJFf:a-+b

by composition with encode and décode.

rep J7/^—6 = encode^ o Fj:a-+b ° decodea

We can now formalise a notion of a language with sufficient power to express its self interpréter.

The language £ is powerful enough to express its self-interpreter if the following holds:

V* G GsynO ' rep-interpréter t 6 E*(Isem)(Syn).

Less formally, the language £ can express its self-interpreter if its semantics contains the

arrow rep-interpréter t for every node, t, from the graph of Syn.

We should note that rep-interpréter is defined in terms of the rep-Ff:a-*b functions so if the

semantics of £ contains the arrows rep-interpréter t for each node t it will also contain the

arrow rep-F/:a—b for every arrow / : a -> b of Syn.

The predicate above is really too abstract to tell us much about the nature of the language £

because it does not relate to any language features. We would, however, expect £ to provide

methods of constructing:

Binary trees: Which are necessary to represent £ programs as data objects.

Conditional: We require some form of conditional in order to be able to sélect the correct

code segments to simulate a particular syntactic construct in an £ program.

Recursive functions: Thèse are necessary to enable us to form the code segments necessary

to simulate the behaviour of the syntactic constructs of the language £.

76

Thèse requirements may be met directly by £, as is the case for the Toy language defined in

appendix A, or indirectly as would be the case if £ were, say, an assembler language. In this

second case £ does not provide either binary trees or recursive functions but is sufficiently

powerful to be used to construct implementations of both.

6.3 The self-interpreter

For a suitable language, £ = (Sem, Syn,E : Syn -> Sem, learn : Em(Isem) —• Isyn), the cate

gory Em(Isem)(Syn) contains the arrows, {rep-interprétert : t £ Gsemo}, which are the func

tions the £ self-interpreter, C-self-int, computes. To complète the construction of C-self-int

we must convert thèse functions into an £ program.

To perform this conversion we require an algorithm which générâtes an £ program, C-self-

int, such that eval(C-self-int) = rep -interpréter 9, where s is the node of Syn which dénotes

complète £ programs. Provided we make the, not unreasonable, assumption that the notation

used to represent the rep -interpréter function has a fixed syntax and semantics, this algorithm

is, in fact, a parameterised compiler. The extra pièces of information which we must supply

as parameters of the compiler are:

1. the syntactic construct which £ uses to define functions.

2. The £ syntactic construct corresponding to a function call.

3. The form of conditional used by £.

Thèse parameters are required because the rep-interpréter function is structured as a set of

functions which perform re-writes of the encoding of the syntax of £. We therefore need to

be able to:

1. define functions in C-self-int which perform thèse re-writes.

2. Generate calls of thèse re-writing functions.

3. Generate conditionals to décide which re-writing function to call in a given situation.

In appendix A we define Toy, a simple, typeless, first order functional language. Functions in

Toy can only be defined at the top level and hâve one implicit argument, named arg in the

body of the function. The only data objects in Toy are natural numbers and binary trees.

We can test natural numbers for equality using the = operator and construct and destruct

binary trees using the (.,_) and f s t , snd operators respectively.

The function which our Toy self-interpreter computes is shown in appendix A.5.2. Below we

outline the final stage of the construction of the self-interpreter. Note that for the sake of

clarity we hâve used arabic mimerais and meaningful identifiers rather than the Toy syntactic

constructs.

The node of the sketch ToySyn which corresponds to complète Toy programs is named prg.

We can use this information to index the component of repJnt corresponding to the top level

of the self-interpreter.

rep.intVTg = (10 , (9 , (e ,d))) - rep-Fwhm:expxdecs^prg(e,d)

This allows us to construct the top level of the self-interpreter as a call to the function *where.

•where(arg) where

We now use the définition given by theorem 6.1.1 of rep-F whtTt.txpxdtC5_prg shown below

rep-Fwkere:tx?xdecs_prg(e,d) = (10 AS Arep-F apply:expxdecs^tTp(x, y) 9 (3 9(090)))))

to add the définition of *where to the self-interpreter.

•where(arg) where *where * (10 , (9 , (*apply(arg) , (3 , (0 ,0)))) ;

Since rep-F^ereicxpxdecs-*prg is defined in terms of rep-Favpiv.txpxdecs-^prg, we must use its

définition

78

rep-Fapply:txpxdecs^exp(^^090)).d) = (4 , (0 , 0))

n e p . F a p p / y : c X p X r f c c J ^ c x p ((4 , (0 , l)) , d) = (4 , (0 . 1))

reP-Fapply:expxdec3-+exp(U>(l>rihd) = (4 . (1 , II))

™P-Fapply.expxdecs^exp((4 , (2 , e)) , d) = rep-Ffst:txV-+tTV{reP-F}apply'.expxdecs-.exp(ei d))

reP-Fapply:expxdec3-+exp((4>(3 »€^ ^) = ™P-F snd:txp_exp(rep -Fapply:expxdec3-+exp(€i d))

reP-Fapply:expxdec3-+exp((4 , (4 , (5 , (x , y)))) , d)

= (4 , (4, (rep-Fapply:expxdecs^cxp(x, d), rep-Fapply,expxdecs^txp(y, d))))

™P-Fapply:expxdecs-*exp{ (4 , (5 , (5 , (x , y)))) , d)

= ^P^=:expxexp^tJn>(^P^apply:expxdec3^exp(x^d),repJp
app^^^

rep-Fapply:txpxdecs^exp(C4» (6> (6 , (x , (y , z))))) , d)

= rep-t apply:expxdec3—*exp\reP-* if:expXeTpXcxp-+cTp\reP-*i apply:expxdecs->exp\xf ")» !/> 2j ,aJ

reP-Fapply:expxdecs^exp((4 , (7 , (t , e))) , d)

= repJrapp/y:CxpX(fCC5->Cxp(^

where tody = rep-Ffetch:idenixdecs^txp(i, d)

to construct the définition of *apply which we then add to the self-interpreter.

•apply = if fst(fst(arg)) = 4 then

if fs t (snd(fs t(arg))) = 0 then fst(arg)

else if fs t (snd(fst(arg))) - 1 then fst(arg)

else if fst(snd(fst(arg))) = 2 then

•fst(•apply((snd(fst(arg)),snd(arg)))

else if fst(snd(fst(arg))) • 3 then

*snd(*apply((snd(fst(arg)),snd(arg)))

else if fst(snd(fst(arg))) * 4 then

(4,(4,(*apply((fst(snd(snd(snd(fst(arg))))),snd(arg))),

•apply((snd(snd(snd(snd(fst(arg))))),snd(arg))))))

else if fst(snd(fst(arg))) = 5 then

*=(*apply((fst(snd(snd(snd(fst(arg))))).snd(arg))),

*apply((snd(snd(snd(snd(fst(arg))))).snd(arg))))

else if fst(snd(fst(arg))) = 6 then

•apply ((*if ((•apply ((f st (snd(snd(snd(f st (arg))))) , snd(arg))) ,

(fst(snd(snd(snd(snd(fst(arg)))))),

79

snd(snd(snd(snd(snd(fst (arg))))))))) ,

snd(arg)))

e l se if f s t (s n d (f s t (a r g))) = 7 then

•apply((+replace((+fetch(fst (snd(snd(fst (arg))))) , snd(arg))) ,

•apply((snd(snd(snd(fst(arg)))) ,snd(arg)))))

e l se error

e l se error;

Each clause of the définition of rep-Fapply,txpxdecs-+exp a d d s a conditional branch to +apply

and to complète the définition of this function we must construct implementations of the

functions: rep-Fjst:exp-+exp, rep-Fsnd:txv^txv, rep-F=:crpXcrp—crp, rep-Fif-.cxpxexpxcxp^cxp,

rep-Frotact^xcrp-cxp, reP-Ffetch:idcntxdCcs-.cxp- Thèse functions implement the language

opérations: fst, snd, = , if, and call, where call is actually implemented using apply, replace,

and fetch.

rep-Ff3t:exp_exp(x) = (4 , (0 , 1)) , x = (4 , (0 ,1))

= x, x = (4 , (l , y))

= a, x = (4 , (4 , (5 , (a , 6))))

= (4 , (2 , x)) , otherwise

This function gives us the définition of +f st.

• f s t = i f fst(arg) « 4 then

i f fst(snd(arg)) = 0 then

if snd(snd(arg)) = 1 then (4,(0,1))

else error

else if fst(snd(arg)) = 1 then arg

else if fst(snd(arg)) * 4 then fst(snd(snd(snd(arg))))

else (4,(2,arg))

else (4,(2,arg));

80

rep-Fênd:exp^exp(x) = (4 , (0 , 1)) , x = (4 , (0 , 1))

= x, x = (4 , (1 , y))

= 6, x = (4 , (4 , (5 , (a , 6))))

= (4 , (3 , x)) , otherwise

The function TepJFsnd:exp_^txp provides the implementation of •snd shown.

•snd = if f s t (a r g) = 4 then

if f s t (s n d (a r g)) * 0 then

if snd(snd(arg)) = 1 then (4 , (0 ,1))

e l s e e r r o r

e l s e if f s t (snd (a rg)) = 1 then arg

e l se if f s t (snd (a rg)) = 4 then snd(snd(snd(snd(arg))))

e l se (4 , (3 , a r g))

e l se (4 , (3 , a r g)) ;

The function repJ r
= : c r j , x c r p_ e r ?) is defined as

reP-^=:«pxerp-Crp (*>!/)

= (4,(l , rep.e 9 t ia / (a ,6))) , x = (4 , (1 , a)) A y = (4 , (1 , 6))

= (4 , (0 , 1)) , x = (4 , (4 , a)) V y = (4 , (4 , 6)) V

x = (4 , (0 ,1)) V y = (4 , (0 , 1))

= (4 , (5 , (x , y))) , otherwise

where rep-equal((2 ,0) , (2 ,0)) = (2,0)

rep.e9iia/((2,x + 1),(2,0)) = (2,1)

rep.eçtia/((2,0),(2,x+l)) = (2,1)

rep.eçtia/((2,x + l) , (2 ,y + D) = rep.equal(x,y)

and adds •* to the self-interpreter.

•= * if •and((f s t (f s t (arg))*4 , f s t (snd(arg))*4)) then

i f •and((f s t (snd(f s t (arg))) - l , f s t (snd(snd(arg))) - l)) then

(4 , (1 , •rep.equal((snd(snd(fs t (arg))) , snd(snd(snd(arg)))))))

e l se i f •or((^and((fs t (snd(fs t (arg)))*4 , fs t (snd(snd(arg)))=4)) ,

81

•and((•and((fst(snd(fst(arg)))=0,

snd(snd(fst(arg)))=D),

•and((fst(snd(snd(arg)))=0,

snd(snd(snd(arg)))=l)))))) then

(4,(0,1))

else (4,(5,arg))

else error;

Since the définition of rep-F=:expxtxp—ix? is given in terms of the function rep-equal we must

also construct •rep-equal. In addition, for the sake of readability, we hâve defined the

functions +and and •or .

• r ep .equa l = if • a n d ((f s t (f s t (a r g)) = 2 , f s t (s n d (a r g)) = 2)) then

(2 , snd(f s t (a rg))=snd(snd(a rg)))

e l se e r ro r ;

•and = if f s t (a r g) then snd(arg) e l se f s t (a r g) ;

• o r = if f s t (a r g) then f s t (a r g) e l se snd(a rg) ;

The définition of rep-Fif:exTXexvXtrp-.esP shown below requires no auxiliary functions.

reP'Fif:expXexpXexp^exp(x,y,z)

= (4 , (0 , 1)) , x = (4 , (0 , 1))

= y, x = (4 , (1 , 0))

= 2, x = (4 , (l , y + D) Vx = (4 , (4 , a))

= (4, (6 , (6 , (x, (y , 2))))) . o therwise

We therefore only need to add • i f to the self-interpreter to implement it.

• i f = if f s t (f s t (a r g)) = 4 then

i f •and((fs t (snd(fst (arg)))«0 ,snd(snd(fst (arg)))=D) then

(4 , (0 , 1))

e l se i f •and((fs t (snd(fst (arg))) = l , snd(snd(fst(arg)))=0)) then

82

fst(snd(arg))

else if *or((fst(snd(fst(arg)))=l,fst(snd(fst(arg)))=4)) then

snd(snd(arg))

else (4,(6,(6,(fst(arg),(fst(snd(arg)),snd(snd(arg)))))))

else (4,(6,(6,(fst(arg),(fst(snd(arg)),snd(snd(arg)))))));

The opération rep-Fnpuee:ezfXtxp->exp also becomes a single Toy function in the implementa

tion.

^P-Frtvhcf.trvx « , - e * , (W . < ° . 0 » » r) = r

rep-FTepUct:txJ,xtxp^erj,(^AO,l)),r) = (4 , (0 . 1))

rep-F„p/ace:MJ)XeIJ,_eip((4,(l,n)),r) = (4 , (l , n))

rep-Frej),ace:MÏ, x e r p_ e x p ((4 , (2 , e)) , r)

r€P-Fjst:ezp->exp\reP-Frtplacc:expXtxp-~ezp{eir))

reP-Fnplacc:expXcTp^cTp(^.^,€)),r)

TZP-Ï sndiexpXcrp—teTpK^P-* replace : exp x exp —• exp Ie'? r))

reP-Frtplacc-.txpxtTp-expite'te'te'tX'ymhr)

= rep_.T _ . e r j , X e r j) _ e l j , (rep_r TepUct:txpxtxp-*txp\xiT)i *' replace:expxexp—>exp{yi T))

« P - F , r e p / « « : e x P x e x P - . e r P ((4 , (4 , (5 , (l , y)))) , r)

= trep_T rep/ace:expxexp-*erp(.a'' T)>reP-*' Ttplact:txpxtxp — txp\.yi r)'

nP-Frcplacf.expx « ? - « ? ((4 . (6 » (6 . (x , (y , *))))) . r)

= TCP-* \]itxpxexpxexp—>exp\x lit iz)

where x' = repJr
replace:expXexp^exp(x,r)

y' = rep-Freplace:expXexp^exp(y,r)

Z = reP-T replacc:txpxtxp-*exp\z'>r)

rep-Freplaee:txpXtXT^tx?((4A7A7>(i,e)))),r) =

(4,(7,(7,(i,nep^rc7,/acc:erpxcr7>^CX7,(e,r)))))

•replace * if fst(fst(arg)) * 4 then

if fst(snd(fst(arg))) = 0 then

if snd(snd(fst(arg))) = 0 then snd(arg)

e l s e (4 , (0 , 1))

e lse i f f s t (snd(f s t (arg))) • 1 then f s t (arg)

83

else if fst(snd(fst(arg))) = 2 then

•fst(+replace((snd(snd(fst(arg))),snd(arg))))

else if fst(snd(fst(arg))) = 3 then

•snd(+replace((snd(snd(fst(arg))),snd(arg))))

else if fst(snd(fst(arg))) = 5 then

•=((+replace((fst(snd(snd(snd(fst(arg))))),snd(arg))),

•replace((snd(snd(snd(snd(fst(arg))))),snd(arg)))))

else if fst(snd(fst(arg))) = 4 then

(•replace((fst(snd(snd(snd(fst(arg))))),snd(arg))),

•replace((snd(snd(snd(snd(fst(arg))))),snd(arg))))

else if fst(snd(fst(arg))) = 6 then

•if((•replace((fst(snd(snd(snd(fst(arg))))),snd(arg))),

(•replace((fst(snd(snd(snd(snd(fst(arg)))))),

snd(arg))),

•replace((snd(snd(snd(snd(snd(fst(arg)))))),

snd(arg))))))

else if fst(snd(fst(arg))) = 7 then

(4,(7,(7,(fst(snd(snd(snd(fst(arg))))),

•replace((snd(snd(snd(snd(fst(arg))))),

snd(arg)))))));

In the définition of repJFreplaeeîexpxexp^txp we only encounter one function for which we do

not already hâve a Toy implementation, namely rep-Ffetch:identxdec8-+exp

reP-Ffetck:identxdecs^exp(*,te>(°>0») = (4 , (0 , 1))

nep.F / c^ :^ c n < x^C J^ c r p(x,(3,(l , (8,(y,(e,d))))))

= rep-Fget:identxnumxtxpxdecs-*txp\xi l^P-ï 8amc:identxident-mum\x) V)) ei **)

We implement this function as +f etch.

•fetch = if fst(snd(arg)) = 3 then

if fst(snd(snd(arg))) = 0 then (4,(0,1))

else if fst(snd(snd(arg))) = 1 then

•get((fst(arg),

84

(•same((fst(arg),fst(snd(snd(snd(snd(arg))))))),

(fst(snd(snd(snd(snd(snd(arg)))))),

snd (snd(snd(snd(snd(snd(arg))))))))))

else error;

else error;

The rep-F}tuh'.identxdec8-+exp fonction is defined in terms of two new functions

™P-F 9eUidentxnumXexpxdecs-+txp{xM >Q) ,C,d) = e

reP-E getiidentxnumxexpxdeca-* «rp(x >(l , fl + D > * , d) = reP-Ffetch:identxdec8-+exp{X'>d)

and

» « P - ^ M m e : W e » < x W e » ^ n . m (C l . 0) , (1 , 0)) = (1 , 0)

^P^êameMenixiient^num((l9X + l),ilf0)) = (1 . 1)

™P-F,ame:identxident-+num((1 . 0) , (1 , * + D) = (l . D

rep^jame:Men«xirfen<^»«m((l»x + D , (l , y + D) = ^P-Pjame:Wen<xWent-n«m(xi »)•

Thèse définitions provide us with the last two functions définitions we need to add to the Toy

self-interpreter to complète it.

•get = i f f s t (f s t (snd(arg))) = 1 then

i f snd(fst(snd(srg))) = 0 then fst(snd(snd(arg)))

e l se • fetch((fst (arg) ,snd(snd(snd(arg)))))

e l s e error;

•same = i f ^and((fst (fs t (arg))=l , fs t (snd(arg))=1)) then

(l ,snd(fst(arg))=snd(snd(arg)))

e l s e error;

The complète text of the Toy self-interpreter is shown in appendix A.6.

For this process to be completely automatic we need to be able to recognise the Toy syntactic

forms of function définition, function application, and conditional. The algorithm to perform

this analysis must be sufficiently gênerai to recognise thèse forms however they manifest

themselves. The reader should bear in mind that if Toy were, for example, an assembler

85

language then the features we would need to recognise could in fact be: labels, and conditional

goto. At this time we are unable to construct such a récognition algorithm and as a resuit

the precess described hère still requires considérable input from the user. We will return to

this problem in section 7.1.2.

86

Chapter 7

Concluding Discussion

In the preceding six chapters we propose and construct an alternative framework for con-

sidering the source -• target relationship in the spécification of compilers. The approach is

centred upon partial évaluation and the framework is categorical in nature and based on

the theory of sketches. Inevitably, this work reveals a number of new Unes of research and

identifies a variety of interesting open problems as well as providing useful expérience, and

expérimental data, on the theoretical and practical usefulness of sketch theory in a large and

important area of Computing science. In section 7.1 we review the model of language and self-

interpreter construction method developed in this thesis. Section 7.2 deals with some of the

extensions necessary to convert the construction technique so that it becomes a true compiler

construction method. In section 7.2 we also address some of the questions of practicality,

both of the true compiler construction technique outlined in chapter 2, and of fully automatic

compiler construction in gênerai. In the final section, 7.3, we speculate about some methods

of removing the more obvious shortcomings of the sketch based model of language used hère.

7.1 Summary

The work in this thesis falls roughly into two interrelated sections. The bulk of the work deals

with the construction of a categorical model of language based on sketches. This model of

language is, however, not the main aim of the thesis as its construction is motivated by the

désire to develop a technique for the calculation of a self-interpreter. Accordingly this section

87

is split into two parts: in section 7.1.1 we critically appraise the categorical model of language

while in section 7.1.2 the discussion focusses on the self-interpreter construction technique.

7.1.1 The model of l a n g u a g e

The categorical model of language describes a language, C, as a 4-tuple

C = (Sem,Syn, E : Syn -> Sem, learn : E*(Isem) - • Isyn).

Sem and Syn are FL sketches, and E : Syn —• Sem is a sketch morphism such that Syn is

learnable from Sem. The syntax and semantics of £ are both constructed as models of Syn,

where the syntax is constructed as the initial model: Isyn ' Syn -» SET. We use property

4.3.1 to construct the semantics of C as the model

E*(ISem):Syn-+ SET

where Isem • Sem —• SET is the initial model of Sem in SET.

The construction of eval as the natural transformation

eval :Isyn -^ Em(IStm)

arises from property 4.3.2. Since Sem, Syn, and E : Syn —• Sem are such that Syn is

learnable from Sem we can use proposition 4.3.2 to construct the components of the learn

transformation

learn : E*(Isem) - • h. yn

such that eval o learn = l£»(/5em) and the language C is fully specified.

The extremely abstract nature of the language spécification enables very gênerai properties

of languages and classes of languages to be studied and understood. Since the category

88

Mod(Syn) is a full reflexive sub-category of [Syn, SET] we can obtain a great deal of in

formation about any class of languages without ever having to consider the détails of an

individual language, simply by studying what is known about the category [Syn, SET].

An example language spécification using the sketch based model of language is given in

appendix A. The sketch describing the semantics of Toy is an extremely large and complex

object, much more so than, say, a domain theoretic semantics for the same language. The

complexity arises in a number of way s. Firstly it is due to the fact that every object used in a

sketch must be described explicitly from a few basic constants and opérations, we cannot for

example simply assume the existence of a particular product, we must construct that product.

To paraphrase Barr and Wells [BaWe90] pp 172, "when ail the girders and braces are exposed

the true complexity of an object is revealed." This may be no bad thing as it forces the

language spécifier to consider exactly what properties he or she requires of each "girder", and

certainly it is what allows us to define models of a sketch in an arbitrary category. Secondly

the model of language based on sketches is essentially context free and programming languages

are not. To explain, the meaning of the expression x + 1, where x is an identifier, dépends on

exactly what value x is bound to when it is evaluated. In other words, in différent context s or

environments, x + 1 will hâve différent meanings and so the language has a context sensitive1

aspect.

Since the categorical model of language describes the évaluation function of a programming

language as a natural transformation we know that the diagram below commutes.

ISyniA) - ISyn(B)

eval/L evals

E'{IStm)(A) E.{Isen)U) ' EVstm){B)

The fact that eval A is a function, combined with the commutativity of the diagram above

forces eval&(x), where x € Isyn(A), to hâve a constant value even when the term x is

1This use of the term context sensitive refers to the semantics of the language and should not be confused

with the term context sensitive as used to describe a language whose grammar falls into type 1 of the Chomsky

hierarchy.

89

embedded in the larger term Isyn(f)(x)- This forces x to hâve the same meaning regardless

of its context and thus forces the model to be essentially context free. To overcome this

problem we hâve to introduce more cônes and auxiliary opérations to put terms like x into a

correct context and then détermine the value of this context, rather than just the value of x.

This can add a great deal of complexity to the sketch as illustrated by the semantics of Toy

in appendix section A.2. We shall return to this problem in section 7.3.

As it stands at the moment the model of language is unrealistic as it does not constrain the

évaluation order of the language. In appendix A, for example, the semantics of Toy does not

state whether Toy uses call-by-value or call-by-need semantics. This is a serious deficiency in

any language spécification method, but is potentially disastrous if the spécification method is

used to specify the semantics of a functional language like Toy. This information is missing

because we use SET to model the sketch specifying the semantics of a programming language.

Since we can construct our categorical model of language in any category we could rectify

this omission by constructing a sketch of the semantics of Toy to be modelled in DOM, the

category of domains and continuous functions. In moving to DOM we would, however, add

to the complexity of the sketch without gaining any new insight into the technique for the

construction of the self-interpreter. For this reason the work in this thesis has centred on

models in SET only.

A third criticism of the model of language concerns the nature of the learn transformation.

Since learn lacks any form of naturality condition its usefulness is strictly limited. There hâve

been a number of attempts to weaken the naturality condition from the définition of natural

transformation. Several such weaker conditions are contained in [Copp80] and thèse should

certainly be explored.

In spite of thèse disadvantages the model of language we hâve constructed is not without

merit. As we illustrated in section 5.4 we can include limits which are more complex than

simple product s. Thèse limits can be included in both the syntax and the semantics, allowing

us to capture the static semantics of a language in the spécification of its syntax if we wish.

This is a considérable enhancement over the algebraic model developed by Rus. At the cost

of moving away from initial models of the semantics we could also include colimits in the

models of programming language semantics and further simplify the spécification of language

semantics as Kortas and Quatrain demonstrate in [KoQu92].

90

Finally, in [BaWe90], pp 171, Barr and Wells state:

"A deeper différence is that there are no distinguished nodes or opérations in

a sketch. The graph of the sketch for semigroups, for example, has three nodes,

no one singled out, whereas in the usual définition of semigroup, the underlying

set S ... is singled out and other things are defined in terms of it. Similarly in

the graph there are various arrows; c is just one of them."

In other words, "ail the objects and opérations specified by a sketch hâve equal status." This

can cause a problem if we hâve something complex to specify. Just as it can be useful to hâve

hidden sorts and opérations in an algebraic spécification it can also be useful to conceal parts

of the inner structure of a sketch, either to specify the interface to a data sort or to formally

draw attention to spécifie parts of a spécification.

Although Barr and Wells are quite correct when they state that there are no distinguished

nodes (or opérations) in a single sketch, proposition 4.3.1 which is used hère to specify the

semantics of a programming language, in effect, provide a mechanism by which any nodes or

edges of a sketch can be distinguished from the remaining parts of the sketch.

To explain, when we construct the sketch morphism E : Syn -» Sem what we are actu

ally doing is picking out some of the nodes and edges of Sem as being of spécial interest.

Formally, because E : Syn -» Sem allows us to use property 4.3.1 to construct the functor

E* : Mod(Sem) -> Mod(5yn) we can use E* to construct a model of Syn. From proposi

tion 4.3.1 we know that this model of Syn, Em(Isem) - Syn —• SET has the properties of the

given model of Sem, Isem ' Sem -+ SET, and can be used to specify the external interface

of an abstract data type. We can therefore use proposition 4.3.1 to provide a mechanism to

distinguish éléments of a sketch as being of spécial interest.

7.1.2 The self-interpreter construction technique

Suppose we hâve a language

C = (Sem, Syn,E : Syn - • Sem, learn : E*(Isem) - • Isyn)

91

specified using the categorical model of language above. We can describe the function which

an interpréter for this language computes using the expression

interpréter = learn o eval

where eval is the évaluation natural transformation

eval :Isyn -^ E*(ISem)

used in the construction of learn.

If we then take a pair of transformations

encode : ISyn — E*(ISem)

décode : Em(ISem) — hyn

which describe an encoding of the syntax of C within the semantics of C we can construct a

family of arrows

rep-interpréter = encode o learn o eval o décode

which may also lie inside the semantics of C, if C is powerful enough to describe its own

interpréter. It is then a fairly simple matter to use the structure of rep-interpreter and theorem

6.1.1 to construct an C program, C-self-int, which computes the function rep -interpréter s,

where Sis the start symbol of the grammar of C. The program C-self-int is the self-interpreter

for the language C.

This is the case because the spécification of a programming language, however given, must

in some sensé be the description of an interpréter for that language. In the case of our

categorical model of language this description is relatively clear as it exists in the form of

the eval and learn transformations. As a resuit of this we hâve a fairly straightforward,

if time consuming, process of symbol manipulation by which we can produce the function

rep-interpreter. To transform the description of repJnterpreter into a self-interpreter is still,

92

unfortunately, something of an art form. We rely on a programmera intuition for the last

step in the dérivation of the self-interpreter.

As shown in section 6.3 the programmer is needed to supply the C syntactic forms of function

définition, function application, and conditional. This is because there are simply too many

différent ways of providing thèse constructs in a programming language. For example, con

ditional can be realised as: if . . .then, if . . .then .. .else, case, pattern matching, computed

goto, etc.

Thèse constructs ail generate significantly différent structures within the semantics of a pro

gramming language. To make matters worse there are very many différent mechanisms that

the language spécifier may use within Sem to specify the semantics of any single one of thèse

constructs, particularly if we allow the spécifier to work with models of Sem in catégories

other than SET. This makes the construction of a gênerai analysis procédure to recognise

the structure of conditional at least extremely difficult. It may even make it impossible.

This begs the question: " of what value is the self-interpreter construction technique described

hère?" In my view it is not likely to lead to a completely automatic process, but it still has

value because it does produce a complète description of the C self-interpreter as a function

within the semantics of C. Even if we cannot use the self-interpreter dérivation process to

construct the actual program code we can still use it to construct a design of this code which

is so highly detailed that any programmer who knows how to define and call functions and

express conditionals in C can write the code for C-self-int with little need for extra intellectual

effort.

7.2 Partial evaluators and interpreters

The true compiler generator system discussed in section 2.2 dépends on a pair of assumptions,

re-stated below.

Assumption 1. there is a technique which allows us to examine the spécification of a com

puter language, T , and from this spécification, calculate a T program which implements

mix for the language T.

93

Assumption 2. given the spécifications of two languages, S, and T, it is possible to dérive

an implementation of S in the form of an interpréter expressed as a T program.

The self-interpreter calculation technique was originally proposed as a useful first step towards

justifying thèse assumptions. In sections 7.2.1 and 7.2.2 we discuss exactly how large this

first step is.

7.2.1 Partial evaluators

There are two distinct problems which need to be solved before a technique for deriving a

self-interpreter can be converted into a technique for deriving a partial evaluator.

Firstly, we must develop a method which allows us to dérive the binding time analysis phase

of the partial evaluator. The work of Launchbury [Laun90] using dépendent sums to factorise

domains into their static and dynamic values offers a promising starting point as it is a

significant step towards the formalisation of the process of binding time analysis. It is,

however, not at ail clear how to incorporate this work into the categorical method developed

hère.

The second problem is the transformation of a self-interpreter into the function spécialisation

phase of a partial evaluator. In principle it should be possible to modify both the syntax and

semantics of C by adding éléments to represent dynamic values. Since dynamic values are

not reduced by the function spécialisation phase of a partial evaluator we would not need to

alter the diagrams in the sketch describing the semantics of C. The process used to dérive the

self-interpreter with the original semantics should now construct a function spécialiser when

applied to the altered semantics. This is because a function spécialiser behaves exactly like an

interpréter when it is working with static values, and suspends évaluation when it encounters

a dynamic value. The original diagrams of the sketch of the semantics are therefore sufficient

to deal with static values, and since dynamic values are not reduced, no new diagrams are

required to describe their réduction. Unfortunately, without a complète description of the

binding time analysis phase, we cannot begin to solve this second problem because we would

hâve no clear idea of where a dynamic value could occur and so do not know where we need

to add new values to the syntax and semantics of C.

94

Clearly, there is still a very long way to go before the automatic dérivation of a partial

evaluator is a practical proposition. This is not the case with the second assumption as we

explain below.

7.2.2 Interpreters

The fact that Assumption 2 fairs rather better than Assumption 1 is almost certainly due to

the fact that the généralisation from self-interpreter to interpréter is much smaller than that

from self-interpreter to partial evaluator.

Because of the close relationship between an interpréter and a self-interpreter the techniques

used hère to calculate a self-interpreter for language S can also be used to calculate an S

interpréter in language T given sketch spécifications of both S and T.

The extra generality of the technique arises because the composition of learn and eval spécifies

the function to be computed by an S interpréter, not the S interpréter itself. To get from the

function to the actual interpréter we need to construct a représentation of the syntax of «S as

a data object within the semantics of S. The interpréter is then produced by implementing

the function rep-interpreter.

To recap: to represent the syntax of S within the semantics of S we require a pair of trans

formations

encode : I§,n ^ E'(llJ

décode : E'(I§em) - / | , n

with the property that décode o encode = 1 is . The interpréter function is then embedded
Syn

within this représentation as

interpret = encode o learn o eval o décode

to move it within the semantics of S.

To construct an S interpréter in the programming language T we can replace the représen

tation functions encode and décode by a pair of transformations which represent the syntax
95

of «S as a datatype within the semantics of the arbitrary language T:

encodeT: / f , B - > £ - (J j m)

décoder :E'(IU -+ /*„ .

This allows us to move the S interpréter function into the semantics of T:

interpret = encodej o learn o eval o decodej

provided that T is sufïiciently powerful to express the interpréter for the language S.

The remainder of the interpréter calculation process then proceeds exactly as before. The only

extra requirement necessary to use the technique for the calculation of a gênerai S interpréter

is that we can construct a représentation of the S syntax within the semantics of T.

7.2.3 The true compiler generator

The true compiler generator system discussed in section 2.2 is it seems still a long way off.

We are still unable to dérive the actual program code of mix for the target language and we

cannot dérive the code for int, the source interpréter, either. So hâve we actually advanced

towards this goal at ail? The answer to this question is, I believe, yes!

While we cannot, as yet, dérive a C self-interpreter we can at least dérive a définition of the

function which an C self-interpreter computes. In section 7.2.2 above we indicated that we can

even généralise this dérivation process to dérive the interpréter function for an S interpréter

as a T program. To construct a true compiler generator of sorts we need only accomplish one

more task.

We need to be able to dérive the binding time analysis for the language T. If we can achieve

this we can construct a true compiler generator because we can at least dérive the two func

tions below.

1. repjmix the function which a T partial evaluator computes.

2. rep-int the function which a T implementation of an S interpréter computes.

96

Provided we use a standard language, TZ, to describe thèse functions we can construct the

compiler generator shown in figure 7.1.

source language
spécification (S)

target language
spécification (T)

user specified
TZ-+T
compiler

Compiler- Generator
S —• T compiler

Figure 7.1: A différent true compiler generator system

This system accepts as input: the spécification of the source language S, the spécification

of the target language T, and a compiler which translates from the internai représentation

71 to the target language T. The process discussed in the preceding chapters can then be

used to dérive the TZ représentations of rep-mix and rep-int. The given 71 —• T compiler is

used to generate mix and int as T programs. We can then realise the S —> T compiler as

mix^mix, int\

While this is not the compiler génération system envisagea in chapter 2 is is still an improve-

ment over the current situation because we do not need to specify the S —• T relationship.

The burden of proof on the compiler writer is therefore reduced since they only need to prove

the TZ —• T compiler correct rather than having to prove a différent S -+ T relationship for

each language S.

Even without the ability to calculate the binding time analysis for the language T we can

construct a compiler generator (shown in figure 7.2) which does not require the user to define

the S —• T relationship.

The opération of this system is similar to the system shown in figure 7.1 except that mix is

supplied by the user rather than calculated as part of the génération process. With this last

system the compiler writer's proof obligations are again increased as they must now prove

mix correct in addition to the TZ —• T compiler, but once again thèse proofs need only be

97

source language
spécification (S)

target language
spécification (T)

user specified
7Z-+T
compiler

Compiler- Generator
S —* T compiler

user specified T
implementation of
mix

Figure 7.2: A final true compiler generator

carried out once for each target language T.

There is an interesting parallel between the approach that both compiler génération Systems

above use to construct the S —• T relationship (encoded in the program int) and the usual

construction of a semantics directed compiler. Typically a semantics directed compiler is

factorised into a front end which translates source language sentences into some universal

intermediate language and a back end which translates from the intermediate language to the

targetlanguage.

Source
Language

front end Intermediate
Language

back end Target
Language

With the compiler génération Systems outlined in this section we factorise the construction of

the S —• T relationship into a front and back end. The back end of this process is the 7Z-+T

compiler provided by the user. We use a universal intermediate language TZ to describe the

S —> T relationship. The front end is the process for calculating the rep-int function described

in this thesis.

Source
Language _

Spécification
S

front end Description
of rep-int

in TZ

TZ —p T compiler Description
of int in

T

98

In spite of thèse similarities there are two striking différences between the approach we propose

and that of a semantics directed compiler.

Firstly a semantics directed compiler factorises the actual process of translating individual

sentences from S into T. Our approach opérâtes as a higher level and factorises the construc

tion of the S —• T relationship.

Secondly, with a semantics directed compiler the front end is spécifie to a particular source

programming language S. In our approach the front end is universal.

7.2.4 Open questions

Hère we examine some open questions about the true compiler génération technique. With

the exception of question 4, ail the questions below are related to the single question, "Do we

really want compilers which are produced without human intervention?"

1. How much static computation is there in mix(mix,int) when both mix and int are

machine generated?

This is a very important question since the power of partial évaluation dépends on the

ability to eliminate static computation. Consider the function

/ (x ,y) = x + l + y

Partial évaluation of the expression / (4 , y), where y is dynamic, produces the function

A(y) = 5 + y

because the expression x + 1 is static if x is static. If, on the other hand, / i s expressed

as

/ (x ,y) = x + y + 1

then there is no static computation because x + y is dynamic, unless both x and y are

static, and so partial évaluation gives no improvement in the cost of Computing /4 . In

other words, the improvement gained by partial évaluation of a program dépends on

99

the style in which that program is written. We currently do not know whether the style

of a machine generated int and mix will be "partial évaluation friendly" or not. The

problem of transforming "partial évaluation unfriendly" functions into "friendly" ones

is addressed in [HoHu90] where the technique of obtaining "free theorems" from a func

tions polymorphic type, developed by Wadler [Wadl89], is used to dérive transformation

rules. This technique is still in its infancy but seems like a good starting point for the

related problem of synthesising "partial évaluation friendly" implementations of int and

mix from language spécifications expressed as sketches.

2. Can we ensure that a machine generated compiler will generate good quality object

code?

In some respects this question is related to the previous one. The more static compu

tation contained in the expression mix(mix,int) the better the object code generated

by the compiler is likely to be. This, however, is not the only issue in the efïiciency

of the generated target code, for example, a compiler generated from an interpréter

written using labels and "goto" to express its control flow is likely to generate better

target code than the code generated if the interpréter uses recursion exclusively. This

issue will need to be examined in détail before the proposed true compiler génération

technique becomes viable for the génération of "industrial quality" compilers.

3. Is the technique applicable to imperative languages?

The assumption that we are dealing with functional languages has been implicit through-

out the preceding chapters. Although the categorical model of language is capable of

specifying an imperative language in theory, this has not been done yet. In [KoQu92]

Kortas and Quatrain give a spécification of a subset of the pascal language, however the

subset that they use avoids having to specify the store. It is in the spécification of the

store (and of assignment) that the most serious problems are to be encountered so whilst

this work provides a useful insight into this use of sketches it leaves several questions

unanswered. Any problems encountered in the synthesis of mix and int for a func

tional language are likely to be at least an order of magnitude worse for an imperative

language. This question cannot be answered without a great deal more work.

4. Can sketches be implemented on a computer?

100

By using the techniques for constructing implementations of categorical constructs given

in [RyBu88] we can certainly construct implementations of graph, diagram, cône, co

cone, and model (functor) which would allow us to implement a spécifie sketch. This,

however, is not what we mean by implementation of sketches on a computer because for

each sketch we would need to construct its implementation by hand. When we ask "can

sketches be implemented on a computer" we mean: can we construct an computer pro

gram which will, given an arbitrary sketch, automatically generate an implementation

of the datatype specified by that sketch?

The answer to this question has to be a qualified no. Work has been undertaken

in this area, for example Gray's work using Mathematica [Gray?], and the work of

Yusop [Yuso91] using prolog. There are some quite serious problems with implementing

sketches because, as with algebraic spécifications, it is possible to use sketches to specify

objects which are simply unimplementable on a computer, or to write sketches in a

style which is non-constructive therefore not directly implementable on a computer.

The problems above are fairly gênerai problems with the implementation of formai

spécifications. Of the problems spécifie to the implementation of sketches the most

obvious ones are caused by the fact that sketches can be modelled in an arbitrary

category and do not always hâve an initial model. This problem even arises in SET.

It is true that every FL sketch has a term model but this is not the case for every

class of sketch. Thèse problems will hâve to be addressed before a useful technique

for the implementation of sketches can be developed. As a starting point we suggest

the technique of dynamic évaluation developed by Duval and Raynaud [DuRa91] which

provides an interesting and promising approach to this problem.

5. Do we really want compilers which are produced without human intervention?

This question is basically impossible to answer. In [Schm85] Schmidt briefly argues that

a compiler génération system which requires more décisions from the implementor than

is normal can be an advantage as the extra freedom of choice allows the implementor

to orient the implementation towards the spécifie hardware and software available. It is

indubitably true that when the user has to provide the implementation relationship such

orientation is possible; what is less clear is that such orientation is not possible when

the implementation relationship is automatically produced from the spécifications of the

source and target languages. Sketches would seem to be an idéal method of representing

101

the source and target languages in this context since, by their very nature, every détail

in a language spécification must be stated explicitly and is therefore readily available

to any software for calculating an implementation relationship. Due to the categorical

nature of sketches this software could also hâve some extremely powerful analytical tools

available to it. To the best of my knowledge nobody has examined thèse issues in any

détail.

7.3 More science fiction: a better model of language?

There is one fundamental problem with the categorical model of language discussed above.

The language spécifications developed using this technique are far too large and unwieldy.

The resuit of this is that a language spécification using sketches is almost impossible to work

with. The reasons for this complexity are illustrated in section 5.4.2, explained in section

7.1.1 and can be summarised in one sentence.

Sketches cannot be used to specify functions as objects.

If we could describe higher order objects using sketches, or some related tool, we could

drastically reduce the complexity of the sketch describing the semantics of a programming

language. A function is an extremely natural way to describe context sensitivity within

a formai system. The context sensitive object becomes a function and its context can be

passed into it as its argument. It is using this technique that a denotational semantics

typically handles context sensitivity, the typical évaluation function for an expression looking

something like

S : Expression —> Environment —• Value.

So the meaning of an expression, exp, is the function

£(exp) : Environment —• Value

which expects its context (the environment) and will only produce an actual value when given

this context.

102

There are a number of extensions to the concept of a sketch which could possibly be used to

solve this problem. The first of thèse extensions is the form which is described by Wells in

[Well90]. A form is essentially a sketch but we hâve the additional ability to require diagrams

to become instances of any essentially algebraic categorical construction when modelled. Al-

though there is insufïicient space to describe the approach in any détail hère the basic idea

is to provide a uniform method for defining the primitive types and opérations on which the

constructors specified within a sketch can operate. This allows the introduction of objects

other than limits and colimits within the model of a sketch, in particular function objects

can be specified for forms modelled in a cartesian closed category. Using this technique Wells

hopes to be able to specify functional programming languages using sketches. A second ex

tension to the concept of sketch which may allow function objects to be introduced is the

<*rame> described by Lair in [Lair87b].

The model of language developed in this thesis exists within an extremely gênerai framework

and is, as a resuit, easy to extend. The model is not tied to any spécifie procédure for

the calculation of models of Sem so we can easily incorporate developments like dynamic

évaluation [DuRa91] to increase the power of the model by allowing the sketch Sem to be

modelled in new ways. We can even replace the sketch Sem, describing the semantics of a

programming language by any graph theoretic structure, X, containing cônes and diagrams.

This is because the key components on which the model of language is based are property 4.3.1

and the notion of learnability. Provided we can define a graph homomorphism E : Syn —• X

which préserves diagrams and cônes we know both that property 4.3.1 holds and that the

notion of learnability is still applicable. Extension of the model of language to use either

forms or -CJrames» is as a resuit not likely to présent too many problems.

Finally, sketches themselves should not be dismissed. We hâve been able to construct a model

of language which exceeds the power of Rus9 algebraic model of language, which is itself a

powerful language spécification tool with an impressive compiler technology of its own. This

technology is now available for study in a categorical universe. There are likely to be many

useful discoveries still to be made. This dissertation has only scratched the surface.

103

Bibliography

[Back78] Backus J.; Can programming be liberated from the von Neuman Style? A func-

tional style and its algebra of progmms, Communications of the A.CM., Vol

20, No 8, 1978, pp 613-641.

[Barr86] Barr M.; Models of sketches, Cahiers de Topologie Géomértie Différentielle

Catégorique 27, 1986, pp 93-107.

[BaWe85] Barr M., Wells C; Toposes, triples and théories, Springer-Verlag, 1985.

[BaWe90] Barr M., Wells C; Category theory for Computing science, Prentice Hall Inter

national Séries in Computer Science, Ed C. A. R. Hoare, 1990.

[BaEh68] Bastiani A., Ehresmann C; Catégories of sketched structures, Cahiers de

Topologie Géomértie Différentielle 10, pp 104-213, 1968.

[BH0S76] Beckman L., Haraldson A., Oskarsson, O., Sandewall E.; A partial evaluator,

and its use as a programming tool, Artificial Intelligence, Vol 7, No 4, pp 319-

357, 1976.

[BJEJ88] Bjorner D., Ershov A.P., Jones N.D. (Eds); Partial évaluation and mixed com

putation, Proceedings IFEP TC2 Workshop, Gammel Avernaes, Denmark, Oc-

tober 1987, North-Holland, 1988.

[Boch78] Bochmann G. V.; Compiler writing System for attribute grammars, Computing

Journal Vol 21, No 2, pp 144-148, 1978.

[Bond88] Bondorf A.; Pattern matching in a self-applicable partial evaluator, Unpublished

draft, DIKU, University of Copenhagen, 1988.

104

[Bond90a] Bondorf A.; Automatic autoprojection of higher order recursive équations,

ES0P '90, Copenhagen, Denmark, LNCS 432, pp 70-87, Jones (Ed), Springer-

Verlag.

[Bond90b] Bondorf A.; Compiling laziness by partial évaluation, Functional Programming:

Proceedings of the 1990 Glasgow Workshop, pp 11-21. 13-15th August 1990,

Ullapool, Scotland, Peyton Jones S.L., Hutton G., Holst C.K. (Eds.), Springer

Workshops in Computing, Springer-Verlag.

[BoDa80] Borceaux F., Day B.; Universal algebra in closed catégories, Journal of pure

and applied algebra 16, 1980, pp 133-147.

[Boul80] Boullier P.; Génération automatique d'analysers syntaxiques avec rattrapage

d'errors, Journées Francophone sur la Production Assistée de Logiciel, Geneva,

1980.

[Burr70] Burroni A.; Esquisse des catégories à limites et des quasi-topologies, Esquisse

Math. 5, 1970.

[BuLa69] Burstall R. M., Landin P. J.; Programs and their proofs: an algebraic approach,

Machine Intelligence 4, 1969.

[C0II86] Collier P. D.; Simple compiler correetness - a tutorial on the algebraic approach,

The Australian Computer Journal, Vol 18, No 3, ppl2S-135, 1986.

[Cons90] Consel C; Binding time analysis for higher order untyped functional languages,

ACM Conférence on Lisp and Functional Languages, Nice, France, pp 264-272,

June 1990.

[Copp80] Coppey L.; Quelques problèmes typiques concernant les graphes multiplicatifs,

Diagrammes, Vol 3, pp C1-C46.

[CoLa84] Coppey C , Lair C ; Leçons de théorie des esquisses (I), Diagrammes, Vol 12,

1984.

[CoLa85] Coppey C , Lair C ; Algébricité, monadicité, esquissabilité et non algébricité,

Diagrammes 13, 1985.

105

[Desc82] Deschamp Ph.; PERLUETTE: a compiler producing system using abstract data

types, Proceedings of International Symposium on Programming, Turin, April

1982.

[DuRa91] Duval D., Raynaud J-C; Sketches and computation, Rapport De Recherche

RR 871-MMAG-123 LIFIA, LIFIA-IMAG, Institut National Polytechnique de

Grenoble, 1991.

[Ehre67] Ehresmann C; Sur les structures algébriques, CRAS, tome 264, pp 840-843,

1967.

[Ehre68] Ehresmann C. Esquisses et types de structures algébriques, Bull. Instit. Polit.

XIV, pp 1-14, 1968.

[Ersh77] Ershov A.P.; On the partial computation principle, Information processing let-

ters, Vol 6, No 2, 1977, pp 38-41.

[Ersh82] Ershov A.P.; Mixed computation: potential applications and problems for study,

Theoretical computer science, Vol 18, No 1, 1982, pp 41-67.

[Folt69] Foltz F.; Sur la catégorie des fondeurs dominés, Cahiers de Topologie

Géomértie Diff-érentielle 9, 2, 1969

[Futa71] Futamura Y.; Partial évaluation of computation process - an approach to a

compiler-compiler, Systems, Computers, Controls, Vol 2, No 5, 1971, pp 45-50.

[Futa82] Futamura Y,; Partial computation of programs, Proc: RIMS Symposia on soft

ware science and engineering, Kyoto 1982, LNCS 147, pp 1-34, Springer-Verlag.

[Ganz79] Ganzinger H.; Some principles for the development of compiler descriptions

from denotational language définitions, Techuical University of Munich, Tech-

nical Report, 1979.

[Gold84] Goldblatt R.; Topoi, the categorical analysis oflogic, Revised édition, Studies in

logic and the foundations of mat hématies, Vol 98, Eds: J. Barwise, D. Kaplan,

H.J. Keisler, P. Suppes, A.S. Troelstra, 1984, North-Holland.

[Goma89] Gomard C.K.; Higher order partial évaluation - HOPE for the lambda calcu-

lus, Masters Thesis, DIKU, Department of Computer Science, University of

Copenhagen, 1989.

106

[Gray87] Gray J.W.; Categorical aspects of data type constructors, Theoretical computer

science, Vol 50, No 2, 1987, pp 103-135.

[Gray?] Gray J.W.; Exécutable spécifications for data-type constructors, in préparation.

[GuLa80] Guitart R., Lair C; Calcul syntaxique des modèles et calcul des formules in

ternes, Diagrammes 4, (1980).

[HaRu76] Hatcher W. S., Rus T.; Context-free algebras, Journal of Cybernetics 6:2-3,

1976, pp 65-77.

[Higg63] Higgins P. J.; Algebra with a scheme of opérations, Mathematische Nachrichten

27,1963/64, pp 115-132.

[HoHu90] Holst C.K., Hughes J.; Towards a binding-time analysis improvement for free,

Functional Programming: Proceedings of the 1990 Glasgow Workshop, pp 11-

21, 13-15th August 1990, Ullapool, Scotland, Peyton Jones S.L., Hutton G.,

Holst C.K. (Eds,), Springer Workshops in Computing, Springer-Verlag.

[John78] Johnson S.C.; Yacc: Yet another compiler compiler, in the UNIX programmeras

manual, Vol 2B, 1978.

[Jone88] Jones N.D.; Automatic program specialization: A re-examination from basic

principles, In [BJEJ88], pp 225-282, 1988.

[JoSc80] Jones N.D., Schmidt D.A.; Compiler génération from denotational semantics,

Semantics Directed Compiler Génération, Proceedings of a workshop Aarhus,

January 1980, LNCS 94, pp 70-93, Springer-Verlag.

[JoSS85] Jones N.D., Sestoft P., Sondergaard H.; An experiment in partial évaluation:

the génération of a compiler generator, Rewriting techniques and applications,

J.P. Jouannaud (Ed), 1985, LNCS 202, pp 124-140, Springer-Verlag.

[JoSS87] Jones N.D., Sestoft P., Sondergaard H.; Mix: A self-applicable partial evaluator

for experiments in compiler génération, Mathematical foundations of program

ming language semantics, Proceedings: 3rd workshop, Tulane University, New

Orléans, Louisiana, 1987, LNCS 298, pp 386-413, Springer-Verlag.

107

[JoSS89] Jones N.D., Sestoft P., Sondergaard H.; Mix: A self-applicable partial evaluator

for experiments in compiler génération, Lisp and Symbolic Computation, Vol

2, No 1, 1989.

[Jorg90] Jorgensen J.; Generating a pattern matching compiler by partial évaluation,

Functional Programming: Proceedings of the 1990 Glasgow Workshop, pp 11-

21, 13-15th August 1990, Ullapool, Scotland, Peyton Jones S.L., Hutton G.,

Holst C.K. (Eds.), Springer Workshops in Computing, Springer-Verlag.

[KoQu92] Kortas S., Quatrain R.; Modélisation de la syntaxe et la sémantique d'un lan

guage informatique par les esquisses, Rapport du Séminaire d'Initiation a la

Recherche (1991/1992), Ecols Centrale de Paris, Laboratoire de Mathématiques

Appliquées, Muîtigraphie, Paris 1992.

[Lair75] Lair C; Etude générale de la Catégorie des esquisses, Esquisses Mathématiques

23, pp 1-62, 1975.

[Lair87] Lair C ; Categorrie qualifiables et catégories esquissables, Diagrammes 17,1987.

[Lair87b] Lair C ; Trames et sémantiques catégoriques des systèmes trames, Diagrammes

18, 1987.

[Laun88] Launchbury J.; Projections for spécialisation, University of Glasgow Depart

ment of Computing Science, Technical Report 88/R8, 1988.

[Laun89] Launchbury J.; Dépendent sums express séparation of binding times, Functional

Programming: Proceedings of the 1989 Glasgow Workshop, pp 238-253, 21-

23 August 1989, Fraserburgh, Scotland, Davis K, Hughes J (Eds), Springer

Workshops in Computing, Springer-Verlag.

[Laun90] Launchbury J.; Projection factorisations in partial évaluation, Ph.D. Thesis,

Department of Computing Science, University of Glasgow, CSC 90/R2, 1990.

[Lorh82] Lorho B.; The system DELTA and its derivatives, Tools and Notions for Pro

gram Construction, D. Neel (Ed), Cambridge University Press, pp 306-317,

1982.

[Macl71] Mac Lane S.; Catégories for the working mathematician, 1971, Springer-Verlag.

108

[MaBe85] Mazaher S., Berry D.M.; Deriving a compiler from an operational semantics

written in V.D.L., Computer Languages, Vol 10, No 2, pp 147-164, 1985.

[Morr73] Morris F.L; Advice on structuring compilers andproving them correct, Proceed

ings ACM Symposium on Principles of Programming Languages, Boston, 1973,

pp 144-152.

[Moss76] Mosses P.D.; Compiler génération using denotational semantics, Mathematical

foundations of Computer Science, 1976, LNCS 45, pp 463-441, Springer-Verlag.

[Moss79] Mosses P.D.; A constructive approach to compiler correetness, DAIMI IR-16,

University of Aarhus, 1979.

[RaTu79] Raskovsky M., Turner R.; Compiler génération and denotational semantics,

Fundamentals of Computation Theory, 1979.

[Reev87] Reeves A.C.; An algebraic directed compiler generator using denotational se

mantics, University of Stirling Department of Computing Science, Honours

Project, May 1987.

[ReRa89] Reeves A.C., Rattray C; Sketching a constructive définition of 'mix\ Func

tional Programming: Proceedings of the 1989 Glasgow Workshop, pp 118-132,

21-23 August 1989, Fraserburgh, Scotland, Davis K, Hughes J (Eds), Springer

Workshops in Computing, Springer-Verlag.

[Roye86] Royer V.; Transformations of denotational semantics in semantics directed

compiler génération, Proceedings of the SIGPLAN '86 Symposium on Com

piler Construction, Palo Alto, USA, In: SIGPLAN Notices (USA), Vol 12, No

7, pp 68-73,1986.

[Rus76] Rus T.; Context-free algebra: a mathematical device for compiler spécification,

Mathematical foundations of Computer Science, 1976, LNCS 45, pp 488-494,

Springer-Verlag.

[Rus83] Rus T.; T.I.C.S. System: a compiler generator, University of Iowa Department

of Computer Science technical report 83-08,1983.

[RuHe84] Rus T., Herr F.B.; An algebraic directed compiler generator, University of Iowa

Department of Computer Science, Technical Report 84-02, 1984.

109

[Rus85] Rus T.; An inductive approach for program évaluation, University of Iowa De

partment of Computer Science, Technical Report 85-02, 1985.

[Rus86] Rus T.; An alternative to CF. grammar for language spécification, Proceedings

of IEEE conférence on computer languages, Oct 27-30, 1986, Miami beach,

Florida.

[Rus87] Rus T.; An algebraic model for programming languages, Computer Languages,

Vol 12, No 3/4, ppl73-195, 1987.

[Rus90] Rus T.; Algebraic construction of a compiler, University of Iowa Department

of Computing Science, Technical Report 90-01,1990.

[Rus92] Rus T.; Algebraic construction of compiler s, The Unified Computation Labo-

ratory, Rattray C.M.I. Clark R.G. (Eds), The Institute of Mathematics and its

Applications, Oxford University Press, 1992.

[RyBu88] Rydeheard D.E., Burstall R.M.; Computational category theory, Prentice Hall

international séries in computer science, Ed: C.A.R. Hoare, 1988.

[ScSt71] Scott D.S., Strachey C; Toward a mathematical semantics for computer lan

guages, Oxford University Computing Laboratory, Programming Research

Group, Technical Monograph PRG-6, 1971.

[Sest85] Sestoft P.; The structure of a self-applicable partial evaluator, Programs as data

objects, Proceedings of a workshop, Denmark, 1985, LNCS 217, pp 236-256,

Springer-Verlag.

[Stoy77] Stoy J.E.; Denotational semantics, MIT press, Cambridge, Mass., 1977.

[Schm85] Schmidt D.A.; An implementation from a direct semantics définition, Programs

as data objects, Proceedings of a workshop, Denmark, 1985, LNCS 217, pp 222-

235, Springer-Verlag.

[Schm86] Schmidt D.A.; Denotational semantics - A methodology for language develop-

ment, Allyn and Bacon, 1986.

[ThWW80] Thatcher J.W., Wagner E.G., Wright J.B.; More advice on structuring compil-

ers and proving them correct, Semantics Directed Compiler Génération, Pro-

110

ceedings of a workshop Aarhus, January 1980, LNCS 94, pp 165-188, Springer-

Verlag.

[Turc80] Turchin V.F.; Semantic définitions in REFAL and automatic production of

compilers, Semantics Directed Compiler Génération, Proceedings of a workshop

Aarhus, January 1980, LNCS 94, pp 441-474, Springer-Verlag.

[TuNT82] Turchin V.F., Nirenberg R.M., Turchin D.V.; Experiments with a supercompiler,

ACM Symposium on Lisp and Functional Programming, Pittsburgh Pennsyl-

vania, pp 47-55, 1982.

[Turc85] Turchin V.F.; Program transformation by supercompilation. Programs as data

objects, Proceedings of a workshop, Denmark, 1985, LNCS 217, pp 257-281,

Springer-Verlag.

[Turc86] Turchin V.F.; The concept of a supercompiler, ACM-TOPLAS, Vol 8, No 3,

1986, pp 292-325.

[Vick86] Vickers T.N.; Quokka: A translator generator using denotational semantics,

The Australian Computer Journal, Vol 18, No 1, pp 9-17, 1986.

[Wadl89] Wadler P.; Theorems for free!, Proceedings FPCA' 89, Fourth International

Conférence on Functional Programming Languages and Computer Architec

ture, London, September 1989, pp 347-359, Addison Wesley.

[Wait70] Waite W. M.; The mobile programming system: STAGE2, Communications of

the A.C.M., Vol 13, No 7, pp 415-421, 1970.

[Wand80] Wand M.; Différent advice on structuring compilers and proving them correct,

Indiana University Department of Computer Science, Technical Report No 95,

1980.

[Wand85] Wand M.; From interpréter to compiler: a representational dérivation, Pro

grams as data objects, Proceedings of a workshop, Denmark, 1985, LNCS 217,

pp 306-324, Springer-Verlag.

[WeBa87] Wells C , Barr M.; The formai description of data types using sketches, Math

ematical foundations of programming language semantics, Proceedings: 3rd

111

workshop, Tulane University, New Orléans, Louisiana, 1987, LNCS 298, pp

386-413, Springer-Verlag.

[Well90] Wells C; A généralisation of the concept of sketch. Theoretical Computer Sci

ence, Vol 20, No 1, 1990, pp 159-178.

[Yuso91] Yusop N.I.; Generating exécutable sketches in prolog, MSc IT dissertation, De

partment of Computing Science, University of Stirling, 1991.

112

Appendix A

Example: A Toy Self-interpreter

Toy is a typeless first order functional language. Functions can only be declared at the top

level and hâve one implicit argument, named arg within the body of the function. Function

names are therefore the only type of identifier which can exist in a Toy program. The only

data objects which can be processed by a Toy program are natural numbers and binary

trees. Natural numbers can be tested for equality using the = operator. Binary trees may

be constructed using the (_,-) constructor and dismantled using the f s t and snd operators.

This restricted language is specified because it is amongst the simplest languages which are

capable of expressing a self-interpreter.

A.l The syntax of Toy

Using conventional methods the syntax of the Toy programming language is described by the

following set of production rules:

(ident) -* x

(ident) -+ x(ident)

(num) —• 0

(num) -• suce ((num))

113

(decs) —> £

(decs) —• (ident) s (exp) ; (decs)

(exp) - • arg

(exp) —• error

(exp) —• (num)

(exp) —• f s t ((exp))

(exp) —> snd ((exp))

(exp) - • ((exp), (exp))

(exp) —• (exp) s (exp)

(exp) —• i f (exp) then (exp) e l se (exp)

(exp) —• c a l l (iden/)(exp)

(p^) —• (c^p) where (decs)

The corresponding sketch Toysyn, which describes the phrases of the Toy language is shown

below.

114

A.1 .1 A sketch of the Toy syntax — Toysyn

Graph — G s yn

ident

empty

decs

ident x exp

j where exp x decs iL-i -prg

if
exp x exp x exp

ident x exp x decs

Note: projection arrows omitted for clarity.

Cônes — Cs y*

The six cônes shown below are required in the sketch Toysyn- Thèse cônes are required to

construct the production rules:

(ident) — x

(num) —• 0

(decs) -> £

115

(exp) - • arg

(exp) —• e r ro r

(exp) -+ ((exp), (exp))

(exp) —• (exp) = (exp)

(exp) —• if (exp) then (exp) e l se (exp)

(exp) —• c a l l (ident) (exp)

(decs) —• (iden/) « (exp) ; (decs)

(prg) —• (exp) where (decs)

exp x exp

exp

exp x exp x exp

Pr14 \ P r I 5

exp exp

iden* x exp x decs

pr27j

/
ident

pr2s \pr 29

exp decs

exp x decs tdent x exp

ident exp

Diagrams — Ds, yn

Since the sketch Toysyn describes the syntax of a programming language and does not attempt

to capture its static semantics the set of diagrams, Dsyn, is empty. Ds^ = 0-

116

A. 1.2 The initial model Isyn ' Toysyn —• SET

/Syn(T) = {0}

IsVn(num) = {jIsyn(num)n,nÇ: {0 ,1 ,2 , . . . }

where Isyn(nu™)o = {0}

IsVn(num)n = {succ(x): x G Isyn(num)n-i}

ISyn(ident) = \JISyn(ident)n,n G {0,1,2, . . . }

where Isyn(ident)0 = {x}

Isyn(ident)n = {xy : y € /syn(*'den*)n_;L}

/5yn(exp) = UJsyn(e*p)n,ne {0,1 ,2 , . . . }

where /5 y n(exp)0 = {arg,error} U {isjium(x): x € Isyn(num)}

Isyn(exp)n =

{f s t (x) : x G /5yn(exp)n_i} U {snd(x): x G /syn(ezp)n-i}U

{ (x ,y) : (x,y) 6 /syn(exp)n_i x Jsyn(e*p)n-i}U

{«(x ,y) : (x,y) € Isyn(exp)n-i * /syn(e*p)n-i}U

{ i f (x ,y ,2) : (x,y,z) G /syn(exp)n-i x /syn(exp)n_i x Isyn(exp)n-i}U

{ c a l l (x , y) : x € Isyn(ident),y G Jsyn^xp)*-!}

Isyn(ident x exp) = Isyn(ident) x J5yn(exp)

ISyn(exp x exp) = Isyni^p) x /5yn(exp)

/5yn(exp x exp x exp) = /5yn(exp) x /5yn(exp) x /syn(exp)

ISyn(decs) = U^5yn(^ecs)n,nG {0,1,2, . . .}

where /5yn(decs)0 = {empty}

/5yn(d€Cs)n =

{bind(x,y ,z): x G Isyn(ident),y G /syn(exp),z G Jsyn(decs)n_i}

Isyn(exp x decs) = Isyn(exp) x Isyn(decs)

Isyn(ident x exp x decs) = Isyn(ident) x Isyn(exp) x Isyn(decs)

Isyn(prg) = {where(x,y): (x,y) G /syn(e:rp) x JSyn(decs)}

/syn(0 : T -+ num) = 0 ^ 0

Isyn(succ : num -• num) = x -+ succ(x)

117

ISyn(x:T - ident) = 0

Isyn{x- • ident — ident) = y -+ xy

Isyn(arg : T — exp)

ISyn(error : T -* exp)

Isyn(is-num : num ->• exp)

hyn{call : t'den* x exp — exp)

ISynifst : exp -+ exp)

Isyn(snd : exp — exp)

/Syn(*7 : e a r P X e x P X eXP " eXÏÏ

ISyn{=- exp x exp — exp)

/ s V n((,) :expx e x p - e x p)

0 i-* arg

0 i-+ error

x —• is-iium(x)

(x,y)-> c a l l (x . y)

x -• f s t (x)

x —• snd(x)

(x,y,z) — i f (x , y , z)

(x ,y)-» =(x,y)

(x,y) — (x,y)

/Syn(P»"ll : exP X e x P "* eXP) - (*' ») "* x

/sVn(pr12 : exp x exp — exp) = (x, y) - y

hynipru : exp x exp x exp — exp) = (x, y,z)-+x

Isynipru : exp x exp x exp — exp) = (x, y, z) -<• y

/5yn(pri5 : exp x exp x exp — exp) - (x, y, z) — 2

ISyn(empty : T — <fe«) = 0 " «*pty

/Syn(=; : *rfent x exp x decs — decs) - (x,y,z) — =;(x ,y ,2)

/5yn(pr27 : t'dent x exp x decs -> tdent) = (x, y,z)-* x

JSvn(pr28 : *'dcn* x exp x decs -+ exp) = (x, y, 2) -» y

/5yn(pr29 : tdent x exp x decs -»• decs) = (x, y,z)-> z

hyn{pTA7 '> exp x decs — exp) = (x, y) — x

hyniprvi : exp x decs - • decs) = (x, y)-* y

ISyn(Pr3 '• ident x exP ~* ident)

Isyn(pu : ident x exp -* exp)

(x,y)^x

(x,y)^y

118

Isyn(where : exp x decs -+ prg) = (x,y) —• where(x,y)

A.2 The semantics of Toy

A.2 .1 The sketch ToySem

Graph — Gsem

The graph Gsem needed to describe the semantics of Toy is an extremely large and complex

object. A pictorial représentation of this graph is not practical so the graph is represented in

tabular from below.

Nodes

T ident num

decs ident x exp x decs ident x ident

num x num exp ident x decs

ident x T exp x exp ident x exp

exp x exp x exp exp x T T x exp

num x exp ident x exp x exp exp x exp x exp x exp

num x exp x exp iden* x num x exp x decs tden* x ident x exp x decs

T x decs num x decs exp x decs

exp x exp x decs exp x exp x exp x decs prg

Edges

x : T —* ident

x . : iden* —• ident

xo : ident -> ident

idident ' ident -*• ident

dispose ideni : ident —> T

119

empty : T —• decs

=; : ident x exp x decs —> decs

iddeca ^ ^cs —> decs

pr27 : tden/ x exp x decs —• tdenJ

pr28 : tden* x exp x decs —• exp

pr29 : zden* x exp x decs —• decs

(call o (pr27,P^28)^P^29) : ident x exp x decs — exp x decs

(/e*c/i o (pr27,pr2g), apply o (pr28,pr29),pr29) : ident x exp x decs -* exp x exp x decs

(pr27, pr2g) : ident x exp x decs —• ident x exp

(pr27,pr2g) : ident x exp x decs —• idenJ x decs

(Pr28,P^29) : tden* x exp x decs —• exp x decs

prx : ident x iden* —• zden*

pr2 : ident x ident —• ident

(x,x) : T —• ident X ident

x. x XQ : ident x ident -* ident x tdeni

xo x x . : ident x ident —• ident x tden£

x. x x . : ident x ident -> tdeni x ident

disposeidentxident : ident x iden/ —• T

same : ident x ident —• num

0 : T -> num

suce : num —> num

zéro : num -* num

îdnum ^ ntim —• n u m

dispose num : num —• T

120

pr$: num x num —* num

prio : num x num —» num

(0,0) : T —» num x num

suce x zéro : num x num —• num x num

zéro x suce : num x num —> num x num

suce x suce : num x num —• num x num

equal : num x num —• num

an/ : T —• exp

unde/ : T -» exp

is-num : num -» exp

/st : exp —• exp

snd : exp —• exp

idcxp : exp -* exp

dispose txv : exp —̂ T

(,) : exp x exp —• exp

=: exp x exp -+ exp

i/ : exp x exp x exp —• exp

ca/Z : ident x exp —• exp

isjnum x isjnum : num x num —• exp x exp

is : exp —* prg

pr7 : ident x decs —• ident

pr& : ident x decs —• decs

pr5 : ident x T -> ident

pr6 : ident x T - ^ T

idcrp x empty : ident x T -+ ident x decs

dispose ident xT '• ^ent x T -• T

121

pru : exp x exp -» exp

p r i 2 : exp x exp —* exp

/st x idcxp : exp x exp —• exp x exp

snd x id c r p : exp x exp —• exp x exp

replace : exp x exp —• exp

pf3 : ident x exp —• ident

pr 4 : ident x exp —• exp

pri3 : exp x exp x exp —» exp

pri4 : exp x exp x exp —• exp

pris : exp x exp x exp —• exp

dispose c r p x c r p x c r p : exp x exp x exp — T

((,) o (p r 1 3 , p r 1 4) , p r i 5) : exp x exp x exp -> exp x exp

(P r i3 , (,) ° (pr i4,pr 1 5)) : exp x exp x exp — exp x exp

(= o(pr 13,pr1 4) ,pr!5) : exp x exp x exp -> exp x exp

U x id c r p x idc r p : exp x exp x exp —• exp x exp x exp

(P ri3>pri4) : exp x exp x exp —• exp x exp

(p ^ i P ^ i s) • exp x exp x exp —• exp x exp

(pr i4 ,pr i 5) : exp x exp x exp —• exp x exp

(replace 0 (p r i 3 , p r 1 5) , rep/ace 0 (pr 1 4 ,p r i 5)) : exp x exp x exp -> exp x exp

pr 4 i : exp x T -> exp

pr42 : exp x T - ^ T

Werp x unde/ : exp x T - • exp x exp

disposetx?xi : exp x T - * T

pr 3 4 : T x exp -» T

pr3s - T x exp - • exp

dispose^xexT : T x exp - • T

ary x td c r p : T x exp —• exp x exp

unde/ x i d ^ : T x exp -> exp x exp

122

p7*36 • num x exp —• num

pr37 : num x exp —• exp

is.num x idc r p : num x exp —* exp x exp

pr38 : ident x exp x exp —* ident

pr39 : ident x exp x exp —> exp

pr4 0 : ident x exp x exp —• exp

(caZZ o (pr38,pr39),pr4o) : ident x exp x exp - • exp x exp

(Pr38?P^39) • ident x exp x exp —• ident x exp

(Pr39?P^4o) '• ident x exp x exp -> ident x exp

(P^38, replace o (pr3 9 ,pr4 0)) : ident x exp x exp —• ident x exp

prig : exp x exp x exp x exp — exp

pr2 0 : exp x exp x exp x exp -* exp

pr21 : exp x exp x exp x exp —> exp

pr22 : exp x exp x exp x exp — exp

(if o (pr*i9,pr2o,pr21),pr22) : exp x exp x exp x exp —• exp x exp

((,) o (pri9,pr2 0),pr2 1 ,pr2 2) : exp x exp x exp x exp —• exp x exp

(Pri9,Pr2o) • exp x exp x exp x exp —• exp x exp

(Pri9,P^22) • exp x exp x exp x exp —• exp x exp

(pr2o,pr22) : exp x exp x exp x exp -> exp x exp

(Pr2i9P^22) : exp x exp x exp x exp -> exp x exp

(Pri9,pr20>Pr2i) : exp x exp x exp x exp - • exp x exp x exp

(replace o (pr^,pr22), replace o (pr2o,pr22), replace o (pr21,pr22)) : exp x exp x exp x exp

—• exp x exp x exp

pr!6 : num x exp x exp - • num

pri7 : num x exp x exp —• exp

pr1 8 : num x exp x exp —• exp

is.num o zéro x idexp x idcxp : num x exp x exp -> exp x exp x exp

is-num o suce x idcrp x id^ : num x exp x exp -> exp x exp x exp

123

pr3o : ident x num x exp x decs —> ident

pr3! : ident x num x exp x decs —• num

pr32 : ident x num x exp x decs —• exp

pr33 : ident x num x exp x decs —• decs

idutnt x -ero x idtxv x id^CC3 : ident x num x exp x decs —> ident x num x exp x decs

idutnt x succ x idex? x irf̂ ,.̂ : ident x num x exp x decs —• ident x num x exp x decs

(P^30,P^33) : ident x num x exp x decs —• ident x decs

/etcA : ident x decs —• exp

get : ident x num x exp x decs —> exp

pr^ : ident x ident x exp x decs -* ident

pr24 : ident x ident x exp x decs -> ident

pr25 : ident x ident x exp x decs -» exp

pr26 : ident x ident x exp x decs —• decs

(pr24>pf"25,pr26) : ident x ident x exp x decs -> ident x exp x decs

(Pr23, =;o(pr24>pr25,pr26)) : wfen* x ident x exp x decs ~> ident x exp x decs

(Pr23?P^24) : ident x ident x exp x decs —• ident x ident

same o (pr23,pr24) : ident x ident x exp x decs —• num

(Pr23>sameo (pr23,pr24),pr25,pr26) : ident x ident x exp x decs

—• ident x num x exp x decs

pr43 : T x decs - • T

pr44 : T x decs - • decs

dispose? xdecs : T x decs ™» T

arg x id^ecj : T x decs —• exp x decs

undef x idiCC5 : T x decs —• exp x decs

pr+z : num x decs -+ num

pr46 : num x decs —• decs

is-num x id<jcc, : num x decs —• exp x decs

124

pr47 : exp x decs —• exp

pr48 : exp x decs —• decs

/st x id̂ fcc, : num x decs —• exp x decs

snd x iddccs - num x decs -+ exp x decs

appZy : exp x decs —*- exp

pr4g : exp x exp x decs -* exp

pr50 : exp x exp x decs -+ exp

prs! : exp x exp x decs —• decs

(G) o (p^49,P^5o),P^5i) : exp x exp x exp -> exp x decs

(= o(pr49,pr50),P^5i) : exp x exp x exp — exp x decs

(apply o (pr49,pr5i), appZy o (pr50,pr5i)) : exp x exp x decs -> exp x exp

(replace o (pr49,pr5o),pr5i) : exp x exp x decs -+ exp x decs

(p^49,pr5o) : exp x exp x decs -> exp x exp

(pr49?P7'5i) : CZP x exp x decs -+ exp x decs

(pr50,prsi) : exp x exp x decs -> exp x decs

(appZy o (pr49,pr5i), apply o (pr50,pr5i)) : exp x exp x decs -* exp x exp

pr52 : exp x exp x exp x decs —• exp

pr53 : exp x exp x exp x decs —• exp

pr54 : exp x exp x exp x decs —> exp

pr$$: exp x exp x exp x decs —• decs

(if o (pr52,pr53,pr54),pr55) : exp x exp x decs -> exp x decs

(appZy o (pr52,pr55),pr53,pr54,pr55)
 : C*P x €XP x exP x dec5 "* exP x exP x exP x dec5

(p^52,P^539P^54) : exp x exp x exp x decs -+ exp x exp x exp

(p^52iPr55) : exP X exp x exp x decs —• exp x decs

(appZy o (pr52,pr55),pr53,P^54,P^55) : exp x exp x exp x decs -> exp x exp x exp x decs

where : exp x decs —• pn/

is"1 : pnj —• exp

Cônes — Csem

The twenty two cônes required in the définition of the semantics of Toy are shown below.

125

ident x ident

ident ident

ident

ident x T

ident

ident x decs

ident decs

num x num

num num

exp x exp exp x exp x exp

Pri4 \ p r i 5

exp exp

num x exp x exp

pri7 \ p r i 8

num exp

exp x exp x exp x exp

ident x ident x exp x decs

ident ident exp decs

ident x exp x decs

/^27, P^28 \ P ^ 2 9

ident exp decs

126

file:///pri5
file:///pri8

ident x num x exp x decs

ident num exp decs

T x exp

exp

num x exp

num exp

ident x exp x exp

P^39 \ P ^ 4 0

ident exp exp

exp x T

exp decs

num x decs

num decs decs

exp x exp x decs

P^50 \ p r 5 1

exp exp decs

exp x exp x exp x decs

PÏ-53

exp exp exp decs

Diagrams — Dsem

The 10 diagrams below are used to describe the opération same : ident x ident —• num. This

opération is used to specify equality of identifiers.

127

file:///pr51

fydident

ident

ident ident

dispose ideni pr pr2
<* ident {dent —^ ident x ident -

Xo XQ

ident • ident pr\

Xo x X-

-ident x ident —
pr2

ident

ident

pr-i pr2
ident* ident x ident » ident

X .

ident •
pri

x. x x0 £o

-ident x ident—zzr—'ident
pr2

ident
vri pr2 —-- ident x ident * ident

ident -
pr\

x . x x.

-ident x ident- pr2

ident

(x x) x x x -
— — - ident x ident ident x ident * ident x ident

same

num

dispose ident X ident same

T -*• num- suce
• • n u m

x . x x
ident x ident ident x ident

dispOSeidentxiient same

— num- SUCC •+-num

X - X X -

ident x ident aident x ident

num

Since the sets IScm(ident) and /sem(num) are, to ail intents and purposes the same

we require a similar set of 10 diagrams to describe the equality opération on numbers,

equal : num x num —• num.

128

num

num «• P̂ 9 num x num pr\o -num

dispose T

num
P̂ 9 Prio

num- num x num •num

zéro zéro

num num*- P̂ 9

zéro x suce

-num x num-

succ

pr\o — num

pr9 pno
num- num x num -num

suce

num — pr9

suce x zéro zéro

-num x num- pr\o -num

prg Prio
num* num x num -num

suce

num*- prg

SUCC X SUCC SUCC

-num x num- pr\o — num

zéro x suce
-num x num num x num num x num

equal

num

dispose
num x num equal

— num- SUCC — num

suce x zéro suce x suce
num x num » num x num num x num •* num x num

dispose
num x num \equal

— num- SUCC — num num

The next collection of diagrams describe the opération =: exp x exp —• exp. This is the Toy

language equality operator. Notice that 0 is the True value and that 1 is the False value.

129

file:///equal

equal
num x num » num

ts.num x isjnum xs.num

exp x exp • — exp

pr9 prio
num- num x num » num

is num ts.num x ts.num ts.num

I
e i p ' p r n " P x e x P " p n T ^ e x p

(pri3,pri4)
exp x exp » exp x exp x exp

(.) <(,)°(Pr13,Pn4>,Pn5> v.Pr15

exp •*- pr 11 « ? * « * > pru ' exp

(pru,pri5)
exp x exp x exp * exp x exp

PT13y
{pris,(,)° (pru,pris)) (,)

exp •*- P^n
-exp x exp pri2 — exp

exp x exp x exp

JWll P^12

exp x exp x exp

•• exp exp -• p n i P^12

((,) 0 (p n 3 , p n 4) , p n 5)
exp x exp x exp —exp x exp

dispose exp X exp X exp

undef — exp

(pri3 , (,)°(pri4 ,pri5))
exp x exp x exp *exp x exp

dispose exp xexpx exp

undef — exp

130

idexj> x undef undef x idtXp
exp x T *• exp x exp T x exp exp x exp

di*PO**expxT

undef exp

dispose^ xexp

undef exp

PUï

exp^

prn

p r 4 2
,exp x T - T

idexp x undef

*exp x exp
PH2

undef

— exp

pr*K

exp^

pr\jT

. T x exp-
przA

undef x id exp undef

*exp x exp — -exp

In total 6 diagrams describe the behaviour of the Toy opérations fst : exp —• exp and

snd : exp —* exp. Note that both fst and snd behave as identity when applied to a num-

ber.

undef undef

ts-num ts-num
num •* exp num *• exp

is.num ts-num snd

131

(O (0
exp x exp »• exp exp x exp *• exp

We require 9 diagrams to specify the behaviour of if. thèse diagrams are shown below. Note

that the True value is 0 and the false value is any non zéro value including a pair constructed

exp x exp x exp

dispose expxexpxexp

U x idtXp x idcrj,
•exp x exp x exp

if

undef •exp

exp x exp x exp
is.num o zéro x idexj) x idcr7,

exp x exp x exp

exp x exp x exp
is.num o suce x idCXJ> x i d ^

— exp x exp x exp

(d) ° (pri9,pr2o),pr2i,pr22)
exp x exp x exp x exp *• exp x exp x exp

pr22
if

exp

132

exp—

dispose^

T

unde/l

pri3
-exp x exp x e x p ^ \ P r i 5

I p r ^
U x id c x p x idexp exp

I Pr14
exp

e x p — — exp x exp x expC^ pr^

num*

zeroj

num
is.num^

exp—

prie
— num x exp x exp ^v v P r i8

I p r j ^
is.num o zéro x ideXD x idexv

 exP
P i P pri4 '

exp x exp x exp i>*" pr15
pri3

exp

succj

num

is.num^
exp-—

prie
- num x exp x exp v ^ P r i 8

pr i7^
is.num o suce x idea7> x id e x p

pri4
exp exp

P^13 -exp x exp x exp £ ^ pr^

exp x exp x exp x exp

exp** pr n
exp x exp

pri2 — exp

(prX9,pr20)
exp x exp- exp x exp x exp x exp\^>Pr22

exp—

I Pr21 ^
((0 ° (P^19,P^20),P^21,P^22) exp

I Pr14y

exp x exp x exp £ ^ pri5 P^13

exp

Below are the diagrams necessary to describe the opération apply : exp x decs —• exp and its

auxiliary functions. The purpose of this opération is to specify function application. Its

opération is as follows.

1. When a function call exists as a sub-expression it is replaced by the function body

bound to the function in the decs part of its argument. This is the purpose of the fetch

opération described below.

133

2. Ail occurrences of the sub-expression arg within the body of the function found at 1

above are replaced by the function argument from the call of the function in 1 above.

3. Together steps 1 and 2 produce an expression whose évaluation is described by the

remaining diagrams of the sketch.

arg xiddecs
T x decs •* exp x decs

dispose *£ x de

arg

apply

— exp

undef xiddecs
T x decs »• exp x decs

dispose f x de

undef

apply

-exp

is.num xiddecs M xiddecs
num x decs —— exp x decs exp x decs exp x decs

prAS

num-

apply apply

ts.num
— exp exp- fst

apply

exp

snd xiddecs
exp x decs *• exp x decs

apply

* >
exp-

snd

apply

exp

(= o (jW49,pr5o),pr5i)
exp x exp x decs •* exp x decs

(apply °(pr 49, pr si),
apply o(pr50,pr5i))

exp x exp

apply

exp

134

((i)0(Pr49,pr5o),pr5i)
exp x exp x decs exp x decs

(app/yo(pr49,pr51},
apply o(pr50,pr51)>

exp x exp
(,)

apply

exp

{if ° (pr52,pr53,pr54),prss)
exp x exp x exp x decs >- exp x decs

(apply o (pr52,pr55),pr53,pr54,pr55)

exp x exp x exp

(if ° (pr52,pr53,pr54),pr55)

1 . exp x decs
appZy

apply

+ exp

(callo(pr27,pr28),pr29)
ident x exp x decs *• exp x decs

(fetcho(pr27,pr29),
apply 0 (pr28,pr29),

pr2d)
exp x exp x decs apply

(replace o (pr49,pr5o),pr5i)

exp x decs
apply — exp

arg

pr43 T x decs <

arg x idde

J>r44 T « P r 4 3 T x decs

decs undef

exp — pr47
exp x decs 'PUs

undef x idde

exp- PU7
exp x decs

vPr44

decs

'pr4%

PT45 ,
num - num x decs «

ts.num is.num x idde

exp-

JUe

decs fst

Pr47 .
exp - exp x decs \pr4S

pr4i
exp x decs 'PU*

fst X idde decs

exp — PU7
exp x decs 'PUs

pr47 ,
exp exp x decs \nr4s

snd snd x idde

exp —

(PU9, pr so)
exp x exp- exp x exp x decs^pr

decs

pr47
exp x decs 'PU8

(= o (pr49,pr5o),P^5i)

exp —

decs

PU7
exp x decs 'pr48

135

file:///nr4s

(pr49,pr5o)
exp x exp- exp x exp x decs^pr51

(,) {{,)° (pr49,prso),prsi)

exp-
pr47

exp x decs

decs

'pr48

exp x exp x decs

exp** pr ii
exp x exp

pr 12 exp

pr s- exp x exp x exp x decs
prsî\

exp (pr52,pr53,pr54)

prïT-
pru

exp x exp x exp

(pr52 * pr53, pr54)
exp x exp x exp - exp x exp x exp x decs \pr55

if

exp —

(*/ 0 (pr52,P^53,P^54),P^55)

exp x decs

decs

'pr48
PU7

exp —

exp x exp x exp x decs

l \
(pr52,Pr55)

i
exp x decs • Pf47 pr4s

decs

(prs2,prss) ,
exp x exp** exp x exp x exp x decs

apply (aPPly°(Pr^Pr™)> \xp \xp \ecs
prs3, prs4, prss) /rpr53 yfprbA yrpr55

exp - — exp x exp x exp x decs

136

ident x exp x decs ident x exp x decs

-decs exp —
pr47

exp x decs
pr48

ident x exp x decs

(Pr2B- Pr29)

I
ident x exp PU — exp

(pr 27, pr 28)
tdent x exp- ident x exp x decsKpr29

call

exp —

(call o (pr27.pr2$),pr29) decs

pr47

exp x decs ' P 48

exp — PU7

exp x exp x decs

(pr 49, pr si)

i
-exp x decs- PUs

exp x exp x decs

(pr so, pr si)

i
exp x decs PUs

(Pr49, Pr'51) , (P^50,P^5l)
exp x decs « exp x exp x decs » exp x decs

apply

exp —

{apply o (pr49,pr51).apply o {prS0,prSi)) apply

exp x exp ^^ "exp
pr n prii

(pr27,pr29) {prM,prM)
ident x decs tdent x exp x decs - exp x decs

fetch
(fetch o (pr27, p»^) - \ V \P r 29
apply o (pr2s, pr-n), decs

1 pr29> , /m
exp — PU9

exp x exp x decs

apply

prso exp

137

exp x exp x decs

exp** pr n pr 12

(PU9, prso)
exp x exp exp x exp x decsKpr51

replace (replace o (pr49,pr5o),pr5i)

exp — pr47
exp x decs

decs

'P?48

Thèse diagrams describe the behaviour of fetch : ident x decs - • exp whose purpose is de

scribed above.

iàent _ ^ L _ id€nt x T PT« T

id^cnt *rfiien< x empty

ident-
P^7

ident x decs •
prs

empty

decs

idident x empty
ident x T - tdent x decs

dispose ident xT\
!
t

T undef

fetch

exp

(P^23,=;°(P^24,P^25,P^26))
ident x ident x exp x decs -tdent x decs

fetch

—exp

(pr23,same o (pr23,pr24),pr2s,pr26)

ident x num x exp x decs get

, ident x tdent x exp x decs
P^25\

ident^ {pr24,pr 25, pr 2e)

pr2
pr™

ident x exp x decs

138

. , , . , , , (Pr24,pr25,pr26) ., A .
PT23^^ tdent x tdent x exp x decs — * ident x exp x decs

ident (pr23, =; o(pr2 4 ,pr2 5 ,pr2 6))

^ r 7 ^ " ^ ident x decs
prs

-+decs

ident x ident x exp x decs

(Pr23,pr24)
tdent x tdent x exp x decs - tdent x tdent

same o (pr2$,pr24) same

num

ident x ident x exp x exp
P 2̂6

same o (pr2$, pr24)

exp (pr23^ same o (pr2 3 , pr2i), pr25, pr26)\ num

pr32

ident x num x exp x exp

exp

num-

zéro

num+.

pr3i
ident x num x exp x decs

ident idident X zéro x idexp X iddecs

ident x num x exp x decs
PT31

ident x num x exp x decs
pr32

idident X zéro x idtxv x idde

— exp

get

ident x num x exp x decs

139

num —

SUCC

num +

pr3i • ident x num x exp x decs

pr30/

ident idident x suce x idexv x iddecs

ident x num x exp x decs

ident x num x exp x decs

pr3i

ident x num x exp x decs
(pr30,pr33)

idident X SUCC X idtrp x idde

t
ident x num x exp x decs get

-ident x decs

fetch

-exp

This collection of diagrams are used to describe the replace : exp x exp - exp opération.

arg

pr34 T x exp v p f 3 5

pr^A
T — T x exp \ p r 3 5

arg x ideXp

exp — pru
exp x exp

exp
/

/ P r 1 2

undef undef x idtrp

exp — prn
exp x exp

exp

'pri2

xsjnum

o r pr a
num mP 3 6

 num x exp s^r37 exp exp x exp \ ^ r i 2

exp fst fst x id{ is-num x id{ axp

exp — pr n
exp x exp

/prn

exp

\

exp — pr n
exp x exp

exp

rpri2

prn
exp exp x exp \pn2

(pri3,pri4)
exp x exp exp x exp x exp \prl5

snd snd x id{ exp

exp — prn
exp x exp

exp

/pri2

(= o(pr13 ,pr14),pr15)

exp ^n exP x exP

exp

/pri2
prn

140

(pri3,pru)
exp x exp - exp x exp x exp \prï5

G) ((,) 0 (pri3 ,pri4) ,pri5)

exp-
pr u

exp x exp

exp

/prx2

p n 9 ^ exP x exP x exP x e x P
pr2o\^

exp~ (pri9,pr20 ,pr21)

pr iT
exp x exp x exp

(pr1 9 ,pr2 0 ,pr2 i)
exp x exp x exp exp x exp x exp x exp v p r 2 2

if

exp-

(*/ o (pri9,pr2 0 ,pr2 i) ,pr2 2)

exp x exp

,e*P

^ 1 2
P^n

ident x exp x exp

•-exp

(P^38,P^39) . , A
tdent x exp** tdent x exp x exp \r>r40

call

exp —

(caZZo (pr38,pr39),P^4o)

exp x exp

rexp

/pr12

pr n

exp**

exp x exp x exp exp x exp x exp

prn pr 12 - exp exp *+ pr n
exp x exp

prn — exp

141

(pri3.pris) (pri4,pris)
exp x exp - exp x exp x exp •• exp x exp

replace

exp**

(replace o (pr^P^is), replace(prï4,pri5)) replace

\
exp x exp - ^ -exp

prn prn

exp x exp x exp x exp exp x exp x exp x exp

exp pr n
exp x exp pr 12 — exp exp ** prn pri2

exp x exp x exp x exp

exp** prn pr 12

exp x exp

replace

(pri9,pr22)

(pr20,pr22)
exp x exp

replacel
exp-

exp x exp x exp x exp (P^'P 7* 2 2/—* exp x exp

replace
(replace o (prx9,pr22),
replace o (pr20,pr22),
replace o (pr2i,pr22))

P7"14 _ ^ exp x exp x exp

P^13

pris
exp

ident x exp x exp

exp •* prn pri2
-exp

(PT39,PT40)
pr$*^ %dent x exp x exp* • exp x exp

ident (pr38, replace o (pr39, puo))

P r 3 ^ ^ ^ ident x exp
pr4

replace

exp

142

replace

undef x idexp
T x exp » exp x exp

dispose^ xexp replace

undef

is.num xidt

num x exp

P 3̂6

exp

num-
ts.num

—*-exp

exp x exp

replace

—+ exp

fst xidexp
exp x exp *• exp x exp

replace replace

ezp —

exp x exp

replace

fst

snd xid.

-*. exp

exp

— exp x exp

replace

exp- snd
exp

(call o (pr38,pr39),pr4o)
ident x exp x exp *• exp x exp

(pr38. replace o (pr39,pr40))

ident x exp
call

replace

exp

143

(= o (pr13,pri4),pr15)
exp x exp x exp - exp x exp

(replace o (pr13,pr15),
replace o (pr14,pri5))

exp x exp

replace

exp

(G)°(Pri3,pri4),pri5)
exp x exp x exp * exp x exp

(repZaceo (pr13,pri5),
replace o (pri4,pr15))

exp x exp (0

replace

exp

(if ° (Pr19, Pr20, P̂ 21), P̂ 22)
exp x exp x exp x exp •" exp x exp

(replace o (pri9,pr22),
replace o (pr20,pr22)),
replace o (pr2i,pr22)) ,,

exp x exp x exp

replace

if
—*. exp

Finally we describe the opération wAere : exp x decs -* pnp. This opération is used to place

an expression within a context, (i.e. an environment) and thus allow the évaluation of function

calls. The opérations is : exp -+ prg and is'1 : prg -> exp are used to force an isomorphism

between the sets ISem(exp) and Isem(prg).

exp-.
ts

is-1 ~prg

144

A.2.2 The initial model Isem ' Toyse SET

/Sem(T)

Isemiident)

Isem(num)

ISem(decs)

= w
= {0,1 ,2 , . . . }

= {0 ,1 ,2 , . . . }

= \JIsem(decs)n,ne {0 ,1,2, . . . }

Isem(num x num)

ISem(exp)

where Isem(decs)0 = {empty}

/sem(<*ecs)n = Iscmidecs^-! U {*;(x,y,z): (x,y, z) Ç

Isem(ident) x ISem(exp) x /sem(decs)„_i}

Isem(ident x exp x decs) = ISem(tdent) x Jsem(exp) x ISem{decs)

Isem(ident x t'denf) = ISem{ident) x ISem{ident)

= Iscm(num) x /sem(nu"*)

= U/sem(exp)n ,ne {0,1,2, . . .}

where Isem(exp)0 = {undef,arg} U { is_num(x) : x € Isem(num)}

ISem(exp)n = /SemCexp^U

{ f s t (x) : x € {î/ : y € /sem(exp)n-i A ->p(u)}}U

{ snd(x) : x € {y : y € /sem(exp)„_i A ->p(y)}}U

{ (x,y) : (x,y) € /sem(exp)„_i x Isem(exp)n_i}U

{ =(x,j/), =(j/,x) : (x,y) G {z : z € /sem(exp)n_i A ->p(«)}x

/Sem(exp)n_i}U

{ i f (x .y .x) : (x,y,z) e{a:a£ Jsem(exp)n_i A -ip(a)}x

/5em(exp)n_i X ISem(exp)n.-i}U

{ calKt'.e) : (i,e) € ISem{ident) x /sem(exp)n_i}

= False p(snd(x)) = False

= True p(ca l l (i , e)) = Fa/se

p(=(x,î/)) = False

p(i f (x , j / ,2)) = Fa/se

p(arg)

p(undef)

p(isjium(x)) = True

p((x,y)) = True

p(fs t (x)) = False

145

hem

ISem

hem1

hem

hem

*Sem

*Sem

+ Sem

ISem

*Sem

+ Sem

•LSem1

ISem

*Sem

+ Sem

hem

hem

*Sem

*Sem

ident x decs) =

ident x T)

exp x exp) =

ident x exp) =

exp x exp x exp) =

exp x T) =

T x exp) =

num x exp) =

ident x exp x exp) =

exp x exp x exp x exp) =

num x exp x exp) =

ident x num x exp x decs)

ident x ident x exp x decs)

T x decs) =

num x decs) =

exp x decs) =

exp x exp x decs) =

exp x exp x exp x decs) =

prg)

hem(ident) x ISem{decs)

hem{ident) X hem(T)

hem(exp) X hem{exp)

hem(ident) x hem{exp)

hem(exp) X hem(exp) X hem(exp)

hem(exp) X hem(T)

hem(T) X hem(exp)

hem(num) x hem(exp)

hem(ident) x hem(exp) x hem(exp)

hem(exp) X hem(exp) X hem(exp) X hem(exp)

hem(num) X hem(exp) X hem(exp)

= hem{ident) x hem(num) x hem(exp) x hem(decs)

hem(ident) x IS(im(ident) x hem{exp) x ISem(decs)

hem{T) X hem(decs)

hem(num) x hem(decs)

hem(exp) X hem{decs)

hem{exp) X hem(exp) X hem(decs)

hem(exp) X hem(exp) X hem(exp) X hem{decs)

hem(exp)

IScm(x : T - ident)

hem{z-: ident —• ident)

hem(xo ' ident - • ident)

hem(idident : ident — ident)

hem(disposeideni : ident — T)

0 ~ O

x — x + 1

x - + 0

x —* X

x - * 0

hem(empty : T - • decs) = ¢ ^ empty

hem(=; ' ident x exp x decs -+ decs) = (x,y,z) - • =; (x , y , x)

hem(iddecs ' decs -» decs) = x-> x

146

hem(pr27 • ident x exp x decs -> ident) = (x, y, z) -+ x

hem(pr28 - ident x exp x decs -• exp) = (x, y,z)-+ y

hem(pr29 ' ident x exp x decs -* decs) = (x, y, z) -* x

hem((callo (pr27,pr2S),pr29) : ident x exp x decs -+ exp x decs)

= (x, y, z) — (hem(call)(x, y), z)

hem((fetch o (pr27,pr29), apply o (pr28.pr29),pr29) : ident x exp x decs

-• exp x exp x decs)

= (x,y, z) -> (hem(fetch)(x, y), hem(apply)(y, z), z)

hem((pr27,pr28) ' ident x exp x decs — ident x exp) = (x, y, z) -• (x, y)

hem((pr27,pr29) ' ident x exp x decs — ident x decs) = (x, y, z) -+ (x, z)

hem{(pr28,pr29) '- «dent x exp x decs — exp x decs) = (x, y, z) -> (y, x)

hem(pri : ident x ident —> ident) = (x,y) —• x

hem(pr2 : «dent x ident -+ ident) = (x,j/) -• y

/S c m((x,x) : T -> ident x ident) = 0 •-> (0,0)

hem(z- X zo ^ Wewt x ident — ident x ident) = (x, y) -• (x + 1,0)

hem(xo x X. : ident x ident — ident x ident) = (x, y) -> (0, y + 1)

hem{x- x x- : «dent x ident — ident x ident) = (x, y) -+ (x + 1, y + 1)

Isem(di8po8elitnixiieni : ident x ident - T) = (x, y) -+ 0

hem(same : ident x ident — num) = /

where /(0,0) = 0

/ (* + l ,0) = 1

/ (0 , x + l) = 1

/ (x + 1,2,+ 1) = f(x,y)

hem(0 : T -• num) = 0 ^ 0

hem{succ : num —> num) = x —• x + 1

hem(zero : num — num) = x —• 0

/scm(Wnum : num — num) = x -> x

J5cm(disposenmm : num -> T) = x — 0

147

Isemiprç • num x num -* num) = (x,y) -»• x

JSem(prio : num x num -» num) = (x,y) ->• y

/sem«0,0) : T -• num x num) = 0-+(0,0)

ISem(succ x zéro : num x num — num x num) = (x,t/) -»• (x + 1,0)

ISem{zero x suce : num x num -* num x num) = (x, y) ->• (0, y + 1)

•Tsem(succ x succ : num x num -> num x num) = (x, y) -* (x + 1, y + 1)

Is«n(di8pose%%mXn%m : num x num - T) = (x, y) - 0

ISem(equal : num x num —• num) = /

where / (0 ,0) = 0

/ (Ï + 1 , 0) = 1

/ (0 ,x + l) = 1

/(x + l , y+ l) = f(x,y)

148

x = undef

x = is-num(y)

x = (a,6)

hem(arg : T — exp)

Jscm(unde/:T-* exp)

hem(is~num : num — exp)

hemifst : exp -> exp)

where / (x) = undef,

= x,

= a,

= f s t (x) , otherwise

hem(snd : exp -+ exp)

where / (x) = undef, x = undef

= x, x - is-num(y)

= 6, x = (a, h)

= snd (x) , ot her wise

hem(idexP • exp — exp)

hem(disposetxv : exp -* T)

/sem((,): expx exp — exp)

/sem(=: exp x exp — exp)

= 0 >- arg

= 0 ^ undef

= x —* is_num(x)

= /

= /

= X — X

= x ^ 0

= (x,y) — (x ,y)

= /

where f(x,y) = is-num(Jscm(eçuaZ)(a, 6)), x = is-num(a) A y = is-num(6)

= undef, x = (a,6) V y = (c,d) V

x = undef V y = undef

otherwise

= /

x = undef

x = is-num(O)

x = is-num(n + 1) V x = (a,6)

x = is-num(x + 1) V x = (a,6)

= i f (x , y , z) , otherwise

hem{eall : ident x exp -> exp) = (i,x) -• c a l l (i , x)

hem(is-num x isjnum : num x num —> exp x exp)

= (s, y) —• (is-num(x),isjiuiii(y))

/5em(«5 : exp -• prg) = x — x

= = (x ,y) ,

hem(if : exp x exp x exp -+ exp)

where f(x,y,z) = undef,

= î/,

= 2:,

149

IsemipTi • ident x decs —• ident) = (I . J) - » Î

Isem(pr& : ident x decs — decs) = (x. y) — y

/sem(/»-5 : "fent x T -• ideni)

/5em(pr6 : ident x T - T)

/sem(dt'sposeI<Jen<xT : »'<fen< x T — T)

Isem(idtxr x empfy : ù/eni x T -* ident x decs)

(x , y) - > x

(x ,y) -* î /

(x , y) - 0

(x,y) — (x,empty)

/sem(prn : exp x exp -• exp) = (x, y) -+ x

Isem(pri2 : exp x exp - exp) = (x, y) -» y

Isemifst x idexy : exp x exp -* exp x exp) = (x, y) -+ (-Tsem(/sO(x), y)

Isem(snd x ùf exp : exp x exp - • exp x exp) = (x, y) — (/s«n(*n<0(*). y]

Isem(replace : exp x exp -» exp) = /

where /(arg, r)

/(undef,r)

= r

= undef

/(is_num(n),r) = is_num(n)

/ (f s t (e) , r) = ISem{fst){f{e,r))

/(snd(e),r) = ISem(snd){f(e,r))

/ (= (x ,y) , r) = /sem(=)(/(x,r), /(y,r))

/ ((x . y) , r) = /sem((,))(/(*, r) , /(y, r))

/ (i f (x , y , z) , r) = /sem(t/K/(x,r) , / (y,r) , / (2,r))

/ (c a l l (»,e),r) = /sem(coW)(«»/(e'r))

Fsem(pr3 : ident x exp -» idenf) = (x, y) - • x

Isem(pr4 : «dent x exp -• exp) = (x, y) -» y

150

/sem(pri3 : exp x exp x exp -* exp)

Isemipru • exp x exp x exp -• exp)

/sem(pri5 : exp x exp x exp -» exp)

/sem(d«*PO*Cezpxerpxerp : «Xp X exp X exp — T)

= (x,y,z) — x

= (x,y,z)-+y

= (x,y,z)-*z

= (x,y,*)-+0

/Sem(((,) o <Pfi3,pru) ,pr is) • exp x exp x exp -> exp x exp) =

(x,y,*)— (/sem((,))(x,y),^)

/Sem((pri3, (,) ° <Pri4,P^is)) : exp x exp x exp -+ exp x exp) =

(X, y, ̂) -» (X, /5em((,))(î/, *))

/sem((= o<pri3,pri4>,P»-i5) : «xp x exp x exp -• exp x exp)

(x ,y ,2r)^(/ S e m (=) (x ,y) ,z)

/Sem(i/ x idtrp x ide ip : exp x exp x exp - • exp x exp x exp) =

(x,y,z)-* (undef, y, z)

/sem((pri3,pri4) : exp x exp x exp — exp x exp) = (a, 6, c) -» (a, 6)

/Sem((pri3,pris) : exp x exp x exp — exp x exp) = (a, 6, c) — (a, c)

•Tsem((pri4,pri5) : exp x exp x exp -» exp x exp) = (a, b, c) -* (b, c)

Isem({replace o (pr13,pr15), replace o (pr14,pr15)) : exp x exp x exp - • exp x exp)

= (x,y,z) - • (7sem(rep/ace)(x,r),/sem('«p/ace)(y,z))

Isem(pr4i : exp x T — exp)

/5em(pr42 : exp x T - T)

Isem(disposeetpxT : exp x T -* T)

Isemiidtxp x unde/ : exp x T -» exp x exp)

/Sem(pr34 : T x exp ^ T)

Isemiprss : T x exp -» exp)

»5em(disposeTxer}, : T x exp -* T)

Isem(arg x »'d«, : T x exp -» exp x exp)

Isem(undef x tde*p : T x exp - • exp x exp)

•Tsem(p»"36 : "«"* x exp - • num)

i5em(pr37 : num x exp -• exp)

Isem{is.num x t'dez7 : num x exp —• exp x exp)

x,y) — x

x,y) — y

x,y) — 0

x,y) —* (x,undef)

x , y) - * x

x,y)-> y

x,y)-+ 0

x , y) ^ (a r g , y)

x, y) - • (undef, y)

x , y) - > x

x , y) - * y

x,y) - • (is_num(x),y)

151

-Tsem(pr38 : ident x exp x exp — ident) = (x, y, z) -* x

hem(pr39 • ident x exp x exp — exp) = (x, y,z)^ y

Isem(pr4o - ident x exp x exp - • exp) = (x, y, z) — 2

/sem((«i// o <pr38,pr39),pr4o) : ident x exp x exp -» exp x exp) =

(x, y, z) — (ISem(call)(x, y), z)

Isem((pr38,pr39) • ident x exp x exp -> ident x exp) = (x, y, 2) - • (x, y)

J5ern((pr39,pr4o) : ident x exp X exp -» ident x exp) = (x, y, z) -* (y, z)

Isemdprx, replace o (pr39,pr4o)) : ident x exp x exp -• ident x exp)

= (x, y, z) — (x, Isem(replace)(y, z))

/Sem(pri9 : exp x exp x exp x exp -» exp) = (o, b, c,d)^> a

Isem(pr20 : exp x exp x exp x exp — exp) = (a, b, c,d)->b

Isem(pr2i : exp x exp x exp x exp -• exp) = (a,b,c,d)-*c

/Sem(pr22 : exp x exp x exp x exp -» exp) = (a ,b , c , d)^d

Isem((if ° (pn», ^20,^21),^22) : exp x exp x exp x exp — exp x exp)

= M , C , d) - + (J s e m (« /) K M , d)

/sem(((,)o (pr19,pr2o),pr2i,pr22) : exp x exp x exp x exp - • exp x exp)

= (a, &,C,d)-+(/Sem((,))(<*, &),C,d)

/5«n(Oww,prao) : exp x exp x exp x exp -* exp x exp) = (a, 6, c,d) -• (a, 6)

/sem((pn9,pr22) : exp x exp x exp x exp -• exp x exp) = (a, 6, c, d) — (a, d)

Isem{(pr20,pr22> : exp x exp x exp x exp -* exp x exp) = (a, 6, c,d) -f (6, d)

/sem«P»-2i,pr22) : exp x exp x exp x exp — exp x exp) = (a, 6, c, d) -» (c, d)

/sem((pri9,pr20,pr2i) : exp x exp x exp x exp - exp x exp x exp)

= (a,6,c,d)-+(a,6,c)

Isem({replace o (pr19,pr22), rep/ace o (pr2o,pr22), replace o (pr2i,pr32))

: exp x exp x exp x exp -*• exp x exp x exp)

= (a, b, c, d) - • (Jstm(rep/«*)(«> d), /Sem(rep/ace)(6, d), /Sern(repface)(c, d))

152

hem(pri6 : rium x exp X exp -» num) = (x, y, z) -> x

hem{pri7 : num x exp x exp — exp) = (x, y,z)-> y

hem{pri8 ' num x exp x exp — exp) = (x, y,z)-* z

hem(is-num ° zero x ideXp x idexp : num x exp x exp —• exp x exp x exp)

= (z, y, z) — (7sCm(is-num)(J5cm(2:ero)(x)), y, z)

/5em(t*-num o suce x idtXp x *dcrp : num x exp x exp —> exp x exp x exp)

= (x, y, 2) — (/5cm(^-num)(/5cm(succ)(x)), y, 2)

hem(pr3o ' ident x num x exp x decs —• ident) = (a,b,c,d) —• a

hem(pr3i : ident x num x exp x decs —• num) = (a,6,c, d) —> 6

hem{prz2 • «dent x num x exp x decs —> exp) = (a, 6, c, d) -* c

hem(prz3 : ident x num x exp x decs —• decs) = (a,6,c,d) —• d

hem(idident x ^ro x idcrp x idrfCCj : ident x num x exp x decs

—• ident x num x exp x decs)

= (a,6,c,d) — (a,0,c,d)

hem(idident x suce x ideXp x id decs : ident x num x exp x decs

—> ident x num x exp x decs)

= (a, 6, c, d) -+ (a, 6 + 1, c, d)

Jsem((1^30^33) - ident x num x exp x decs —• ident x decs)

= (a ,6 , c ,d)^ (a,d)

hemifetch : ident x decs —• exp) = /

where /(x,empty) = undef

f(x,= ; (y ,e ,d)) = hem(get)(x, hem(same)(x, y), e, d)

hem(get : ident x num x exp x decs —• exp) = /

where / (x ,0 ,e ,d) = e

/ (x , x + l ,e ,d) = hem{fetch)(x,d)

153

/Sem(P'"23 : ident x ident x exp x decs —> ident) = (a,6,c,d) ->• a

Isem{Pr24 '• ident x ident x exp x decs -+ ident) = (a,b,c,d) -* b

ISem(pr25 • ident x ident x exp x decs -+ exp) = (a,6,c,d) -»• c

/Sem(pr26 : ident x ident x exp x decs -+ decs) = (a,6,c,d)-* d

IsemiiP*,24,P',25,pr26) : «dent x ident x exp x decs -> ident x exp x decs)

= (a,6,c,d)-> (6,c,d)

/5em((P',23,=;0(PT'24,pr25,pr26)) : ident x ident x exp x decs -• ident x exp x decs)

= (a ,6 ,c ,d)-*(a ,= ; (6 ,c ,d))

/sem«P'"23,P',24) : ident x ident x exp x decs - • ident x ident) = (a,b,c,d) - • (0,6)

/sem(*<"ne ° (Pr23,Pr24) : «dent x ident x exp x decs -»• num)

= (a, 6, c,d) - • Isem{same)(a, b)

Isem((pr23,same o (pr23,pr24),pr25,pr26) : ident x ident x exp x decs

— ident x num x exp x decs) = (a,6,c,d)-> (a,Isem(same)(a,b),c,d)

/sem(pr43 : T x decs ^ T) = (x , y) - x

Isem(pr44 • T x decs -» decs) = (x, y) - • y

/Sem(disposeTx(i e„ : T x decs - T) = (x, y) - 0

Isemiarg x idieM : T x decs -f exp x decs) = (x, y) — (arg, y)

JS e m(unde/ x W^e. : T x decs -» exp x decs) = (x, y) -» (undef, y)

ISem(PUS ' num x <* C C 5 —" "« m) = (x,y) —• X

/5 e m(pr4 6 : num x decs -»• decs) = (x, y)-> y

ISem(is-numx idiec, : num x decs -* exp x decs) = (x,y) -+ (is_num(x),y)

154

hem{pU7 : exp x decs -+ exp) = (x, y) - • x

hem(pr48 ' exp x decs -> decs) = (x, y) - • y

hemifst x iddecs '• num x decs -* exp x decs) = (x,y) — (hem(fst)(x),y)

hem{snd x iddecs - rxum x decs -• exp x decs) = (x,y) -• (/sem(srcd)(x),y)

hem(apply : exp x decs -+ exp) = /

where /(arg. d) = arg

/(undef, d) = undef

/(is-num(x),d) = isjium(x)

/ (f s t (x) , d) = /S e m(/st)(/(x,d))

/ (snd(x) ,d) = ISem(snd)(f(x,d))

/ ((x , y) , d) = /sem((,))(/(x,d),/(y,d))

/ (« (x , y) , d) = /sem(=)(/(x,d),/(y,d))

/ (i f (x , y,z),d) = f(ISem(if)(f(x,d),y,z).d)

/ (c a l l (i , e) ,d) = f(ISem(replace)(ISem{fetch)(i,d),f(e,d)),d)

Isem(pr49 '• exp x exp x decs —•• exp) = (x. y.z) -* x

Isem{prso : exp x exp x decs -+ exp) = (x. y.z)-+ y

/sem(pr5i : exp x exp x decs —•• decs) = (x ,y . z) -* z

Isem{{(,)° (pr49,pr5o),pr5i) : exp x exp x exp -+ exp x decs)

= (x ,y .2)^(J S e m ((,)) (x ,y) , z)

Isem((= ° {pr 49, Prso)*pr 51) : exp x exp x exp - • exp x decs)

= (x , y , z) ^ (/ 5 e m (=) (x , y) , 2)

Isem((apply o (pr49.pr5i), appty o (p^scP^si)) : exp x exp x decs -> exp x exp)

= (x, y, 2) -<• (Isem(apply)(x, z), Isem(apply){y, *))

Isemdreplace o (pr49,pr5o),pr5i) : exp x exp x decs -»• exp x decs)

= (x,y,z) — (Isem{replace)(x,y),z)

Isem((pr49,prw) : exp x exp x decs -• exp x exp) = (x, y, z) -* (x, y)

/sem((p»"495pr5i) : exp x exp x decs -* exp x decs) = (x, y, 2) -+ (x, z)

Isem{{prso,prs\) : exp x exp x decs -> exp x decs) = (x, y, 2) - • (y, 2)

Isem((apply o (pr49,prsi), app/y © (pr5o,pr5i)) : exp x exp x decs -> exp x exp)

= (x,y,z) -» (Isem(apply)(x,z),ISem(apply)(y,z))

155

hem(prs2 : exp x exp x exp x decs -> exp) = (a. 6. c,d) — a

/sCm(p^53 : exp x exp x exp x decs -• exp) = (a. 6. c,d) -> 6

hemipr54 - exp x exp x exp x decs -+ exp) = (a. 6. c, d) -+ c

hem(pr55 ' exp x exp x exp x decs -• decs) = (a,6,c,d)-+ d

hem{(if ° (pr52,pr53,pr54),pr55) : exp x exp x decs — exp x decs)

= (a ,6 ,c ,d)- (/ 5 c T „(i /) (a ,6 ,c) ,d)

hem((apply o (prb2,prb5),pr53,pr54,pr55) : exp x exp x exp x decs

-» exp x exp x exp x decs)

= (a, 6, c, d) - • (he-i(apply)(a, d), b, c, d)

hem((pr52,pr53,pr54) : exp x exp x exp x decs — exp x exp x exp)

= (a,6,c,d) — (a,b,c)

hem((pr52,pr55) > exp x exp x exp x decs -> exp x decs) = (a, 6.c,d) — (a,d)

hem{(apply 0 (pr52,pr55),pr53,pr54,pr55) : exp x exp x exp x decs

-+ exp x exp x exp x decs)

= (a,b,c,d)-+ {he-XaPPly){a->d),b,c,d)

hem(where : exp x decs -+ prg) = hem(is){htm{apph))

hemiis'1 : prg ^ exp) = x — x

A.3 The eva/ and Zearn transformations

We begin by specifying the sketch morphism E : ToySyn -* Tby5cn which allows us to specify

the functor E* : Mod(ToySem) -> Mod{ToySyn). Using this functor we are able to define

the model E*(hem) - ToySyn - • SET and the transformations eval : hyn
 A Em(hem) and

learn : E*(hem) -» hyn-

156

À.3.1 T h e sketch morphism E : ToySyn -> Sem

E(T) = T

JE'(num) = num

E(ident) = ident

E(exp) = exp

E(ident x exp) = ident x exp

E(exp x exp) — exp x exp

E(exp x exp x exp) = exp x exp x exp

E(decs) = decs

E(exp x decs) = exp x decs

E(exp x ident x decs) = ident x exp x decs

E(prg) = prg

E(0 : T -> num) = 0

E(succ : num —• num) = suce

i:(x : T -+ ident) = x

£ (x . : ident —• ident) = x.

£(an7 : T —• exp) = arg

E(error : T —• exp) = unde/

E(isjnum : num —• exp) = is_num

E(call : ident x exp —• exp) = ca//

£(/st : exp —• exp) = /st

E(snd : exp —• exp) = snd

£ (t / : exp x exp x exp —• exp) = t/

£ (= : exp x exp -* exp) = =

E((,) : exp x exp —• exp) = (,)

£"(Prii : exp x exp -» exp) = prn

E(pri2 : exp x exp —* exp) = pri2

157

E(pri3 : exp x exp x exp - • exp) = prX3

E(pru : exp x exp x exp -> exp) = prl4

E(pris : exp x exp x exp — exp) = prXh

E(empty : T — decs) = empty

£ (= ; : ident x exp x decs -* decs) = =;

E(pr27 : ident x exp x decs —> ident) = pr27

E(pr2S : ident x exp x decs -+ ident) = pr28

E(pr29 : ident x exp x decs -* ident) = pr29

E(pr47 : exp x decs —•exp) = pr47

E(pr4S : exp x decs —•exp) = pr48

E(pr3 : ident x exp — ident) = pr3

E(pr4 : ident x exp — ident) = pr4

E (where. : exp x decs -+ prg) = where

A.3.2 The model E*(hem)

The functor Em : Mod(ToySem) — Mod(7by5yn) is defined below.

£*(M : Toy sem - SET) = M o E

E*(f:M + N) = f : E*(M) + E*(N)

From this we obtain the following définition of Em(hem) • ToySyn -> SET.

158

E'(ISem)(T)

E'(ISem)(ident)

E'(ISem)(num)

E*(ISem)(decs)

= W
= {0,1,2 , . . . }

= {0,1,2, . . . }

= UIsem(decs)n,ne {0 ,1 ,2 , . . . }

where Isem(decs)0 = {empty}

Isem(decs)n = /5 e m (decs) n _iU{=;(x ,y ,2) : (x ,y ,2)€

ISem(ident) X Isem(exp) X /Sem(decs)n_i}

E"(ISem)(ident x exp x decs) = ISem(ident) x Isem(exp) x ISem(decs)

E'(ISem)(exp) = U hem(exp)n, n € {0, 1, 2,. . .}

where Isem(exp)0 = {undef,arg} U { isjium(x) : x € /5em(num)}

/Sem(exp)n = /sem(exp)n_1U

{ f s t (x) : x € {y : y € Istm(exp)n-i A -'p(y)}}U

{ snd(x) : x £ {y : y € /semtexp),,-! A ->p(y)}}U

{ (x,y) : (x,y) € /5em(exp)„_i x /semtexpjn-iju

{ =(x ,y) , =(y,x) : (x,y) € {2 : 2 € Isem(exp)n.i A ->p(2)}x

/Sem(exp)n_1}U

{ i f (x .y .x) : (x,y,2) Ç {a : a £ Isem(exp)n-i A ->p(a)}x

ISem{exp)n-i X /sem(exp)n_i}U

{ call(i.e) : (i,e) € Is*n(ident) x /sem(exp)n_1}

Fa/se p(snd(x)) = False

True p(call(i,e)) = False

p(=(x,y))

P(arg)

p(undef)

p(is_num(x)) = True

p((.x,y)) = True

p(fst(x)) = False

E'(ISem)(exp x exp)

-EVsemXident x exp)

E*(ISem)(exp x exp x exp)

£*(/sem)(expx decs)

EVsem)(prg)

= False

p(i f (x ,y ,2)) = False

= Isem(exp) X Isem(exp)

= /sem («dent) x ISem (exp)

= ISem(exp) X Isemiexp) X Isem(exp)

= ISem (exp) X /Sem (decs)

= /Sem(exp)

^*(/5em)(x : T -> ident)

•E*(-fsem)(x-: ident -* ident)

0 f - O

x -*• x + 1

159

E'(ISem)(empty : T - decs) = 0 ~ empty

£*(Jsem)(=;: ident x exp x decs - • decs) = (x , y , x) - • » ; (x ,y ,x)

£"(/sem)0w"27 : ident x exp x decs -» ident) = (x, y, 2) -» x

£"(/sem)(p»"28 : ident x exp x decs - • exp) = (x, y,z)-^y

E'(Isem)(pr29 • ident x exp x decs -> decs) = (x, y,z)-> z

E'(ISem)(0:T->num) = 0 ~ O

E*{Jsem)(succ : num -> num) = i - » i + l

160

Em(hem)(arg:T-+exp) = 0 - arg

Em(hem)(error : T -+ exp) = 0 -» undef

Em(hem)(is-num : num —• exp) = x —• isjium(x)

Em{hem)(fst : exp — exp) = /

where / (x) = undef, x = undef

= x, x = is-num(y)

= a, x = (a,6)

= f s t (x) , otherwise

£*(/sCm)(s™* : exp — exp) = /

where / (x) = undef, x = undef

= x, x = is-num(y)

= 6, x = (a,6)

= snd(x), otherwise

E*(hem)((,)'-expx exp-* exp) = (x,y)-+ (x,y)

-E*(/sem)(=: exp x exp -> exp) = /

where / (x ,y) = is-num(/sem(eçua/)(a,6)), x = is-num(a) A y = isjium(6)

= undef, x = (a,6) V y = (c,d) V

x = undef V y = undef

= =(x,y) , otherwise

Em{hem)(if • exp x exp x exp-+exp) = /

where f(x,y,z) = undef, x = undef

= y, x = i s Jium(O)

= z, x = is-num(n + 1) V x = (a,6)

x = is-num(x + 1) V x = (a,6)

= i f (x , y , z) , otherwise

Em{hem){call : ident x exp -• exp) = (i ,x) -* c a l l (i , x)

Em(hem)(prn : exp x exp - exp) = (x,y) -> x

£*(/5em)(pr12 : exp x exp - exp) = (x, y) ^ y

E*(hem)(pr3 ' ident x exp -• ident) = (x,y) -> x

£*(/sCm)(pr4
 : W c n* x e x? -* exP) = (*' ?) ~> »

161

E'(Isem)(pri3 : erp x exp x exp ~» exp) = (x,y,z)-+ x

E'{Isem)(pri4 : exp x exp x exp -* exp) = (x,y, 2) — y

•EVsemXpris : exp x exp x exp -• exp) = (x , j / , z) - t2

£*(/semXJW47 : exp x decs -» exp) = (x, y) -* x

E*(Isem)(pr4& • exp x decs -» decs) = (x, y) -* y

E*(Isem)(where : exp x decs -• prg) = /sem(is)(/sem(appty))

162

A.3 .3 T h e eval natural transformation

evali

evalident

evalnum

eval exp

eval

eval

exp X exp

exp X exp x exp

= U
= / where / (x) = 0

/ (xy) = l + / (y)

= / where / (0) = 0

/ (succ(y)) = l + /(y)

= / where /(arg) = arg

/ (error) = undef

/(is_num(n)) = is_num(eva/Bttm(n))

/ (f s t (x)) = ISem(fst)(f(x))

/ (snd(x)) = ISem(snd)(f(x))

/ ((x , y)) = (/ (x) . / (y))

/ (= (x , y)) = /sem(=)(/(x), /(y))

/ (i f (x , y , 2)) = /Sem(t/)(/(x),/(y),/(2))

/ (c a l l (i . e)) = call(et;a/ i<ien<(i),/(e))

= (x,y)-*(evalexp(x),evalcxp(y))

= (x,y,2)-» (era/exp(x),et;a/erp(y),eva/eXp(2))

= (x, y) -* (et;fl/^eii«(x), evalexp(y)) evalidentx exp

eval idtntxtxpx decs = (x,y,z)-~ (evalident(x), evalexp(y), evalitcs(z))

evalit

eval expx decs

evalprg

= /

where /(empty) = empty

/ (s ; (x , y , 2)) = -;(evalident(x), eval eXT(y), eval decs(z))

= {x,y)-+(evalexp(x),evalexp(y))

= /

where /(where(x.y)) = ISem(apply)(evalexp(x),evaldecs(y))

163

A.3 .4 The learn transformation

learni = 1(}

learnutnt = / w h e r e / (°) = x

/ (1 + y) = x/(y)

learnnum = / where /(0) = 0

/ (1 + y) = succ(/ (y))

learntxp = / where /(arg) = arg

/(undef) = error

/(is_num(n)) = is_num(/earn„„m(n))

/ (f s t (x)) = f s t (/ (x))

/ (snd(x)) = snd(/(x))

/ ((x . y)) = (/ (x) J (y))

/ (= (x .y)) = =(/(x).f(y))

/ (i f (x , y , 2)) = i f (/ (x) , / (y) , / (2))

/ (c a l l (i . e)) = call(/earn^e n <(i),/(e))

learnexpxexp = (x,y) ^ (learnesp(x), learnexp(y))

learntxpXexpXeXp = (x,y,z)-^ (leam^x^learn^y^learn^z))

learnidentxezv = (x, y)-+(learniàerJx), learnap(y))

learnuentxerpxdecs = (x , y , z) - (learnueni(x),leamtxp(y),leamitc>(z))

learn decs — f

where /(empty) = empty

/ (* ; (x , y , 2)) = =lUearnideni(x), learntxp(y), learn*«.(*))

learntxpxdecs = (x,y)-^ {learn^x^leam^y))

learnprg = f where / (x) = where(/ecrnerp(x),empty)

A.4 A Toy datatype to represent Toy programs

The datatype is described as a pair of transformations:

encode : /syn -•• E*(Isem)

décode : E"(Isem) -* ISyn

164

such that décode o encode = l / s .

encode? = 0 *-+ (0,0)

encode^cnt = y -> (1 • /(»))

where / (x) = 0

/(xy) = l + / (y)

encodenum = y-» (2 , / (y))

where / (0) = 0

/ (succ(y)) = l + /(y)

encodedees = d—>(3,/(d))

where /(empty) = (0,0)

/ (= ; (i , e , d)) = (l,encode t^n ,xcrpx ,fcc ,(i,e,d))

encodeexp = z — (4 , / (x))

where /(arg) = (0,0)

/(error) = (0,1)

/(is_num(n)) = (l,encodenUTn(n))

/ (f s t (x)) = (2,encodecrp(x))

/ (snd(x)) = (3,6ncodecrp(x))

/ ((* . ! /)) = (4,encodecxpxerp(x,y))

/ (= (* ,y)) = (5,encodecrpxCi7>(x,y))

/ (i f (x , y , z)) = (6,encodecrpxcrpxcxp(x,y,z))

/ (c a l l (i , e)) = (7 ,encodeidentxexp{i,e))

encodeexpxexp = (*,»)-+ (5, (encode^(x), encodecrp(y)))

encode exp x exp x exp = (^»î/^)-* (6,(encade&rp(x), (encocfecxp(y), encode tXp(z))))

encodeidentxexp = (*,») — (7,(encodef-,*en,(x), encodecrp(y)))

encode identx exp X decs =

(x,y,*)-» (8,(encode,^nt(x), (encodecrp(y), encode^cs(z))))

encode «xy xdec* = (* ,») - • (9,(encodeexp(x), encode decs (y)))

encodeprg = (where(e,d)) -• (10,encode ̂ x decs (e,d))

165

décode? = ((0 , 0)) ^ - 0

decodeident = (Cl . y)) — f(y)

where / (0) = x

/ (1 + y) = x / (y)

decodenum = ((2 , y)) - » / (y)

where / (0) = 0

/ (1 + y) = s u c c (/ (y))

décode decs = ((3 , d)) - / (d)

where / ((0 , 0)) = empty

/ ((l , x)) = = ; (i , e , d)

where {i,e,d) = décodeidentx exp x decs (x)

decodetXp = (4 , x) - - / (x)

where / ((0 , 0)) = arg

/ ((0 , 1)) = error

/ ((l , n)) = is-num(decoden t m(n))

/ ((2 , x)) = f s t (décode txv{x))

/ ((3 , x)) = snd(decodecrp(x))

/ ((4 , x)) = (a ,6)

where (a, 6) = décode c r p x grp (x)

/ ((5 , x)) = = (a ,6)

where (a, b) = décode txpxcxp{x)

/ ((6 , x)) = i f (a , 6 , c)

where (a, 6) = décode tXpx exp xcxp{*)

= c a l l (i , e)

where (i,e) = décode ident xcxp(x)

= ((5,(x,y)))-^(decodeCx ï,(a:),decodeex,>(y))

= ((6 , (x ,y ,z))) -^(decode c r p (x) ,decode c i p (y) ,decode c r p (z))

= ((7 , (x ,y))) -^(decode l i c n t (x) ,decode e xp(y))

decodeuemxexpxdecs = ((8 , (x , (y ,2:)))) — (decodet<icn<(x), decodetXp{y), décode itcs{z))

décodeexpxdecs = (0 , U , î /))) ^ (decodecrp(x),dccoderfcC5(y))

/ ((7 ,¾)

décode exp x exp

décode exp x exp X exp

deCOde identx exp

décode prg
= ((1 0 , x)) - > ¥here(e ,d)

where (e,d) = décode exp x decs (*)

166

A.5 The Toy self-interpreter

A.5 .1 T h e interpréter function

This function interpréter : Isyn —• Isyn is defined as interpréter = learn o eval. This défini

tion expands to the one shown below.

interpréter^ = 1Q

interpréterident = lrSyn(ident)

interpréter num = 1/Syn(„„m)

interpréter txp = /

where / (arg) = arg

/ (e r r o r) = e r r o r

/(is_num(n)) = is_num(n)

/(fst(e)) = Ff3t..exp-.exp(f(e))

/(snd(e)) = Fsnd:exT^exV(f(e))

/((x.y)) = (f(x)J(y))
/ (* (x , y)) = F = : e ï p x e r p . - e r p (/ (x) , / (y))

/(if(x,y,2)) = Fij:exJ)Xexpxexp^exp(f(x),f(y),f(z))

/(call(i.e)) = call(i,/(e))

interpréterexpxexp = (x, y)-* (interprétertxp(x), interprétertxp(y))

interpréter exfXtxpXexp =

(x, y, 2) — (in«erpre*ereip(x), interprétertxp(y), interpréterez))

interpréter iitnixtXf = (x, y) -* (interpréteriient(x), interprétertxp(y))

interpréter iientxexpx decs -

(x,y, 2) -» (interpréter l(fen<(x), in«erpreïererp(y), i n t e r p r e t e r ^ x))

interpréter dees = f

where /(empty) = Feroj,<r.T-.,/ec,(«iipty)

/ (« ; (i , e , d)) = ir=;:,,ien<x«pxiec»-.<iee«(i,in*erpreferM7(e),/(d))

interpréter^decs = (x>») ~> (interpréter^(x), interpréteriecs(x))

interpréterpry = (where(e.d)) - • Fu,Aere:erj.x</ec«-jrï(e,d)

167

The functions used in the définition above are defined by theorem 6.1.1 and are specified

belo-RT.

Fempty.T-decs = 0 ~ empty

F=.:identxcxpxdccs^dccs = {x,y,z)^X^y\Z

Ffsucxp-.cxp(x) = error, x = error

= x, x = is-num(y)

= a, x = (a,6)

= f s t (x) , otherwise

F3nd:exp-+exp(x) = error, x = error

= x, x = is-num(y)

= 6, x = (a,6)

= f s t (x) , otherwise

JT=:cjpxcrp^crp(x,y) = isjmm(eçiia/(a,&)), x = is-num(a) A isjmm(&)

= error, x = (a,6) V y = (c,d) V

x = error V y = error

- =(x,y), otherwise

where equal(0,0) = 0

egua/(succ(x),0) = succ(O)

egtia/(0,succ(x)) = succ(O)

egtia/(succ (x) ,succ (y)) = equal(x, y)

Fif:expxexpxexp^exp(x,y,z) = error, x = error

= y x •=•- isjuum(0)

= z, x = is.num(succ(y)) V x = (a,6)

= i f (s , y , z) , otherwise

Fwhere:cxpxdecs->prg(x;y) = ^^^Favvîy,txpxdecs^exp{x, y), empty)

168

Fapply:expxdecs-+exp(zrg,d) = a r g

Fapply:expxdec3^exp(^T0T, d) = error

FaPply:expxdecs-^exp(iS-nUto(n) , d)

= is-iium(n)

Fapply\expxdecs-+exp\îs^'{e) ,d) = Ff3t:exp-*exp\Fapply:expxdcc3-+exp\e, d))

Fapply:expxdec3—*exp{811d\ej,d) = F3nd:exp —• exp(*app/y:expxdecs-*exp\e, a))

Fapply:expxdec3-+exp{(x » î/) , d) = (-fapp/y:expxdec5-»exp(£* d) $ -r app/y :expX(feca—exp(î/> d))

Fapply:expxdec3—*exp\s{x>y', ")

= F=:exp x cxp->cxp{Fapply:expxdec3-+exp{x, d), ^ apply iexp X decs—>exp[y, <*))

Fapply:expxdec3->exp(îf \X 9y 9ZJ,d)

= Fapply:expxdec3^exp*if:expXcxpxcxp—*cxp\-rapply:expxdec3--+exp\x, &), V, z), &)

Fapply:expxdec3-+exp (c a l l (ife),d)

= Fapply:expxdcc3-*cxp{Frep lace: exp x exp-+exp (vOdy, r apply:expx decs-• exp \e, a)), a)

Where ftody = FfeUh:identxdccs-+exp(i,d)

•Treplace:expx exp-+exp\ttg,T) = T

irrCp/acC:CrPxCrp-Crp(error,r) = error

Frcpiace:cxpxexp-+cxp(isjriymU) ,r) = is-aum(n)

Freplacc:expxcxp-+exp\î S t (e) , r) — T fst: exp—* exp \f replace : exp X exp—* exp \e, r))

•*replace :expx exp-• exp(SD.d(e) , r) = r snd: exp x exp —*> cxp*replace -.exp x exp —»• exp Ve, r))

f replace : exp X exp-* exp \~\x iV' ,r)

= F=:expxcxp-+cxp\Freplace:expXcxp—>cxp\x, T), -^ rep la ce : exp x exp-* exp (V, r))

* rep la ce: exp x exp—*exp\ *x *y),r)

= \Freplacc:expxexp->cxp\x, TJ ** rep lace: exp x exp-* exp \V, r)J

Frcplacc'.cxpxexp-+cxp\tt\x »y »Z',T) = Fi}=ltxpxcxp x exp-*exp\x , V , z)

Where X; = Frtplace:expXexp^exp{x,r)

V = r rep lace : exp X exp-* exp \V, T)

Z = + replace : exp X exp—> exp \z,r)

Freplace\expXexp—*cxp\t^-±{l*ej,r) = CallQt » J4 replace: exp x exp—* exp (e, r))

169

Fjetchudent x decs-*exp (x ,empty) = e r r o r

Fjetch:idcntxdecs-+ exp(x,= l (y,e,d))

= * gct:\dcntx num x exp X decs—* exp \x, * sameiident x idcnt-+num\x, y), e, d)

* getiidcntxnum x exp x decs—>cxp\x,Q, e, d) = e

* geUidentx num x exp X decs-* exp \x,SUCC (n) , €, d) = Ffetch:identx decs-* exp (x, d)

F3amc:idcntxident-+num\Q,Q) = 0

FSamc:idcntxidcnt-+num(sUCc(x),0) = SUCC(O)

F3ame:ident X ident-^num (0,SUCC (x)) = SUCC (0)

FSame:ident X ident-* nttm(sUCc(x), SUCC (y)) = Fsame:identxident-*num(x,y)

A.5.2 The rep-interpréter function

We now define the function repJnt : Em(Isem) -* £*(/sem)- This function is defined using

the functions: interpréter, décode, and encode as rep.Ànt = encode o interpréter o décode. This

définition expands to the one shown below.

170

rep.int^ - (0,0) *-• (0,0)

rep.intidtnt = (1.x) - * (l , x)

rep.intnum = (2,x) ->(2,x)

rep.intexp = (4,x) — / (x)

where / ((0 , 0)) = (0 ,0)

/ ((0 , 1)) = (0 ,1)

/ ((l , n)) = (l . n)

/ ((2 , x)) = rep_F/,<:erp_„J)(rep-in^zp(x))

/ ((3 . x)) = rep-F,nd:exp-.exp(rep.intexp(x))

/ ((4 , (5 , (x , y)))) = (4,(5,(rep_in*exj,(x),rep_inierj)(y))))

/ ((5 . (5 , (¾ . y)))) = rep.F=:e„,xerj>_exp(x,y)

/ ((6 , (6 , (1 , (y , 2))))) = rep-F, / : e x p X e r j) X e i p _ e i r p (x ,y ,2)

/ ((7 , (7. (i . e)))) = (7,(7,(i ,rep.in* e r p(e))))

r e p - i n t ^ x ^ = ((5 , (x , y))) -+ (5,(rep.in(e i p(x), rep.intexp(y)))

rep.int txpXexpx txp =

((6 , (x , (y , 2)))) - > (6,(rep_in«eip(x),(rep.intexp(y),rep-inferp(2))))

reP-*^.,fen<xexP = ((7 , (x , y))) - * (7, (repJntidtnt(x),rep.inttxp(y)))

^P-int ident xezpx decs =

(8 , (x , (y , 2))) - • (8,(repJn* l (ieBt(x),(repJnieip(y),repJn^e(:,(;:))))

rep.intdeca = (3,x) - • / (x)

where / ((0 , 0)) = r e p J ^ ^ T ^ ^ ^ O . O))

/ ((l . (8 , (i , (e , d))))) =

repJp=...identxe^xdccs~icc.(i, rep.int(e), rep.intdeea(d))

rep-int^j^dec, = (9 , (x , y)) - • O ^ r e p - i n ^ x) , r e p . i n t ^ (y))

repJntprg = (1 0 , (9 , (e , d))) — repJ,
v/ktre.txpxieet^prg(e,d)

The fonctions used in the définition above axe the transformed versions of those defined by

theorem 6.1.1 and are specified below.

rep_Femp<y:T^ee , = (0 ,0) ~ (3 . (0 ,0))

repJ,
=;..>dtntxeipxdccs-+decs = (i,e,d) - • (3 , (1 , (8 , (i , (e . r f)))))

171

rep_Ff,Ucxp^exp(x) = (4 , (0 , 1)) , x = (4 , (0 ,1))

= x, x = (4 , (l , y))

= o, x = (4 , (4 , (5 , (0 , 6))))

= (4 , (2 , x)) , otherwise

rep-F^^^x) = (4 , (0 , 1)) , x = (4 , (0 ,1))

= x, x = (4 , (l , y))

= 6, * = (4 , (4 , (5 . (0 , 6))))

= (4 , (3 , x)) , otherwise

repS=xtxpXtxp^txp(x,y)

= (4,(l,rep.eguo/(o,6))), x = (4 , (1 ,o)) A y = (4 , (1 ,6))

= (4 , (0 , 1)) , x = (4 , (4 ,0)) V y = (4 , (4 ,6)) V

x = (4 , (0 ,1)) V y = (4 , (0 , 1))

= (4 , (5 , (x , y))) , otherwise

where rep.eguo/((2 ,0) , (2 ,0)) = (2,0)

rep.eguo/((2,x+ 1),(2,0)) = (2,1)

rep.eguo/((2,0),(2,x + l)) = (2,1)

rep_eguo/((2,x+ 1) , (2 , y + 1)) = rep.eguo/(x, y)

reP-FiJ.expx exp x eij>—exp (x> Vi z)

= (4 . (0 , 1)) , x = (4 . (0 , 1))

= y, X = (4 . (1 , 0))

= z, x = (4 , (1 , y + D) V x = (4 , (4 , 0))

= (4 , (6 , (6 , (x , (y , 2))))) , otherwise

repJ^ere:e*px<<«,-We,<*) = (10 . (9 , (rep_F 4 p p / , : e x p x i e c ,_« p (x ,y) , (3 , (0 .0)))))

172

rep-FBppfr:«px&«-«*p((4. (0.0)) , d) = (4 , (0 , 0))

repJ^ o p p / y : e x p x r f e M - e x p((4,(0, l)) ,d) = (4 , (0 , 1))

repJ^a p p ,y : e x p x r f e c J - e x p((4,(l ,n)) ,d) = (4 , (l , n))

rep-Fapply.expxdec3^exp((4,(2,e)),d) = repJr
/ , , : erp-erp(repJr

opp/y:„pxdec ,_>exp(e,d))
rep-FappiV:exPxdeu-*exp((4 , (3 , e)) , d) = rep-F , n J : e r p - e r p (rep_F o p p , y : e x p x d e c J _ e x p (e , d))

reP-FopP/v:«px<ie«-.exP((4 , (4 , (5 , (x , y)))) , d)

= (4 , (4 , (rep J:,
app/y:e;cpX(ieca_ea.p(x, d), repJ*apply.expxdeca^exp(y, d))))

rep.Fopp/y:eipX(iecJ_exp((4 , (5 , (5 , (x , y)))) , d)

= rep_r _:expxerp_exp(rep_i* app/y:expXj{ecJ_e:rp(x,a), rep_ropp;y:expX(jeca_exp(y,a)J

rep_Fo p p / y : e x p X (i e C3 - e x p((4 , (6 , (6 , (x , (y , 2))))) , d)

= rep_T o p p ; y : e x p x j e C 3_ e x p (rep_F,y:erpx exp x e x p _ e r p (rep.r apply.expxdecs—>exp(X, ") , y, 2), «)

™P-F*pplviezpxdeu-*ezp((4 . (7 , (i , e))) , d)

= rep_Topp/y:expx<(ec4_>exp(rep_/' Ttplace:ezpxexp-*exp("0dy'>reP-^ apply:expxdecs-*exp\e,d)),a)

where 6ody = rep.FJtUh:idenixdec3^exp(i,d)

173

reP-f,rep/a«:erpxex7,-exp((4. (0 , 0)) , r) = r

rep-Fnplact:txpx ^ - ^ , ((4 , (0 , 1)) , 0 = (4 , (0 , 1))

rep-Fr^c^rpx^-exp^.a.n))^) = (4 , (l , n))

rep-Fnplace:expx « , - e « p ((4 . (2 . e)) , r)

reP-Ffst;txp-~czp(reP-Frephce:exp X «p-erp (e , 0)

rep-F«p/ace:erpXexp_exp((4,(3,e)),r)

reP-T ind-.cxpxexp—cxpKTep-ï replacc:erpXerp-+crp\ei r))

rep-F„p/ace:erpXexp_erp((4,(5,(5,(x,y)))),r)

= repJ? _.e x p x e x p_> e x p(rep_r rep/aee:expXerp^erp(X»0» *«p'«ee:expXe*p-»erp(y»r))

r e p - F „ p , a e e : e x p x e x p _ e r p ((4 , (4 , (5 , (x , y)))) , r)

= (rep.r rep/ace:erpxexp—"•exp(X,r),rep_r r e p /a c e : e x p x erp—•erpli'' r) '

r ep-F r e p / a « : e x p x e r p _ e ; r p ((4 , (6 , (6 , (x , (y ,2))))) , r)

= rep_Fi/:expXexpxexp^erp(x',y',2')

where x' = rep_Frep,Bce:expxexp^eX|,(x,r)

» = reP-*1 replace:exp x exp•~>cxp\y,>T)

Z = ^P—^ rep/ace:erpxexp—•expl'2'r)

rep-Frep,ace:expxexp_exF((4,(7,(7,(i,e)))),r) =

(4,(7,(7,(i ,rep_F„p / a c e : e x p x e x p_ e x p(e ,r)))))

rep-F/e<cA:ieen<Xtt,c^eIp(x,(3,(Q,0))) = (4 , (0 ,1))

rep-F/^ci^entx^c-e^CxiO.d^S^y^e.d))))))

= rep_r^el:ja
,
en<Xn1,mxexpx,jec,,_»exp(x, rep_r.a m e : ,^ e n < x^ e n <_> n t t m(x,yj,e,a)

reP-Fgef.identxnnmxcxpxdccs—e*p(x»(l . 0) , e, d) = e

reP-Fjet:i(<en<xn«mxerpx<iec»-exp(x»(l.n+ D , e , d) = rep.Ffetch.identxdtel>^exp(x,d)

rep-Ftamt:identxident^n%n((lt 0) , (1 . 0)) = (1 , 0)

»«pJ'. .m.:««.«xM«.«-. . .m((l .* + l) .C l .<») ~ U » l >

«pJ , .«me:«e. txW«H-.« .m((1.0) .<l .* + 1>) = C1»1)

«P-fj.meM.'eiHxMeiU—a.roU1»1 + 1) , (1 , y + D) = repJ? tamt.idtnt xjtfen*-n«m (x, y)

174

A.6 The self-interpreter program

The rep .interpréter function is implemented in Toy by the program shown below. Note that

we shall use numerical characters to represent numbers rather than the Toy représentation

using suce and 0. For the sake of readability we also use meaningful identifiers rather than

strings of x as the Toy syntax spécifies.

•where(arg) where •where - (1 0 , (9 , (• a p p l y (a r g) , (3 , (0 , 0))))) ;

•apply = i f f s t (f s t (arg)) • 4 then

i f f s t (s n d (f s t (a r g))) * 0 then f s t (arg)

else i f f s t (snd(f s t (arg))) = 1 then f s t (arg)

else i f f s t (snd(f s t (arg))) = 2 then

*fst(*apply((snd(fst(arg)) ,snd(arg)))

else i f f s t (snd(f s t (arg))) * 3 then

*snd(*apply((snd(fst(arg)),snd(arg)))

else i f f s t (snd(f s t (arg))) = 4 then

(4 , (4 , (*apply((f s t (snd(snd(snd(fs t (arg))))) , snd(arg))) ,

*apply((snd(snd(snd(snd(fst(arg))))) ,snd(arg))))))

else i f f s t (snd(f s t (arg))) = 5 then

*=(*apply((fs t (snd(snd(snd(fst (arg))))) , snd(arg))) ,

•apply((snd(snd(snd(snd(fst(arg))))) ,snd(arg))))

else i f f s t (snd(f s t (arg))) « 6 then

•apply((^ i f ((•apply((f s t (snd(snd(snd(fs t (arg))))) , snd(arg))) ,

(f s t (snd(snd(snd(snd(fs t (arg)))))) ,

snd(snd(snd(snd(snd(fst (arg))))))))) ,

snd(arg)))

else i f f s t (snd(f s t (arg))) * 7 then

•apply((•rep lace((• fe tch(f s t (snd(snd(f s t (arg))))) , snd(arg))) ,

•apply((snd(snd(snd(fst(arg)))) , snd(arg)))))

else error

e l se error;

175

*fst = if fst(arg) = 4 then

if fst(snd(arg)) = 0 then

if sdn(snd(arg)) = 1 then (4,(0,1))

else error

else if fst(snd(arg)) * 1 then arg

else if fst(snd(arg)) = 4 then fst(snd(snd(snd(arg))))

else (4,(2,arg))

else (4,(2,arg));

•snd = if fst(arg) • 4 then

if fst(snd(arg)) = 0 then

if sdn(snd(arg)) • 1 then (4,(0,1))

else error

else if fst(snd(arg)) « 1 then arg

else if fst(snd(arg)) • 4 then snd(snd(snd(snd(arg))))

else (4,(3,arg))

else (4,(3,arg));

*= = if *and((fst(fst(arg))=4,fst(snd(arg))*4)) then

if *and((fst(snd(fst(arg)))*l,fst(snd(snd(arg)))=1)) then

(4,(l,*rep.equal((snd(snd(fst(arg))),snd(snd(snd(arg)))))))

else if *or((*and((fst(snd(fst(arg)))*4.fat(snd(snd(arg)))=4)),

*and((*aud((fst(snd(fst(arg)))-0,

snd(snd(fst(arg)))*l)),

«•and((fst(snd(snd(arg)))-0,

snd(snd(snd(arg)))=l)))))) then

(4.(0.1))

else (4,(5,arg))

else error;

•rep.equal « if »and((fst(fst(arg))=2,fst(snd(arg))=2)) then

(2,snd(fst(arg))»snd(snd(arg)))

176

else error;

•if = if fst(fst(arg)) = 4 then

if •and((fst(snd(fst(arg)))=0,snd(snd(fst(arg)))=l)) then

(4,(0,1))

else if •and((fst(snd(fst(arg)))=l,snd(snd(fst(arg)))=0)) then

fst(snd(arg))

else if •or((fst(snd(fst(arg)))=1,fst(snd(fst(arg)))=4)) then

snd(snd(arg))

else (4,(6,(6,(fst(arg),(fst(snd(arg)),snd(snd(arg)))))))

else (4,(6,(6,(fst(arg),(fst(snd(arg)),snd(snd(arg)))))));

•replace = if fst(fst(arg)) = 4 then

if fst(snd(fst(arg))) = 0 then

if snd(snd(fst(arg))) = 0 then snd(arg)

else (4,(0,1))

else if fst(snd(fst(arg))) = 1 then fst (arg)

else if fst(snd(fst(arg))) = 2 then

•fst(•replace((snd(snd(fst(arg))),snd(arg))))

else if fst(snd(fst(arg))) = 3 then

•snd(•replace((snd(snd(fst(arg))),snd(arg))))

else if fst(snd(fst(arg))) = 5 then

•=((•replace((fst(snd(snd(snd(fst(arg))))),snd(arg))),

•replace((snd(snd(snd(snd(fst(arg))))),snd(arg)))))

else if fst(snd(fst(arg))) = 4 then

(•replace((fst(snd(snd(snd(fst(arg))))),snd(arg))),

•replace((snd(snd(snd(snd(fst(arg))))),snd(arg))))

else if fst(snd(fst(arg))) = 6 then

•if((•replace((fst(snd(snd(snd(fst(arg))))),snd(arg))),

(•replace((fst(snd(snd(snd(snd(fst(arg)))))),

snd(arg))),

•replace((snd(snd(snd(snd(snd(fst(arg)))))),

snd(arg))))))

177

else if fst(snd(fst(arg))) = 7 theD

(4,(7,(7,(fst(snd(snd(snd(fst(arg))))),

•replace((snd(snd(snd(snd(fst(arg))))),

snd(arg)))))));

•fetch = if fst(snd(arg)) = 3 then

if fst(snd(snd(arg))) = 0 then (4,(0,1))

else if fst(snd(snd(arg))) = 1 then

•get((fst(arg),

(•same((fst(arg),fst(snd(snd(snd(snd(arg))))))),

(fst(snd(snd(snd(snd(snd(arg)))))),

snd(snd(snd(snd(snd(snd(arg))))))))))

else error;

else error;

•get = if fst(fst(snd(arg))) = 1 then

if snd(fst(snd(srg))) = 0 then fst(snd(snd(arg)))

else •fetch((fst(arg),snd(snd(snd(arg)))))

else error;

•same = if •and((fst(fst(arg))=l,fst(snd(arg))=D) then

(l,snd(fst(arg))=snd(snd(arg)))

else error;

•and = if fst(arg) then snd(arg) else fst(arg);

•or = if fst(arg) then fst(arg) else snd(arg);

178

