
DIAGRAMMES

MARIE BJERRUM
A Sketch theoretical survey Towards a typology of
mathematical structures
Diagrammes, tome 61-62 (2009), p. 1-63
<http://www.numdam.org/item?id=DIA_2009__61-62__1_0>

© Université Paris 7, UER math., 2009, tous droits réservés.

L’accès aux archives de la revue « Diagrammes » implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impres-
sion systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=DIA_2009__61-62__1_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


A Sketch theoretical survey
Towards a typology of mathematical structures

Marie Bjerrum
April 2005.

SI0

L

��

KK

b∗

zz

lmmnoop
q

q
r

s
t

t
u

}}

�
�

�
�

�
�

�
�

�
�

~
}

}
|

{

��

�
�

�








�
�

�
�

�
�

�
�

�










	

	
	

	
�

�
�

�
�

SI1

C

��

q10
qq

uu

t
t

s
r

q
qpoonmmlk

}}

�
�

�
�

�
�

�
�

�
�

~
}

}
|

{

SIK2

β∗

GG

α∗

@@ii

J
J

K
L

M
MNOPPQQRS

q2u

mm

uu

t
t

s
r

q
qpoonmmlk

SIK3

β′∗

XX

V

��

[[

C
B

A
A

@
?

>
=

=
<

;
:

:
9

8

dd

RQQPPON
M

M
L

K
J

J
I

mm cbba``_^^]]\[[

SIK4

τ∗

KK t∗

\\

[[

0
0

0
1

1
1

1
1

2
2

2
2

3
3

3
3

3
4

4
4

4
5

5
5

5
6

6
6

6
7

[[

C
B

A
A

@
?

>
=

=
<

;
:

:
9

8

dd

RQQPPON
M

M
L

K
J

J
I

S1

id

��
S2

d

WW

c

GG

j2

��

j1

��
S3

p2

GG

p1

WW

S4

w1

WW

w2

GG

k1

^^

k2

@@
q1

BB

q2

>>

q3

;;

S0I

L+

��

KK

b∗

$$

R Q Q P P O N M
M

L
K

J
J

I

!!

8
9

:
:

;
<

=
=

>
?

@
A

A
B

C

��

0
0

0
1

1
1

1
1

2
2

2
2

3
3

3
3

3
4

4
4

4
5

5
5

5
6

6
6

6
7

S1I

C+

��

q10
--

))

J
J

K
L

M
M

N O P P Q Q R S

!!

8
9

:
:

;
<

=
=

>
?

@
A

A
B

C

SK
op
2 I

β∗

GG

α∗

@@ 55

t
t

s
r

q
q

p o o n m m l k

q2u 11

))

J
J

K
L

M
M

N O P P Q Q R S
SK

op
3 I

β′∗

FF

V +

��

CC

{
|

}
}

~
�

�
�

�
�

�
�

�
�

�

::

l m m n o o p q
q

r
s

t
t

u

11[ \ ] ] ^ ^ _ ` ` a b b c c

SK
op
4 I

τ∗

KK
t∗

BB

CC

�
�








�

�
�

�
�

�
�

�
�











	
	

	
	

�
�

�
�

�

CC

{
|

}
}

~
�

�
�

�
�

�
�

�
�

�

::

l m m n o o p q
q

r
s

t
t

u

Masters Thesis for the Cand. Scient. degree in mathematics at the
University of Copenhagen.



Abstract
We look at the advantages of adopting the sketch theoretical point of view when con-
sidering mathematical structures, i.e. when one considers mathematical theories as
categories of models of a sketch and models as certain functors. We hereby get a for-
malization of the notion of a type of mathematical structure/theory, as well as a direct
interplay between the sketch describing a theory (syntax) and the properties described
(semantic). This leads to a fruitful application of the generalized associated sheaf theo-
rem for certain strict types suggesting a general diagrammatic method for proving and
discriminating, treating proofs as syntactic factorizations in the category of sketches,
and discrimination as semantic investigations by comparison of model categories.
Using this application we then work out two examples of how to typify classical math-
ematical structures according to where and how they are defined.
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2 Introduction

The general motivation for such work, as here presented, has already been elegantly phrased
by a great name in the history of mathematics, David Hilbert (1862-1943):

The question is urged upon us whether mathematics is doomed to the fate of
those other sciences that have split up into several branches, whose representa-
tives scarcely understand one another and whose connections become ever more
loose. I do not believe this nor wish it. Mathematical science is in my opinion
an indivisible whole, an organism whose vitality is conditioned upon the connec-
tion of its parts. For with all the variety of mathematical knowledge we are still
scaresly conscious of the similarity of the logical devises, the relationship of the
ideas in mathematical theory and the numerous analogies in its different depart-
ments. We also notice that, the farther a mathematical theory is developed, the
more harmoniously and uniformly does its construction proceed, and unsuspected
relations are disclosed between hitherto separate branches of the science.[...]Every
real advance [in mathematical science] goes hand in hand with the invention of
sharper tools and simpler methods which at the same time assist in understanding
earlier theories and cast aside older more complicated developments.

(Quoted from ”Mathematiche probleme”(1901), English translation BAMS 8,p. 478-79, by
M.W. Newson).

Category theory, including sketch theory, provides a natural language (a logic (Guitart, R.
[1981])) able to analyse contemporary mathematical work at an abstract level; taken out of
specific contexts. Thus, at least some part of mathematical activity struggles against the
above feared (and horrible) fate.
This thesis looks at how sketches, in describing mathematical theories/structures, can give
direct diagrammatic ways of formulating usual mathematical problems on an abstract cate-
gorical level, and how this method makes it possible to consider different aspects of structures
within a general frame (a category), using one and same (non set-theoretical) diagrammatic
language (category theory).
Now why is this interesting? I here present seven mottos, that could tempt someone to adopt
the sketch theoretical point of view:

1 Sketches furnish a nice and direct way of formalizing the notion of a type of mathematical
theory/structure.

2 Sketching is proving and proving is sketching; proofs become objects in a category,
simply defined by their relations to other objects. (Coppey, L. [1992])

3 Everything usually described by first order logic, can be described, more directly in
terms of limits and co-limits, i.e. every first order theory is sketchable. (Guitart, R.,
Lair, C [1982])

4 We can apply the generalized associated sheaf theorem and profit from universal prop-
erties to talk about freely generated theories of a sketch and suggest general methods
for proving and discriminating.
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5 The application of the generalized associated sheaf theorem then also leads to joining
the MacLane motto that ”everything is Kan extensions”.

6 By sketches, we get a double usage of universal properties: to study syntactic questions
when specifying theories, but at the same time, to determine necessary semantics. Hence
syntax and semantics becomes of the same, purely diagrammatic, nature.

7 Describing structures by sketches makes possible a formalization of how to discriminate
between different ways of defining the same concept, avoiding false confusions of set
theoretical definitions. (Coppey, L. [1992])

These mottos will all more or less directly find support in this thesis.
Now the more precise goal is to present a formalization of the notion theoretical type and then
lay forth a basic understanding of what role these types play in the on the one hand syntac-
tic and on the other semantic aspects of considering mathematical theories, emphasizing the
double aspect of types in proving and discriminating.
The presentation is followed by two examples, the first one a rather simple example concern-
ing two ways of sketching a field and the second example concerns two sketches of monoids.
They are both examples of two different sketches with the same set theoretical models and
we are then interested in finding out in what type of categories the two given sketches have
the same models (equivalent model categories). This question turns out to have many faces,
touching all of the above mottos. But our main objective is again two see how syntax and
semantic become two sides of the same diagrammatic procedure.

Working out these two examples according to ideas indicated by René Guitart (partly based
on the article Coppey, L. [1992]) has been my method of conduction. So the reader is invited
to think of this thesis as an introduction to a general formalization of what mathematicians
mean when they use the concept a type of structure, by working out two examples suggested
in different articles (Coppey, L. [1992], Guitart, R. [1988]).

The main content consists of: an introduction of a category of sketches (section 5.) that
will serve as the main frame, wherein the notion theoretical type is to be defined. Then we
look at the syntax and semantic of sketches by discussing proving and discriminating in the
the category of sketches limited to cases where we can apply the generalized associated sheaf
theorem, which then leads to a general problem (section 6.). At last we present the two
examples (section 7.) following this general problem.

3 Preliminaries

The reader is supposed to be familiar with category theory.
But since the style of this paper is very much influenced by the french school, I nevertheless,
choose to briefly introduce some absolute basic concepts.

3.1 Categories, Functors, natural transformations.

•Oriented Graph: We say that S = (ObS , ArS , c, d, i) is an oriented graph if and only if:

- ObS is a set (set of objects).
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- ArS is a set (set of arrows) and we write S(A,B) or Hom(A,B) for the subset of arrows
from A to B.

- c : ArS // ObS is the map sending an arrow to its target (co-domain).

- d : ArS // ObS is the map sending an arrow to its source (domain).

- and id : ObS // ArS is a map that sends an object C ∈ S to its corresponding
identity arrow 1C , such that:

ObS id
// ArS :

c

ii

d
uu

c · id = d · id = 1ObS .

•Multiplicative graph: S · = (S, CoS , k) is said to be a multiplicative graph, if and only if

- S is an oriented graph,

- CoS is the set of composable pairs of arrows ( i.e. a subset of all pairs of consecutive
arrows {(g, f) ∈ ArS ×ArS | d(g) = c(f)}),

- k : CoS // ArS is a partial composition (multiplication) of arrows k(g, f) = g ◦ f ,

given subjected to the following axioms:

Unitarity: ∀g ∈ ArS : (id · c(g), g), (g, id · d(g)) ∈ CoS
et k(id · c(g), g) = k(g, id · d(g)) = g

Position: ∀(g, f) ∈ CoS : d(g ◦ f) = d(f), c(g ◦ f) = c(g)

i.e. an oriented graph with a table of equations concerning a partial composition.

•Category : A category C is a multiplicative graph where CoC is the set of all consecutive
arrows and where the composition k is associative.
The notion ”category” makes sense even if Ob et Ar are not sets. But then one of course
has to be conscious of all use of ordinary set theory. In this thesis there will be certain size
limitations, which will be discussed when appropriate.

•Functor : If D and C are multiplicative graphs, a (covariant) functor F : C // D is a
pair of applications F = (F1, F0): F0 : ObC // ObD et F1 : ArC // ArD such that:

∀(g, f) ∈ CoC : (F (g), F (f)) ∈ CoD, F (g ◦f) = F (g)◦F (f); ∀C ∈ ObC : F (1C) = 1F (C)

noting (abusively) F in stead of F0 or F1.

•Natural transformation: Take functors F,G : C // D , then a natural transformation

τ : F
. // G is defined by a family of maps ( τC : F (C) // G(C) )C∈ObC such that for

all arrows f : C // D the following diagram commute:

F (C)
τC //

F (f)

��

G(C)

G(f)
��

F (D) τD
// G(D)
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If for all C ∈ C τC is an isomorphism, we say that F and G are naturally isomorphic and we
write F ∼= G. We say that two categories C and D are equivalent, and write C ∼ D, if there
exist functors F : C // D and G : D // C such that F ◦G ∼= 1D, G ◦ F ∼= 1C

• The join of the graph K with the graph I, is denoted IK and contains:
-two subgraphs (supposed disjoint) isomorphic to I and K (and hence identified with these).
-In addition, for all pairs (I,K) ∈ ObI × ObK there is an arrow λKI : K // I such that
j · λKI = λKI′ for all K ∈ ObK and for all j : I // I ′ ∈ ArI and such that λK′I · κ = λKI

for all I ∈ ObI and for all κ : K // K ′ ∈ ArK.

So if for example I = I
i
''
I ′ and K = K

κ ))
K ′ then we get IK as the multiplicative

graph:

IK
I I

i ��

K
κ
��

λKI
rr

λKI′qq

K

I ′ K ′

λK′I′

ll

λK′I
nn

.

. .

where all composites commute.
For a graph-homomorphism f : K // K we associate the ”natural” graph-homomorphism

f : IK // IK′ (without changing its name) defined by:

f(i) = i for i ∈ ArI
f(κ) = f(κ) for κ ∈ ArK ( where the second f is f : K // K′ )

f(λKI) = λf(K)I for I ∈ ObI , K ∈ ObK.

We will also use the notation I− for the joint graph I1 (1 is the graph of one object and
only the identity arrow) and the notation I+ for the joint graph 1I ,

·

��========

����������
·

I

@@�������� I

^^========

i.e. just joining a vertex to a graph I, such that I becomes the basis of a cone or co-cone.

3.2 Projective and inductive limits, or limits and co-limits.

Let I be an oriented graph, C a category and ϕ : I // C a functor (between oriented
graphs).
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•Projective cones or just ”cones”: a projective cone (in C) with basis ϕ is a couple (A, q)
consisting of an object A from C and a family ( qI : A // ϕ(I) )I∈ObI of arrows in C, satis-
fying

∀ i : I // J ∈ ArI : ϕ(i) ◦ qI = qJ

i.e. all triangles in the cone commute. If I = { I
i
((
J }, we can illustrate this as follows:

I A

qJ

��

qI

��

C

I
((
J

ϕ

##

ϕ(I) ϕ(i)
,,
ϕ(J) ϕ(I)

Let Λϕ denote the set of projective cones (in C with basis ϕ).

•Inductive cones or ”co-cones”: it is the dual notion, i.e. (B, ι) is a pair consisting of an
object B and a family ( ιI : ϕ(I) // B )I∈ObI such that ∀ i : I // J ∈ ArI , we have
ιJ ◦ ϕ(i) = ιI and analogous we note Vϕ the set of co-cones with basis ϕ.

•Limits: A cone (P, p) with basis ϕ is said to be a limiting cone (or limit of ϕ), written
lim←−ϕ, if it fulfils the following universal property :

∀(A, q) ∈ Λϕ ∃! h : A // P : (A, q) = (P, p) ◦ h; P

pI

��

pJ

��

A
∃!h

tt X_f

qI

��

{
�

�
�





�

qJ

��

%

�

�

ϕ(I)
ϕ(i)
,,
ϕ(J)

where (P, p) ◦ h is to be understood as the cone (A, p ◦ h) obtained by composing all arrows
in p with h.
Likewise (dually) (S, s) is said to be a limiting co-cone with basis ϕ, written lim−→ϕ, if it fulfils
the following universal property: ∀(B, ι) ∈ Vϕ∃! k : S // B : (B, ι) = k ◦ (S, s).

• If lim←−ϕ, [resp. lim−→ϕ] exist, for all ϕ : I // C , we say that C has I-limits [resp. I-
co-limits].
• If C has I-limits [resp. I-co-limits] and if for all ϕ : I // C there has been chosen a limit
l←−(ϕ) [resp. l−→(ϕ)] of ϕ, we say that (C, l←−) [resp. (C, l−→)] is a category with chosen I-limits

[resp. I-co-limits].
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4 Sketches

We here introduce the basic notions concerning sketches.

• a projective sketch is a pair (S,P) with S a multiplicative graph, called the underlying
graph of the sketch, and P is a set of cones in S, called the set of distinguished cones.

• A mixed sketch is then a triple (S,P, I) with a supplementary set I of distinguished co-cones.

•Sketch Morphism: a sketch morphism s : σ // σ′ is a graph morphism such that any
distinguished cone (co-cone) in σ is mapped to a distinguished cone (co-cone) in σ′. i.e. if a
distinguished cone c in σ has basis B : I // σ then s(c) will be a distinguished cone with
basis s ◦B.

4.1 Models and sketchability

We here introduce the sketch theoretical notion of a model and how a sketch then can be
viewed as describing/sketching a theory.

• A model of a sketch σ = (S,P, I) (I perhaps empty), is a functor R : S // C from
the underlying graph to a category C that transforms all distinguished cones and co-cones in
σ into limits and co-limits in C.
• A category C is called sketchable in a category D if there exist a sketch σ, such that we
have an equivalence of categories

Mod(σ,D) ∼ C.

where Mod(σ,D) is the category with objects all models σ // D and arrows all natural
transformations beween models, we then view C as the theory sketched by σ in D.

•For a sketch morphism t : σ → σ′ we will call forgetful functor the corresponding func-
tor between model categories:

Ut : Mod(σ′,Set) //Mod(σ, Set)

R
� // R ◦ t

Generalised Associated Sheaf Theorem
For applications later we briefly state a general result concerning the existence of a left adjoint
to a forgetful functor:

Generalised associated sheaf theorem: Given a sketch morphism t : σ → σ′ be-
tween two projective sketches, then if σ′ is small the forgetful functor Ut has a left
adjoint.

�

There is also a version of this result called Kennison’s Theorem (stated in Barr and Wells’s
”Toposes, Triples and Theories”, Springer 1985). The version here stated is from the french
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school of Charles Ehresmann and his students and the proof goes by a transfinite induction
using Kan extensions.

The way of really understanding what a sketch is, is by sketching and sketching is what
this thesis is all about. We start with some quite elementary examples which are also indis-
pensable later on.

4.2 Sketching

Sketch of multiplicative graphs: when we consider the definition of a multiplicative
graph, we see that there are the following four sets in play: objects, arrows, consecutive
arrows and composable arrows, which indicate that a graphic version of ”what a graph is” is
to be modelled in Set and should contain four Objects: S1 to be realized as the set of objects,
S2 to be realized as the set of arrows between these as well as the identity arrows. This is
the oriented graph part which can be sketched as follows:

S1
id // S2

d
ww

c

gg d · id = c · id = 1S1 .

Then we add an object S3 to be realized as the set of all consecutive arrows, the subset of all
pairs of arrows (f, g) where the domain of f matches the co-domain of g. We get

S1
id // S2

d
ww

c

gg S3

p1

ww

p2

gg

where p1, p2 will be the restrictions of the projections from the arrow product. If S3 plays the
wanted role, it should when modelled, by a model with underlying multiplicative graph S,
posses the universal property that for all arrows f, g : A // ArS with d·g = c·f there exist

a unique arrow h : A // ArS ×ObS ArS such that p1h = g, p2h = f , where ArS ×ObS ArS
is to be understood as the fibered product over ObS , the pullback of d, c modelled. This
means that we need to distinguish the following cone:

S3

p1



������������

s1

��

p2

��)
)))))))))))

S2

d
��1

11111 S2

c
��

S1

s1 just naming the composites.
And at last we need an object S′3 to be realized as the subset of the object of consecutive
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arrows for which there is defined a composition. We get

S1
id // S2

d
ww

c

gg S3

p1

ww

p2

gg

S′3

p′1

CC

p′2

[[

k

OO

j

==

p1j = p′1, p2j = p′2 just further restricting. Now to make sure that S′3 is realized as a subset
of consecutive arrows, we distinguish the following cone

S′3
1S′3

���������

j

��

1S′3

��???????

S′3

j ��@@@@@@@
S′3

j��~~~~~~~

S3

meaning that j is realized as a monomorphism (injection in Set). Now the composition is
subject to some axioms (unitarity, position), giving us the need for maps j1, j2 : S2

// S3

intuitively sending an arrow to (1c(f), f) resp. (f, 1d(f)), i.e. we have equations:

p2 · j1 = 1S2 , p1 · j2 = 1S2

p1 · j1 = id · c, p2 · j2 = id · d
and then j′1, j

′
2 : S2

// S′3 : j · j′1 = j1, j · j′2 = j2

unitarity: k · j′1 = 1S2 = k · j′2
position: d · k = d · p′2 · j, c · k = c · p′1 · j.

All in all we get the underlying multiplicative graph of the sketch of multiplicative graphs:

S1
id // S2 schhsd 66

d
ww

c

gg

j′2

##

j′1

{{

j2

AA

j1

��
S3

s1

��

p2

gg

p1

ww

S′3

p′1

EE

p′2

YY

k

OO

j

FF

s′1

XX

Equations: p1 · j = p′1 c · i = d · i = 1S1

p2 · j = p′2 d · p′1 = c · p′2 = s′1

j · j′1 = j1 p1 · j1 = id · d = sd

j · j′2 = j2 p2 · j2 = id · c = sc

p2 · j1 = 1S2 k · j′1 = 1s2 = k · j′2
p1 · j2 = 1S2



4.2 Sketching 13

And distinguished projective cones:

S3

p1

		������������

s1

��

p2

��*
***********

S2

d
��3

33333 S2

c
��������

S1

, S′3

1S′3



������������

j

��

1S′3

��*
***********

S′3

j
��2

22222
S′3

j
��������

S3

both indexed by the graph · → · ← · .
So if call this sketch g we have Mod(g, Set) ∼= Graph.

Sketch of categories: We can continue the above sketch of graphs to obtain the sketch
of categories by making all consecutive arrows composable (S3 = S′3) and adding a fourth
object to be modelled as consecutive triples of arrows and then equations to describe the
associativity of the composition. We get:

Underlying graph : S1
id // S2 schhsd 66

d
ww

c

gg

j2

AA

j1

��
S3

koo

s1

}}

s4

��

s5

��

p2

gg

p1

ww
S4

s2

aa

s3

\\

s6

YY

w1

ww

w2

gg

k1

��

k2

]]

s7

��

s8

��

q1

}}

q2

��

q3

��

Distinguished projective cones : S3

p1



������������

s1

��

p2

��)
))))))))))) S4

q1

��














s7

����������������������

q2

��
s8

��&
&&&&&&&&&&&&&&&&&&&

q3

��4444444444444

S2

d
��1

11111 S2

c
��

S2

d
��1

11111 S2

c
��

d
��1

11111 S2

c
��

S1 S1 S1

where the second and new cone is the cone assuring that, in any set theoretical model, S4 will
be mapped to the the set of consecutive triples of arrows (up to isomorphism). The arrows
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of the sort si are just naming the composites.

Equations: c · i = d · i = 1S1 d · p1 = c · p2 = s1

p2 · j1 = 1S2 p2 · j2 = i · c = sc

p1 · j1 = i · d = sd p1 · j2 = 1S2

p1 · w1 = q1 p1 · w2 = q2 p2 · w1 = q2 p2 · w2 = q3

p1 · k1 = k · w1 = s2 p1 · k2 = q1

p2 · k1 = q3 p2 · k2 = k · w2 = s3

c · k = c · p1 = s4 k · j1 = k · j2 = 1S2

d · k = = d · p2 = s5 k · k1 = k · k2 = s6

d · q1 = c · q2 = s7 d · q1 = c · q3 = s8

We will come back to the intuitive meaning of the arrows, in the underlying multiplicative
graph, later when we in the examples make use of this sketch. Though a careful reading of
the equations should suffice.

When sketching, we will often need to point out that certain arrows in the underlying multi-
plicative graph should be realized as monomorphisms (as we saw in the sketch of graphs)
or epimorphisms. To avoid too much unnecessary repetition we introduce the notation

C
m�
// D to mean that m is distinguished as potential monomorphism, i.e. the follow-

ing cone is distinguished:
C

1C

~~~~~~~~~

m

��

1C

  @@@@@@@

C

m
  @@@@@@@ C

m
~~~~~~~~~

D

meaning that any model/realisation will render this diagram a pullback, and hence as is well
known and easy to see, the map m sketchs a monomorphism.

Likewise we introduce the notation A
ε�
// B to distinguish the fact that ε is to be realized

as an epimorphism, meaning that we distinguish the following co-cone:

B>>
1B

~~~~~~~ OO

ε

``
1B

@@@@@@@

B ``

ε @@@@@@@ B>>

ε
~~~~~~~

A

then any model will render the diagram a push-out diagram and hence again, as is well known
and easy to see, the arrow ε sketchs an epimorphism.
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Furthermore, when we illustrate a sketch by a diagram we usually present a generating sample
with an explanation. For example we normally don’t include arrows signifying composites
(arrows such as the si’s in the above).

5 A category of sketches

In this section we show that the category of sketches is sketchable with a projective sketch,
when we limit the size of the sketches by some large cardinal λ. The category of sketches
thus arrived at, as the model category of set theoretical models of a projective sketch, will
then serve as the frame for our actions.
We shall present the projective sketch of sketches and then look at how we then think of a
mixed sketch as a set theoretical model of a projective sketch (within the size limitation).

As mentioned, the category of mixed sketches is sketchable projectively, at least, when we
limit the size of the sketches by some cardinal λ, meaning that the sets of distinguished cones
and of distinguished co-cones are smaller than λ, plus all index-graphs I should be λ-small,
i.e. ArI smaller that λ. We will call the category of mixed λ-small sketches with sketch
morphisms Esqλ (Esq as in the french word for sketch ”esquisse”),I could have chosen the
notation ”Sketchλ”, but it seemed natural to me to leave some french trace concerning the
main ingredient.

Let ελ = (Sελ ,Pελ) denote the projective sketch of mixed λ-small sketches for some arbi-
trary cardinal λ.
ελ is constructed to be modelled in Set, so the size limitation is a way of avoiding paradoxical
notions such as ”the set of all sets”, i.e. we wish the result: for all cardinals λ there exists a
sketch ελ such that there is an isomorphism:

Mod(ελ,Set) ∼= Esqλ

Remark that we wish isomorphism and not just equivalence, we return to this in the next
section. First the sketch of Esqλ will be constructed.

5.1 Sketching sketches

I will go through the construction of ελ according to the way it is presented by C. Lair and
L. Coppey in their ”lecon 3. Esquisses” (Coppey, L., Lair, C. [1984]). In fact it is almost a
direct translation of their presentation. But it is indispensable to the context of this paper
to have this construction at hand, and in matching notation.
So take λ a cardinal and J, J′ two sets of multiplicative graphs such that:

|J|, |J′| < λ

and for all I ∈ J, I ′ ∈ J′ : |I|, |I ′| < λ

then we set out to sketch the category of all small {J, J′}-mixed sketches, meaning J-projective
and J′-injective.
To simplify notation and better understand the idea of the construction we first look at the
sketch of small {I}-projective sketches, for some multiplicative graph I ∈ J. Let us denote
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this (generating) sketch εI = (SI ,PI).
Now the underlying multiplicative graph SI will at least contain a copy of the sketch of
multiplicative graphs, destined to determine the underlying graph of any {I}-projective sketch
(any model of εI in Set). So the only thing needing specification is the choice of {I}-projective
distinguished cones, and to this we need:

- a special object; ”object of projective I-cones, thus denoted SI− , where S is meant to
model the underlying multiplicative graph of an arbitrary {I}-projective sketch.

- a special arrow CI
m�
// SI− where the domain CI will be modelled as the subob-

ject of projective I-cones, to be distinguished; m is the potential monomorhism that
distinguishes cones.

Now SI− is destined to describe the set of functors from I− to S in some realisation R of εI
so S (= RSI) is the underlying multiplicative graph of RεI . m is destined to be the injection
choosing the distinguished cones among the objects of SI− , or more precisely choosing bases
of cones to be distinguished. Thus we need distinguish the fact that m is to be realised
as a monomorphism (injection in Set) and this is indicated in the manner described in the
introduction, by writing m�.

Now we take a closer look at how the object SI− is to be connected to the sketch of graphs,
to complete εI .
We will do this with an arbitrary graph I. The point is to sketch the object of functors from
I to S (functors/homomorphisms of multiplicative graphs). The set SI is determined by the
existence of three arrows:

ObI // ObS ; I � // SI

ArI // ArS ; i � // si

CoI // CoS ; (i′, i) � // ti′,i

satisfying:

∀i ∈ ArI : c(si) = Sc(i)

d(si) = Sd(i)

∀(i′, i) ∈ CoI : t(i′,i) = (si′ , si).

If k denotes the partial composition of S, we have:

kt(i′,i) = si′ ◦ si = si′◦i and of course S1I = 1SI .

In this way SI can be viewed as a certain subset of the following product:

P = ObObIS ×ArArIS × (CoS)CoI
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So we can take the restrictions of the canonical projections from P evaluated at some object,
some arrow and some composable pair, meaning that we get a triple of projections for all
triples (I, i, (i′, i′′)) commuting with some arrows in

ObS
id // ArS

d
vv

c

ii CoSk
oo

p1
vv

p2

hh

So in Set the cone will look like this:

SI � � //

qI
......

�� uu

qi ......

�� ��

......

))

q(i′′,i′)

��

P

vv }} ��
ObS

id // ArS

c
vv

d

ii CoS
koo

p1
vv

p2

hh

then qI is the restriction of the map P
π1 // ObObIS

evI // ObS (where π1 is the canonical
projection of the product P and evI is the evaluation in I of a map).
More precisely the cone will be indexed by the multiplicative graph §§(I):

Ob§§(I) := disjoint union of ObI , ArI and CoI

Ar§§(I) := pairs (z, x) x ∈ Ob§§(I) and z an arrow in ObI
id // ArI

c
yy

d

ee CoI
koo

p1
xx

p2

ff

such that z(x) is defined; then x is the domain and z(x) the co-domain.

§§(I) ∗ §§(I) := pairs ((z′, x′), (z, x)) such that z′ ◦ z is defined and z(x) = x′

then (z′, x′) ◦ (z, x) = (z′ ◦ z, x).

This can be illustrated by the following diagram of ”generating samples”:

. ObI . ArI . CoI .

c(i) i

(c,i)
ss

(d,i)

}}
i′ ◦ i

d(i) i′ (i′, i)

(p2,(i′,i))ss

(k,(i′,i))

qq

(p1,(i′,i))

kk

I

(id,I)
** 1I

. . .
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Now the above graph-homomorphism conditions can be described in terms of compositions
of arrows:

∀i ∈ ArI : c ◦ qi = qc(i)

d ◦ qi = qd(i)

∀(i′, i) ∈ CoI : p1 ◦ q(i′,i) = qp1(i′,i) = qi′

p2 ◦ q(i′,i) = qp2(i′,i) = qi

k ◦ q(i′,i) = qi′◦i

∀I ∈ ObI : id ◦ qI = qid(I) = q1I .

In fact SI is, when modelled in Set, the vertex of the limit with image of basis

ObS
id // ArS

c
vv

d

ii CoS
koo

p1
vv

p2

hh

since if one take any fI , fi, f(i′,i) such that the diagram

X

fI

}}{{{{{{{{{{{{{{{{{

fi

��

f(i′,i)

!!DDDDDDDDDDDDDDDDD

ObS
id // ArS

c
vv

d

ii CoS
koo

p1
vv

p2

hh

commutes (with respect to the basis §§(I)), then there is a unique h : X // SI such that

(SI , q) ◦ h = (X, f),

defined by:
h(x) =

(
I 7−→ fI(x), i 7−→ fi(x), (i′, i) 7−→ f(i′,i)(x)

)
So we need distinguish a cone indexed by §§(I) to get our sketch εI , which will then be
achieved by taking the sketch of graphs and add the following:

- the objects C and SI− ; the arrows C
m�
// SI− and

SI−
qI

��
qi

��

q(i′,i)

��
S1 S2 S3

where


I ∈ ObI−
i ∈ ArI−
(i′, i) ∈ I− ∗ I−

- equations:
∀i ∈ ArI− : c ◦ qi = qc(i)

d ◦ qi = qd(i)

∀(i′, i) ∈ I− ∗ I− : p1 ◦ q(i′,i) = qi′

p2 ◦ q(i′,i) = qi
k ◦ q(i′,i) = qi′◦i

∀I ∈ ObI− : id ◦ qI = q1I
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- distinguished cone:

0

π(i′.i)

��
πi

��

πI

��

SI−

qI

��

qi

��

q(i′,i)

��

.

(i′, i) **

""((

i′ · I ′gg · ; !!

· i′ ◦ i i · I

��

. S1 id // S2

ctt

d

jj S3
p2
jj koo
p1tt .

§§(I−)− . . .

Hence we have established that εI is a {· → · ← ·, §§(I−)}-projective sketch.

From the generality of the construction of projective cone-diagrams SI− (or just cone di-
agrams), we see that introducing an object representing inductive cone-diagrams SI+ (or just
co-cone diagrams) amounts to the same. Hence the general sketch ελ, is a matter of notation:
to the sketch of multiplicative graphs we add

-Objects SI− , CI ∀I ∈ J and SI′+ , CI′ ∀I ′ ∈ J′

-Arrows { CI
m�
I // SI− }I∈J and { CI′

m�
I′ // SI+ }I′∈J′

-Cones as above indexed by §§(I−), §§(J +) for each I ∈ J, J ∈ J′.

A (generating) diagram of the underlying graph of the sketch ελ is thus:
Underlying graph:

S1
id // S2 schhsd 66

p′1

��p′2
''

d

vv

c

hh

j′2 ..

j′1

��

j2

??

j1

  
S3

s1

��

p2

hh

p1

vv

S′3

k

[[7777777777 j�

MM

s′1

bb

CI
m�
I // SI

qI

PP

qi

>>

q(i,i′)

>>



20 A category of sketches

Distinguished projective cone:
S3

p1

��������

s1

��

p2

��3
33333

S2

d
��3

33333 S2

c
��������

S1

and for all I ∈ I, J ∈ I′ the projective cones with vertexes SI− and SJ+
as described above.

Equations:

p1 ◦ j = p′1 c ◦ i = d ◦ i = 1S1

p2 ◦ j = p′2 d ◦ p′1 = c ◦ p′2 = s′1

j ◦ j′1 = J1 p1 ◦ j1 = i ◦ d = sd

j ◦ j′2 = j2 p2 ◦ j2 = i◦ = sc

p2 ◦ j1 = 1S2 k ◦ j′1 = 1s2 = k ◦ j′2
p1 ◦ j2 = 1S2

plus equations from the above additions concerning ”choice” of distinguished cones, i.e. for
all I ∈ I,J ∈ I′ :

∀i ∈ ArI− ∪ArJ+ : c ◦ qi = qc(i)
d ◦ qi = qd(i)

∀(i′, i) ∈ CoI− ∪ CoJ+ : p1 ◦ q(i′,i) = qi′

p2 ◦ q(i′,i) = qi
k ◦ q(i′,i) = qi′◦i

∀I ∈ ObI− ∪ObJ+ : id ◦ qI = q1I

Now we obviously obtain an isomorphism of categories

Rλ : Esqλ
∼= //Mod(ελ,Set)

hence ελ is sketchable in Set projectively, as claimed.

Having done the construction of ελ, we can rather easily justify that ελ itself can be viewed as a
member of Esqλ: we have seen that ελ is a {· → · ←}∪{§§(I−)}I∈J∪{§§(J +)}J∈J′-projective
sketch, so the question is whether we can consider{· → · ← ·} ∪ {§§(I−)}I∈J ∪ {§§(J +)}I′∈J′

to be included in J. We have:

|Ob§§(I)| ≤ |ObI ×ArI × CoI | < λ3

|Ar§§(I)| ≤ |{z, x)|x ∈ Ob§§(I), z ∈ {id, c, d, p1, p2, k}}| < λ× 6

|§§(I) ∗ §§(I)| ≤ |Ar§§(I) ×Ar§§(I)| < λ2

so as long as we suppose λ to be infinite, there shouldn’t be a problem, as well as there is no
problem in supposing this.
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5.2 Sketches as models of a projective sketch

We now look at how the above isomorphism Rλ will allow us to consider an object in Esqλ
(a mixed λ-small sketch) as an arrow i in Esqλ.
We saw that ελ is a member of Esqλ, so if we abusively consider the category Set as a member
of Esqλ; as the mixed sketch with underlying multiplicative graph Set and distinguished cones
and co-cones all λ-small limits and co-limits in Set, then the above isomorphism of categories,
saying that we can jump between sketches as objects in Esqλ and corresponding models of
the sketch of mixed λ-sketches into Set, can be viewed (locally) as taking place inside Esqλ.
This is abusive since we don’t pretend to consider Set as a model of ελ in Set, which would
obviously lead us into trouble. We rather consider Set as a very big sketch into which we
would like to model sketches (the real members of Esqλ). We join Set to the category Esqλ
remembering that Esqλ with Set as extra object is not not sketchable by ελ.
We can perhaps think of Set as an added semi-final object in Esqλ, since we always have a set
theoretical model, i.e. always an arrow to Set (but it is rarely unique). Or just think of Set
as the big and rich reference category, since we are often guided by set theoretical properties
when sketching. But most importantly we just want to consider set theoretical models as
arrows in Esqλ.

In fact we can consider any λ-small category as a member of Esqλ, by taking the category as
underlying multiplicative graph and certain limits and co-limits as distinguished cones and
co-cones, within the given size-frame.
By this view, the notation such as Setσ will be understood as ”hom-sets” in Esqλ, i.e all
sketch morphisms from σ to Set; all set theoretical models of σ, that we until now have writ-
ten Mod(σ, Set). The point is that sketch morphisms into a category (viewed as a sketch)
form the special sketch morphism we call models. Thus whenever we have a λ-small category
C and a sketch σ ∈ Esqλ we can write the category of models as a hom-set HomEsqλ(σ, C) or
as category of functors Cσ.

6 Theoretical types

In this section we introduce the central notion theoretical type and then we go through the
two main purposes of this notion, first on the syntactic side concerning the nature of proofs
in sketches, and then the semantic side concerning the realization of proofs; when do we have
proofs?

But first we will make precise what we mean by a theoretical type. As mentioned in the
introduction the idea of theoretical types is essentially just a formal way of distinguishing
mathematical theories according to their structural properties. Since we here can view math-
ematical theories as sketches (categories viewed as sketches), we let the notion of type concern
all sketches in Esqλ. Or one could consider this as an abstraction of the notion of a theory
to a sketch, since we can consider sketch morphisms as realizations so in a way, any sketch is
realizing some sketch (at least itself).

The formalization presented here will thus take place in Esqλ, and we will think of types
of theories, as a typification of sketches by extensions of their corresponding model of ελ (via
Rλ) along a sketch morphism specifying the ”typical properties” in question.
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We consider a morphism of λ-small projective sketches

t : ελ // τ

we can think of t as a condition perhaps satisfied by a theory specified by some mixed sketch σ.
Then the category of set theoretical models of τ in Setτ is called Typet, the category of t-types.

•Theoretical type: We say that a sketch σ in Esqλ is of type t (or satisfies t) if the corresponding
model Rλ(σ) : ελ // Set factorizes through t by a sketch morphism Rλ(σ)t : τ // Set ,
i.e. the following diagram commute:

ελ
t //

Rλ(σ) ��666666 τ

Rλ(σ)t��







Set

•Strict theoretical type: Then we say that σ is of strict type t if the above factorization is
unique.
My work only considers these strict types, since they are much simpler to handle by way of
the application of the generalized associated sheaf theorem, as we will see and they are in
fact not so terribly restrictive.

• We call model of type t, or t-model, a model R : σ // µ of a sketch σ into a cate-
gory µ of type t.

Now, any type t gives rise to the forgetful functor

Ut : Setτ // Setελ ; Typet // Esqλ

R
� // R ◦ t; R(τ) � // R ◦ t(ελ)

.

Since t is a morphism between projective λ-small sketches we get, by the generalized associated
sheaf theorem, that Ut has a left adjoint

Lt : Setελ // Setτ

and the unit of this adjunction

ηt : 1Setελ
// Ut ◦ Lt

ηt(σ) : Rλ(σ) // Lt(Rλ(σ)) ◦ t

determines for each sketch σ ∈ Esqλ a realization Lt(Rλ(σ)) ◦ t : ελ // Set . We denote
the corresponding sketch Tt(σ) (i.e. Rλ(Tt(σ)) = Lt(Rλ(σ)) ◦ t), Tt(σ) is clearly of type t
since we have

ελ
t //

Rλ(Tt(σ)) ��666666 τ

Lt(Rλ(σ))��







Set
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The isomorphism Rλ : Esqλ ∼= Setελ permits us to write the unit as ηt(σ) : σ // Tt(σ)
which we will refer to as the constructor of the theoretical t-type of σ. Since (LtRλ(σ), ηt(σ)) is
often called the Ut-free structure generated by σ, we call Tt(σ) the freely generated theoretical
t-type of σ (a sort of t-completion of σ). Clearly σ is of type t if and only if ηt(σ) is an
isomorphism.
Furthermore, if t is strict, it extends (set theoretical) models of ελ uniquely and we have that
Ut is an embedding, hence strict types Typet for t strict, are full sketchable subcategories of
Esqλ. And, for all sketches µ, of a strict type t, we have the natural isomorphism

(F) Hom(Tt(σ), µ) ∼= Hom(σ, µ)

by the universal property of the adjunction. Meaning in particular that two sketches have iso-
morphic freely generated t-types for a strict type t if and only if they have isomorphic model
categories for models of type t. This means that asking if two sketches have the equivalent
model categories for models of a certain strict type t, is the same as asking wether the two
sketches have equivalent freely generated sketches (theories) of this type.

There are two aspects of this application (supporting our mottos), one on the syntactic level:
we get a description of theorems and proofs in Esqλ, and on the other on the semantical level:
we get a way to discriminate in Esqλ telling us when a given theorem is valid; when does it
have a proof.

6.1 Types and syntax: proofs

We here look at the first aspect of the above application of generalized associated sheaf theorem
concerning the purpose of strict types on the syntactic level. The application leads us to a
purely diagrammatic conception of proofs, as well as envisaging that sketching is proving and
proving is sketching.
The isomorphism (F) allows us to consider a proof of a theorem in a theory specified by a
sketch σ, as a progression towards a type. Meaning that if we wish to proof a theorem for
all t-models of σ for a strict type t, it becomes a question of enlarging σ (sketching towards
Tt(σ)) in a way such that the enlarged sketch σ′ has the same t-models as σ and such that
it is evident (!) that the theorem is valid in all t-models of σ′. We then say that σ′ contains
the general proof of a theorem relative to σ and the progression from σ to σ′ is proving this
theorem for all t-models of σ. More precisely:
Let Θ be a theorem relative to a sketch σ, that we wish to prove for all t-models for some
strict type t, then this proof π can be achieved in an environment (a sketch Tt(σ)πN , like σ′

in the above) in between σ and Tt(σ) by N finite steps

σ −→ Tt(σ)π1 −→ · · · −→ Tt(σ)πN −→ Tt(σ).

Meaning that obtaining a proof in N steps, becomes a question of obtaining a factorization

σ
ηt(σ) //

((QQQQQQ Tt(σ)

Tt(σ)πN

55kkkkkk

such that Tt(σ)πN evidently(!) satisfies Θ. Because the above application of generalized as-
sociated sheaf theorem gives that all realizations of σ factor uniquely through a realization of
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Tt(σ), thus also through a realization of Tt(σ)πN . Hence all realisations of σ satisfy Θ.
Take a theorem Θ relative to σ such that Θ can be formulated via a sketch morphism
υ : σ // θ , for a model R : σ // µ of strict type t, in the following manner: R fac-
torizes through υ, i.e. there exist a realization Rυ : θ // µ such that R = Rυυ. Then,
establishing a proof amounts to constructing a sort of captivation of υ by ηt(σ); a factorization:

σ
ηt(σ) //

υ &&MMMMMM Tt(σ)

θ
e
))RRRRRR

Tt(σ)πN

::ttttttttt

e is the evidence arrow, the finite progression from θ to Tt(σ)πN making sure that the sketch
Tt(σ)πN evidently(!) satisfies the theorem Θ (indicated by the sketch morphism υ), for models
of type t.
At last we simply put π = Tt(σ)πN and consider a proof, of a theorem via υ : σ // θ
relative to a sketch σ, as a factorization

σ
ηt(σ) //

υ &&MMMMMM Tt(σ)

θ
e ''PPPPPP

π

<<yyyyyyyy

where the arrow e◦υ should be finite; the progressing from σ to π via θ should be achieved by
a finite series of sketch mutations towards a sketch with the same free t-type. So proving is
sketching: Progressing (sketching) towards a sketch (π) from a sketch (σ), via a sketch mor-
phism (υ), in a restricted manner (factorizing ηt(σ)). This idea of general proof by syntactic
progression should be more clear in view of the examples in section 7. below.

We could now be tempted to call any sketch morphism σ // κ a conjecture relative to the
sketch σ, since, by the above, any sketch morphism can be viewed as a potential theorem. It is
just a matter of investigating what semantics are necessary in order to achieve a theorem, e.g
if σ and κ have the same t-model categories for some strict type t, then any property evidently
satisfied in all t-models of κ gives rise to a theorem relative to σ for t-models. Whether this
is interesting of course depends on the sketch κ. We return to this in the example section.
First we look some more at this other purpose of types, concerning the semantic level and
the interplay between semantics and syntax in Esqλ.

6.2 Types and semantics: discrimination

This section is about the other important purpose of theoretical types, that when we sketch
to describe a certain theory we at the same time envisage the properties needed in order to
realize our sketch (as when we sketch set theoretically in the previous sections). This leads
to certain types, hence a category Typet for a strict type t is often arrived at as the category
of possible semantics for a certain sketch. Or, perhaps more interestingly, arrived at as the
type of semantic in which a theorem via a sketch morphism is valid, which amount to a type
in which two sketches (σ and π in the previous section) have the same model categories.
So we are interested in at least two situations:
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I Given two different sketches of the same structure, find out what type of models ”ignore”
this difference, i.e. give rise to equivalent model categories.

I Given a sketch σ and a theorem Θ via a sketch morphism υ : σ // θ , find out what
type of models ”ignore” the difference between σ and the sketch π containing a general
proof of Θ.

This leads to the introduction of two concepts.

Confusion and discrimination of sketches: Given two sketches σ, θ, if there exists a
third sketch η and a sketch-morphism υ : σ // θ , such that

ηυ : ηθ // ησ

R
� // R ◦ υ

is an equivalence of categories, then we will say that, via υ, η confuses σ and θ. If not we
will say that, via υ, η discriminate between σ and θ.

Remark: The discrimination will rather depend on the sketch η, than the morphism υ,
meaning that the difference between two sketches rather depends on the structural rich-
ness/poverty of the type of category we wish to model in. Said differently the discrimination
takes place on a semantical level, but then again it depends on υ how easy it is to determine
whether η confuse or discriminate.
We are thus interested in the following general problem.

General problem: Given sketches σ and θ in Esqλ, find a strict type t : ελ // τ such
that all sketches of the type t confuses σ and θ. Then find at least one sketch ν discriminating
σ and θ, meaning in particular that ν is not of type t; ν and Tt(ν) (its freely generated t-type)
are non-isomorphic. Then one can amuse oneself in finding out what Tt(ν) resembles, either
by calculating the Kan extension or by more ad hoc methods, to see how gravely it differs.

A third situation permitted by the application of the generalized associated sheaf theorem
and that might be interesting is: given two sketches to be compared (perhaps via sketch
morphism indicating a theorem wishing for a proof) and a ”favorite” Semantics, then if our
favorite semantics can be represented by a strict type t, we can check if models of this type
confuse the two sketches, by comparing their freely generated t-types. If the two sketches
have isomorphic t-types (or just equivalent when the types are categories), they are confused
by the type t (we will have proofs of the theorem perhaps indicated, in all models of type t).
This procedure involves calculating Kan extensions, which can be rather heavy (at least no-
tationally) if the sketches are complicated. But in theory it is possible and perhaps fruitful
and then again by the application of generalized associated sheaf theorem we perhaps don’t
need to calculate the entire free t-type, if we using categorical gymnastics can find a sketch
with same model categories as both of the sketches we wish to compare, for our favorite type
(the example of monoids in the section of examples below, contains such a procedure).
We hence get a general method for checking certain conjectures; assuring the existence of
proofs in certain types of categories without going in to the concrete details of the concrete
proofs.
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7 Examples

We will give two examples of the general problem. First a rather simple one concerning
the sketch of fields, where we will compare the standard sketch of a field, following the set-
theoretical definition, with the sketch of fields slightly modified, in order to get topological
fields, when modelled in the category Top of topological spaces and continuous maps.
Then we look at an example where we compare two sketches of monoids each following a
different standard set theoretical definition of what is meant by a monoid. This example will
show that the apparent difference in language for two ways of defining the same structure, is
not always trivially formalized, meaning that we don’t see right away what the actual struc-
tural differences amount to, when we put on stronger glasses than just the set theoretical
ones.
In short, we present two examples where two different sketches of the same classical math-
ematical structure have the same set theoretical models, but not the same model categories
for any type of model. We then, following the general problem stated in the previous section,
determine a type confusing the two sketches in question and at last give an example of a
category discriminating them.
Before we present the examples we take a look at a basic type, that will be very helpful in the
search of strict types confusing two given sketches, this counts in particular for the examples
chosen in this thesis.

7.1 The classical type tclf

In the search for sketches playing η’s role in the general problem above, a type of interest is
the classical type of categories with all finite limits and co-limits, since if η is a category then
ηθ and ησ are (model-) categories (as required in general problem).
Sketches of interest (sketches of classical mathematical structures) normally have, at least, a
number of finite distinguished cones and (perhaps) co-cones. So claiming that η is a category
with all finite limits and co-limits, is a sort of minimal claim to avoid pathologies.
We will sketch this classical type, meaning that we will construct a sketch τclf such that the
category of set-theoretical models of τclf is isomorphic to the category of categories with all
finite limits and co-limits. Then we adjust the sketch in order for it to signify a strict type,
i.e. in order for it to give rise to a strict type-morphism. This will turn out quite useful in
the examples below, furnishing a sort of basic strict type.

Construction of the sketch τclf : We set out to sketch the category of categories with
all finite limits and co-limits, so obviously we depart from the sketch of categories, as con-
structed earlier (p.12).
Now we wish to enlarge this sketch such that any model (category) will have all finite limits
and co-limits. As in the construction of ελ, we add elements representing the cones we want
to distinguish, only this time we want these cones to be limiting cones, so further structure
is added to specify the universal property for the, chosen, limiting cones. For a model of the
sketch to have all I-limits for a chosen graph I, we need, as in construction of ελ, to add the
object SI− to the sketch of categories and then specify the limiting cones for all cones of base
I− in the underlying multiplicative graph S. We consider the following five multiplicative
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graphs with graph-inclusions:
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and then construct the joint graphs, as introduced in the preliminaries (p. 7), of the graphs
0, 1,K2,K3,K4 with the graph I and get I0, . . . , IK4 with graph inclusions inherited.
Now we add the objects SI0 , . . . ,SIK4 to the sketch of categories, in the same way as in ελ,
together with the induced arrows, i.e. we enlarge the sketch of categories with the diagram:
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where the broken arrows represent (the rest of) the restricted (and evaluated) projection.
Now, L is the arrow ”formally choosing” a limiting cone for each diagram of type I, C is the
”choice of comparison” arrow and V is the arrow designed to secure the uniqueness in the
universal property of the limiting cones. This works by assuming the following equations to
hold:

(1) !∗1L = 1SI0 (4) q2
uCL = idq1

0L
(2) α∗C = 1SI1 (5) τ∗V = 1SI3
(3) L!∗1 = β∗C (6) Cβ′∗ = t∗V.

Further explication of the equations:



28 Examples

Ad(1): !1 is just the injection of graphs I0
� � // I1 (inherited from the unique arrow 0

!1 // 1
in the category of graphs), so !∗1L = 1SI0 (!∗1 composition with ! from the right) means
that for any graph indexed by I, L chooses a projective cone with this very graph as
image of the basis.

Ad(2): α∗C = 1SI1 makes sure that C takes a cone to a comparison diagram where it itself
plays the role as left hand cone.

Ad(3): L!∗1 = β∗C means that for all cones I we have that if we forget the vertex (go by arrow
!∗1) and then take the ”choice of” limiting cone (by arrow L), then this is the same as
taking the comparison graph (graph of type IK2) and then forget the left hand cone
(cone with vertex at the source of the ”hook” u), by β∗. That is for any cone with
basis indexed by I, taking the limiting cone with same basis is the same as taking the
right-hand cone in the comparison graph where it plays the role as left-hand cone, so C
compares any cone with the limiting cone of the same basis.

Ad(4): q2
uCL = idq1

0L makes sure that a chosen limiting cone can only be compared to itself,
thus a limiting diagram is (by C) sent to the comparison diagram with hook the identity.

Ad(5): τ∗v = 1SIK3
means that any graph of type IK3 (i.e. a comparison diagram with two

hooks; two arrows from one vertex to another in cones with same basis) is the left part
of a diagram of type IK4 , by the arrow V .

Ad(6): Cβ′∗ = t∗V means that whenever there are two hooks between vertexes of cones with
same basis, then V extends this diagram with a hook to the limiting cone of same basis.
So if the right-hand cone in the diagram with two hooks is a limiting cone, then u is the
identity, by (4), and hence the two hooks are identical (equal to u′, see figures above).

Concerning choice of co-limits, we do the same thing but the arrows reversed in the system
of five graphs, i.e. with
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and construct the joint graphs 0I , 1I ,Kop2 I ,K
op
3 I ,K

op
4 I and then have the same equations ex-

cept that in the explications left and right should evidently be interchanged.
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Remark: Sketching categories with all finite limits can be reduced to sketching categories
with finite products (including terminal object) and equalizers, meaning that we only need
the above addition to the sketch of categories for the graphs {0, 2, • ((

66 • } where 0 is
the empty graph and 2 = {• •} the graph with two objects and only trivial arrows.

So we actually get a finite sketch, with (generating) underlying multiplicative graph of τclf :
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for I ∈ {0, 2, • ((
66 • } and the six equations as explained above with both L,C, V and

L+, C+, V + plus the equations from the sketch of categories, distinguished cones as in sketch
of categories plus all cones with vertexes SI0 , . . . ,SIK4 and S0I , . . . ,SK

op
4 I for the three graph

types.

Now for τclf to be a sketch of a theoretical type, there need to be a sketch morphism

ελ // τclf .

which is evidently not possible to construct directly, since τclf does not have distinguished
cones corresponding to all of the distinguished cones in ελ, we only have the objects of the
type SI− ,SI+ for I ∈ {0, 2, • ((

66 • }. But we can expand the sketch τclf to get a
sketch τ̄clf (with same set-theoretical models). We add all missing objects SI− ,SJ+

for
I ∈ J \ {0, 2, • ((

66 • }, J ∈ J′ \ {0, 2, • ((
66 • }. We also add objects of I-

limits and I-co-limits for I ∈ {0, 2, • ((
66 • } in the following way:
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-We introduce the object of isomorphisms, i.e. we add an object Iso(S), and arrows miso, n,
h to the underlying sketch of graphs, as follows:

S1
id // S2

d

vv

c

hh S3
∼= S↗↘

k
oo

p2

uu

p1

ii

Iso(S)

m�
iso

OO

n
// S�

ρ∗

cc

σ

RR

h

OO

where ρ∗ is composition from the right by

·

��===== ·

��
ρ // //

·

@@����� · ·

GG

and with miso distinguished as mono. By the definition of being an isomorphism, we need
equations p2hσn = miso, p1hn = miso and khn = idcmiso, khσn = iddmiso. So we distinguish
the cone:

Iso(S)′
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S1
id

ggNNNNNNN
S1

id

77ppppppp

then, when modelled in Set, Iso(S) will be isomorphic to the image of the mono modelling
miso, which will be the subset of arrows for which there exist an arrow both right and left
inverse.

We can now introduce the object of I-limits ”I-limits(S)”, as the (potential) subobject of SI−

such that the comparison map is an isomorphism, i.e adding object and arrows to distinguish
the following cone:

I-limits(S)
g

##GGGGGGGGG
m�
I-limits

||yyyyyyyyy

SI−

quCI ''OOOOOOO Iso(S)

m�
isovvnnnnnnn

S2

Where CI is the comparison map, taking a I-cone to the diagram comparing it with the
chosen I-limit of the same basis and qu is the projection of the hook between vertexes in the
comparison diagram.
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So we get the sketch τ̄clf from τclf by adding some cones (or a whole bunch, though still
a set) to be distinguished.

In this way we get an inclusion τclf
� � // τ̄clf introducing an equivalence of model categories

Setτclf ∼ Setτ̄clf , and a sketch morphism from ελ to τ̄clf

tclf : ελ // τ̄clf

to serve as our type of categories with finite limits, defined as follows:

- the ”sketch-of-multiplicative-graph” part of ελ is mapped to the ”sketch-of-categories”
part of τ̄clf in the evident way, indicated thus:
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making all consecutive arrows composable (when modelled).

- for I ∈ {0, 2, • ((
66 • } we send

CI−
m�
I− // SI− to I-limits(S)

m�
I-limits // SI−

and CI+
m�
I+ // SI+ to Ico-limits(S)

m�
I-co-limits // SI+

- for I ∈ J \ {0, 2, • ((
66 • } we send

CI−
m�
I− // SI− to 0− limits(S)

m�
0−limits // S0− ∼= S1

!∗ // SI−

and for I ∈ J′ \ {0, 2, • ((
66 • } we send

CI+
m�
I+ // SI+ to 0− co-limits(S)

m�
0−co−limits // S0+ ∼= S1

!∗ // SI+

where !∗ is composition from the right with the unique arrow I−, I+ // 1 to the

graph 1 in the category of λ-small graphs and S0− ,S0+
will both be isomorphic to S1

when modelled, since 0−, 0+ are the two ways of joining the empty graph with the graph
of one element, so diagrams in S of this sort is just all objects (the model of S1).
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When modelled in Set the set of distinguished 0-cones is the set of 0-limits, i.e. the set of
terminal elements or, said differently the set of all singletons. The set of 0-co-cones is the
set of initial elements {∅}. So the map mI in ελ for I ∈ J \ {0, 2, • ((

66 • } destined
to choose cones [co-cones] to be distinguished in a model of ελ, is sent to the map in τclf
modelled as the inclusion of terminal [initial] elements into the object of functors SI− [SI+ ],
meaning that in a model of τ̄clf the only limits [co-limits] distinguished by such functors is
the constant functors on terminal [initial] elements.

Now that we have a sketch morphism, we just need to assure that it is a strict type, i.e.
has the property that a supposed sketch of type tclf will, viewed as a model of ελ, factor
uniquely through tclf . To show this we will take a more general look at what just happened,
by naming concepts treated and state some properties. Furthermore, treating this question
more generally will be of much help afterwards in our two examples.

•Expansion by cones: for a sketch σ, I will call, an expansion by distinguished cones (or
just cone-expansion) the sketch σ̄ obtained by, only, adding objects to σ as vertexes of cones
to be distinguished (with all images of the bases in σ), and then only extra arrows and
equations as part of the cones added.

Proposition 1: If σ is a mixed sketch the sketch inclusion σ � � ς // σ̄ induces an
equivalence of model categories

Setσ̄
ς∗
∼ // Setσ .

We remind the reader of the following basic theorem (MacLane, S. [1997]):

TheoremThe following properties of a functor S : A // C are logically equiv-
alent:
(i) S is an equivalence of categories,
(ii) S is part of an adjoint equivalence,
(iii) S is full and faithful, and each object C ∈ ObC is isomorphic to SA for some
object A ∈ ObA.

�

Proof of proposition 1: ς∗ is evidently full and faithful. And each model R ∈ Setσ can be
extended (uniquely up to iso) to a model R̄ of σ̄ such that ς∗R̄ = R, by taking the added
cones to the chosen limits of the respective bases. Meaning if S′ ∈ Obσ̄ \ Obσ is the vertex
of a distinguished cone with basis B : I // σ , then R̄ takes S′ to the vertex of the chosen
limit in Set with basis R ◦B. Since Set has ”chosen” limits for any (λ-small) index graph, we
have indeed ς∗(R̄) = R.

�

•Set-model-epi: We will call set-model-epi a sketch morphism s : σ // σ′ in Esqλ with the
property that for all models (sketch morphisms) ϕ,ψ : σ′ // Set satisfying ϕ ◦ s = ψ ◦ s
we have ϕ ∼= ψ.
Notice that a strict theoretical type then is a set-model-epi with source ελ.
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Corollary 1:For a sketch σ the sketch inclusion σ � � ς // σ̄ is a set-model-epi

�

Corollary 2: if the sketch morphism t : ε // σ is a set-model-epi, then so is
the expansion t̄ : ε // σ̄ (by cone-expansion of the target).

�

We are now ready to proof that we have constructed a classical strict type

Proposition 3: tclf : ελ // τ̄clf is a set-model-epi, i.e. tclf defines a strict
theoretical type.

Proof: Take any pair of models ψ,ϕ : τ̄clf // Set such that ϕ◦ tclf = ψ ◦ tclf , then we need
to proof that ϕ ∼= ψ, i.e. that there exists a natural isomorphism between ϕ and ψ.
I will show this by showing that every model ϕ : τ̄clf // Set is isomorphic to, what I will

call, its corresponding reference model κϕ : τ̄clf // Set , which, in word, will be ”the model
enabling us to understand the model ϕ”, i.e. the set-theoretical model we ”thought of” when
we constructed the sketch τ̄clf . Meaning that κϕ equals ϕ on the ”oriented-graph-part” of
τ̄clf (the set of objects and the set of arrows between objects), i.e.

κϕ : S1
id // S2

d
ww

c

gg
� // ϕS1

id // ϕS2

d
vv

c

hh

we won’t write κϕf for modelled arrows (f an arrow in the sketch-of-categories-part of τ̄clf )
since these are in the model κϕ exactly what they were named to become in a model, when
we made the sketch.
Then κϕ takes the distinguished cones in the ”sketch-of-categories-part” to the expected fiber
products, i.e. the actual set of consecutive pairs of arrows and consecutive triples of arrows,
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which we illustrate:
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Then in the model κϕ all the arrows are exactly what they were thought to be:

w1 : (f1, f2, f3) � // (f1, f2)

w2 : (f1, f2, f3) � // (f2, f3)

k1 : (f1, f2, f3) � // (k(f1, f2), f3)

k2 : (f1, f2, f3) � // (f1, k(f2, f3))

p1, p2 the restrictions of the Cartesian projections etc. Only we set the composition κϕ(k)
to be determined by the composition ϕ(k) composed with the isomorphism of limit vertexes
ϕS3
∼= ϕS2 ∗ ϕS2.

Now the objects of the sort SI will be sent to exactly the set of functors from I to S (all
diagrams indexed by I) as introduced in the sketching of sketches earlier, one could say that
κϕ is the model justifying the notation, which is why we will write κϕSI = SI . The choice of
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limit/choice of co-limit diagram in the sketch τ̄clf will then be sent to the diagram induced

by ϕ via the isomorphisms ϕSI '
h
// SI meaning that all natural squares in the following

diagram commute:

ϕSI0

h0'

���
�
�
�
�
�

ϕL
,,

ll
ϕb∗

ϕSI1

h1'

���
�
�
�
�
�

ϕC
,,
ϕSIK2

h2'

���
�
�
�
�
�

ϕβ∗

ii

ϕα∗

aa ϕSIK3

ϕβ′∗
vv ϕV

--

h3'

���
�
�
�
�
� ϕSIK4

h4'

���
�
�
�
�
�

ϕτ∗
mm

ϕt∗

zz

SI0
Lϕ

,,
ll

b∗
SI1

Cϕ
,,
SIK2

β∗

ii

α∗

aa SIK3

β′∗

cc

Vϕ
,,
SIK4

τ∗
ll

t∗

dd

where hi : ϕSIi // SIi ; x
� // (I 7→ fI(x), i 7→ fi(x), (i′, i′′) 7→ f(i′,i′′)) as mentioned in

the introduction of the objects of the sort SI .

We now claim that the obvious isomorphism of objects between the models ϕ and κϕ is
natural. This is almost obvious by definition of κϕ. But let us go through it just once: we
name the claimed natural isomorphism h : ϕ // κϕ , and start by looking at the ”sketch-
of-categories-part” of τ̄clf . The only natural squares that do not totally obviously commute
by force of being projections in a limiting cone, are

ϕS4

hS4 //

ϕf

��

ϕS2 ∗ ϕS2 ∗ ϕS2

f

��
ϕS3

hS3

// ϕS2 ∗ ϕS2

, for f ∈ {w1, w2, k1, k2}

but commutativity follows immediately by the equations in the sketch of categories, since if
we take x ∈ ϕS4 and suppose hS4(x) = (f1, f2, f3), then

ϕp1ϕw1(x) = ϕq1(x) = q1hS4(x) = f1

ϕp2ϕw1(x) = ϕq2(x) = q2hS4(x) = f2

and hS3 is the unique map from ϕS3 to ϕS2 ∗ ϕS2 s.t. p1hS3 = ϕp1 and p2hS3 = ϕp2, giving
us that

p1hS3ϕw1(x) = f1

p2hS3ϕw1(x) = f2
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so hS3ϕw1(x) = (f1, f2) = w1(f1, f2, f3) = w1hS4(x), same goes for w2.
And since, by definition of κϕ, we have khS3 = ϕk, we get

ϕp1ϕk1(x) = ϕkϕw1(x) = khS3ϕw1(x) = k(f1, f2)
ϕp2ϕk1(x) = ϕq3(x) = q3hS4(x) = f3

which gives p1hS3ϕk(x) = k(f1, f2), p2hS3ϕk(x) = f3

so hS3ϕk1(x) = (k(f1, f2), f3) = k1hS3 , same for k2.
So ϕ and κϕ gives isomorphic underlying categories.
Now this natural isomorphism clearly (or by corollary 2.) extends to all the distinguished
cones with vertex of the sort SI , and furthermore, by definition of κϕ, naturality extends to
the ”choice-of-limit-diagrams” (p. 26). The only part of τ̄clf not mentioned yet concerns the
object of isomorphisms Iso(S) and the objects I-limits(S) and I-co-limits(S), but these are
all introduced as vertexes of distinguished cones, hence again by corollary 2. we still get an
isomorphism. Thus h : ϕ // κϕ is indeed a natural isomorphism.
Now to finish the proof of the proposition we need to justify that ϕ and ψ (agreeing on
tclf (ελ)) must have isomorphic reference models κϕ ∼= κψ. But since ϕ and ψ are equal on the
oriented-graph-part of τ̄clf their reference models will evidently be exactly the same except for
the choice of limit maps Lϕ and Lψ, but they are clearly isomorphic since by uniqueness (up
to isomorphism) of limits, they have isomorphic images (we are in Set) (same for choice of co-
limits). So we can without pain conclude that κϕ ∼= κψ, which gives the natural isomorphism
of ϕ and ψ through their reference models.

�

Remark: The essence of this proof is just pointing out how we have been sketching while
thinking of certain (canonical) set-theoretical models

7.2 Two sketches of fields

In this section we go through a simple example of the general problem (p. 24) where we
compare two sketches of fields that have the same models in Set but not in the category Top
of topological spaces with continuous maps.
The construction of the first sketch of fields ξ1 is following the standard set theoretical defi-
nition of a field and will be sketched gradually in the order of its underlying structures.
First the sketch of monoids, following the set theoretical definition

Def. 1: A monoid (M,k, e) is a set M with a binary operation ”k” everywhere
defined, associative, and with a distinguished unit element e with respect to the
operation.
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Underlying multiplicative graph:

S3

k1

��

r1

  

r2

&&

k2

��
q1

��

q2

��

q3

||

S2

p2

��

p1

��

k

��
S1

p

��

v1

88

v2

55

ê 55

S0

e

FF

Equations concerning binary operation k:

p1 · r1 = q1, p2 · r1 = q2

p1 · r2 = q2, p2 · r2 = q3

k · r1 = l1, k · r2 = l2 just naming the composite
p1 · k1 = l1, p2 · k1 = q3

p1 · k2 = q1, p2 · k2 = l2

k · k1 = k · k2 associativity of k

Equations concerning the unit element, or 0-ary operation e:

ê = e · p
p1 · v1 = 1S1 , p2 · v1 = ê

p1 · v2 = ê, p2 · v2 = 1S1

k · v1 = k · v2 = 1S1 unitarity of e with respect to k.

Distinguished projective cones:

S0

		�
�

�
�

. ∅ .

S2

p1

��
p2

��1
111111

. S1 S1 .

S3

q1

��
q2

��

q3

��1
111111

. S1 S1 S1 .

We can then think of S0 as 1, S1 as the ”set of elements” (M), S2 as the ”set of pairs
of elements” (M × M) and S3 as ”the set of triples of elements” (M × M × M). The
arrows p1, p2, q1, q2, q3 are thought of as the canonical projections, r1, r2 partial projections
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((x1, x2, x3) 7−→ (x1, x2), (x2, x3)), k the ”addition of elements”, k1, k2 can be thought of as:

k1 : (x1, x2, x3) � // (x1 + x2, x3)

k2 : (x1, x2, x3) � // (x1, x2 + x3)

e is the unit element (0) with respect to k (addition) and this is assured by v1, v2 thought of
as

v1 : x � // (x, 0)

v2 : x � // (0, x)

Now we add what is missing to obtain the sketch of abelian groups, i.e. arrows and equations
representing the fact fact that all elements should have a left and right inverse, with respect
to the composition ”addition”, and furthermore that the composition is additive. To this we
add arrows: s (”taking an element to its inverse”), v′1, v

′
2 (”taking an element x resp. to the

pairs (−x, x) and (x,−x)”), and σ (a permutation). Giving us the underlying multiplicative
graph:

S3

k1

��

r1

  

r2

&&

k2

��
q1

yy

q2

ww

q3

vv

S2 σii

p2

��

p1

��

k

��
S1

p

��

v1

>>

v2

88

v′1

``

v′2

ff

ê 55 sii

S0

e

FF

Equations as in sketch of monoids plus:
-new equations concerning binary operation k:

p1 · σ = p2, p2 · σ = p1 σ a permutation
k · σ = k k is additive.

-new equations concerning the inverses of elements:

p1 · v′1 = p2 · v′2
p1 · v′2 = 1S1 = p2 · v′1
k · v′1 = k · v′2 = e.

Distinguished projective cones as above.
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We continue to get the sketch of a unitary ring, i.e. we add what is needed to describe
a unitary multiplication, which is

S3

r13

&&
σ1





σ2

��

σ13

��

m33

��

m31

  
S2

m

��
S1 ûii

w1

FF

w2

>>

p

��
S0

u

FF

and further new equations:
-concerning partial projections:

p1 · r13 = q1, p2 · r13 = q3

σ13 = m · r13

-concerning multiplication m and its distributivity (from left and right) on the ”addition”
(composition k):

p1 ·m31 = σ1, p1 ·m33 = σ13

p2 ·m31 = m · k2, p2 ·m33 = σ2

k ·m31 = m · k2, k ·m33 = m · k1

-concerning 0-ary operation u:

u · p = û

p1 · w1 = û, p2 · w1 = 1S1

p1 · w2 = 1S1 , p2 · w2 = û

m · w1 = m · w2 = 1S1
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Where we can think of these arrows as:

w1 : x 7−→ (1, x)
w2 : x 7−→ (x, 1)
r13 : (x1, x2, x3) 7−→ (x1, x3)
σ1 : (x1, x2, x3) 7−→ x1x2

σ2 : (x1, x2, x3) 7−→ x2x3

σ13 : (x1, x2, x3) 7−→ x1x3

m13 : (x1, x2, x3) 7−→ (x1x2, x1x3)
m33 : (x1, x2, x3) 7−→ (x1x3, x2x3)

Finally we can talk about sketches of fields:
First take the sketch of unitary rings, that we just constructed above. We need all symbols
and their signification, essentially:

k : S2 // S1 formal law of addition

m : S2 // S1 formal law of multiplication

e : S0 // S1 formal law selecting the ”0” of the field

ê : S1 // S1 formal law ”constant on 0” of the field

u : S0 // S1 formal law selecting the ”1” of the field

û : S1 // S1 formal law ”constant on 1”.

We then add the following piece of graph, wherein the new symbols are S∗, i, u′, γ, γ′, γ1, γ2:

S2

p1

  

m

��

p2

��

]]

γ1

ee

γ2

S1

p

��

û 55

S∗
γ′

XX
i

gg

γ
ii

S0

e

KK

u

SS

u′

FF

with further new equations:

γ′ = i · γ, i · u′ = u

p1 · γ1 = i, p1 · γ2 = γ′

p2 · γ1 = γ′, p2 · γ2 = i

m · γ1 = m · γ2 = û
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and a single new distinguished co-cone:

S1

S0

e
CC����

S∗

i
[[77777

S∗ thought of as all ”non-zero elements” and the arrows thougt of as:

γ : x 7−→ x−1

γ1 : x 7−→ (x, x−1)
γ2 : x 7−→ (x−1, x)
i : 7−→ x

This sketch is indeed set-theoretical, because if we realize this sketch in the category of
topological spaces we will not get the usual topological fields, i.e a field with a topology such
that all the field operation maps are continuous. The problem is that a non-discrete topolog-
ical space K is in general not the sum of its subspaces {0} and K∗ (elements non-null), An
example is the space R with the standard topology, then R is not the the direct sum of its
subspaces {0},R∗, since 0 is not an isolated point in the standard topology.
To get a sketch ξ2 giving us the topological fields when realized in topological spaces we need
to modify the above sketch a bit (Guitart, R. [1988]), by distinguishing S1 not as the sum
S0 + S∗, but as the target of an epi-mono with source this sum giving us instead:

S2

p1

��

m

��

p2

��

\\

γ1

aa

γ2
S1

p

$$

û 66

S′

��

OO

S∗

aaBBBBBBBB

γ′

RR

i

YY

γ
ii

S0

OOe

==

u

AA

u′

FF

and instead, the distinguished co-cone:

S′

S0

DD����
S∗

[[66666
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Then ξ2 gives us topological fields, when we model in Top (exercise!)

We thus have two sketches of fields ξ1 and ξ2 with an obvious sketch morphism ξ2
// ξ1

(just collapsing S1 and S′) which clearly gives rise two an equivalence of model categories
whenever we are in the classical type τ̄cl with the extra property that all epi-monos are isos.

7.2.1 A type confusing the two sketches of fields

In order to get a strict type confusing ξ1 and ξ2, we now sketch the extra property that all
arrows that are both epi and mono, are isomorphisms. We will call this property ∗fields and
the extended sketch we then denote τ̄

cl
∗fields
f

.

We can introduce objects Pull(S) of pullback diagrams in S and Push(S) of pushout diagrams
in S in the same way as the objects I-limits(S), I-co-limits(S) were introduced previously,
i.e as certain distinguished subobjects:

Pull(S)
m�
pull // S

•a ~~~~ b  AA

A
  @@ B
~~}}
•

Push(S)
m�
push // S

•
C

c >>}}
D

d``AA

•
>>}}``AA

.

This enable us to introduce objects ”Epis(S)” and ”Monos(S)” as the subobjects of Push(S)
and Pull(S) where the ”pushed out” or the ”pulled back” part of the diagrams are the
identity maps, recalling the definition of epis and monos by certain diagrams being pushouts
resp. pullbacks: ε epi and m mono if and only if we have pushout and pullback:

•

{� ~~~~~~~

~~~~~~~

�#
@@@@@@@

@@@@@@@

•

m
��@@@@@@@ •

m
��~~~~~~~

•

•

•

;C~~~~~~~

~~~~~~~ •

[c@@@@@@@

@@@@@@@

•
ε

??~~~~~~~
ε

__@@@@@@@
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We can then sketch the object of monos and epis by adding objects and arrows to distinguish
two cones:

Monos(S)

emono

��
Pull(S)

idqAmpull

��

qampull

&&

qbmpull

xx
S2

Epis(S)

eepi

��
Push(S)

idqCmpush

��

qcmpush

&&

qdmpush

xx
S2

where qa, qb, qA are projections in the distinguished cone with S

•a ~~~~ b  AA

A
  @@ B
~~}}
• as vertex, likewise

for qc, qd, qC . Meaning that when modelled in Set we get that Monos(S) is the unique subset
of Pull(S) (pullbacks in the underlying graph) equalizing the ”pulled-back” part (model of
maps a, b) with the identity on A. This gives A = B and the map A // • a monomorphism
by the universal property of the pullback.
Then of course the object ”Epi-monos(S)” will be sketched by distinguishing the cone:

Epi-monos(S)

wwooooooooooo

''PPPPPPPPPPPP

Epis(S)

mepis
''OOOOOOOOOOOOO

Monos(S)

mmonos
vvnnnnnnnnnnnnnn

S2

hence Epi-monos(S) will, when modelled in Set, be the subobject of Ar(S) of maps both epi
and mono.
At last to get the property we set out to sketch, namely that all epi-monos are isos, we
distinguish cone

Iso(S)

v~ uuuuuuuu

uuuuuuuu
�

''NNNNNNNNNNN

Iso(S)

miso
$$JJJJJJJJJJ

Epi-monos(S)

mepimonos
wwoooooooooooo

S2

”Epi-monos(S)” will then in Set be realised as isomorphic to the object ”Iso(S)”, because
we distinguished the pullback of miso along mepimonos to be an epi and it will evidently be a
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mono, so since we are modelling in set it is an iso, which sketchs our property.
Remark: One should here be careful not to confuse the fact that epi-monos are isos in Set,
with the fact that we are sketching this property for models in Set.

The theoretical type t
cl
∗fields
f

and its corresponding free generator

τ̄
cl
∗fields
f

is constructed by a finite sequence of cone-expansions of τ̄clf , so the sketch mor-

phism
t
cl
∗field
f

: ελ // τ̄cl
∗fields
f

will indeed by propositions 3 and corollary 2. (in section 4.1.1) be a strict type morphism (a
”set-model-epi” from ελ)
So we have constructed a strict type confusing the two sketches of fields ξ1, ξ2. We already
saw that Top discriminate between ξ1 and ξ2 so, following the general problem, the only thing
left for us to do is to make some conjecture about the free t

cl
∗fields
f

-type generated by Top.

The free t
cl
∗fields
f

-type of Top: Lets see what happen if we force all epi-monos in Top to

be isos. For any topological space X (object of Top) the identity on X (as a set) gives, for
any topology T on X rise to a continuous epi-mono

(X,P(X)) // // // (X, T ) .

where P(X) is the discrete topology on X. Hence if we force epi-monos in Top to be
isomorphisms, we get that all topologies are the discrete topology. We thus conjecture
Tt
cl
∗fields
f

(Top) ∼= Set.

Since t
cl
∗fields
f

is strict we can profit from the application of generalized associated sheaf theo-

rem, in the ways discussed in section 6. We conclude:
-The sketch morphism ξ2

// ξ1 indicate the theorem that fields in the sense of ξ2 are
co-products of their 0-subspace and non-0-subspace. valid in all categories with finite limits
and co-limits where all epi-monos are isos. This is trivial since ξ1 is itself the general proof,
it evidently fulfill this property.

-If our favorite semantics is of type t
cl
∗fields
f

then there is no need for the more general sketch

ξ2, when interpreting field-structures, we can stick to the simpler ξ1.

The other way around, we should not believe that the simplest (set theoretical) way of sketch-
ing a structure always meet our purpose, since we saw that the first sketch of fields ξ1 does
not give us topological fields when modelled in Top. We should free our minds of set-theory
and describe concepts by sketching them according to where they are needed.

7.3 Two sketches of monoids

We now look at another example a little more complicated than the previous, concerning two
sketches of monoids following two different set theoretical definitions of monoids. We will
establish a strict theoretical type confusing these two sketches, as well as look at one example
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of a category that discriminate between them.
Two ways to define a monoid in the classical set-theoretical setting:

Def. 1: A monoid (M,k, e) is a set M with a binary operation ”k” everywhere defined, associa-
tive, and with a distinguished unit element e with respect to the operation.

Def. 2: A monoid (M,k) is a set M with a binary operation ”k” everywhere defined, associative,
and for which there exist a unit element.

Sketch of monoids following definition 1: This is exactly the sketch of monoids as con-
structed as first step towards the sketch of fields ξ1 in the previous section (p. 36), we will
call it µ1.

Sketch of monoids following definition 2:
Sketch of semi-groups:

S3

k1

��

r1

  

r2

&&

k2

��
q1

��

q2

��

q3

||

S2

p2

��

p1

��

k

��
S1

which is just the first sketch of monoids µ1, deprived of everything concerning the 0-ary
operation e, the given unit element.
In stead of the 0-ary operation we add the object Φ representing the formula (conjunction)
x · e = e · x = x as the vertex of a distinguished cone:

Φ

i
��

h

��

S2

p1
��

k
��

k·σ
��

.

S1
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where σ : S2 // S2 is to be thought of as a permutation (i.e. p1 · σ = p2, p2 · σ = p1).
This gives us the sketch SΦ:

S3

k1

��

r1

  

r2

&&

k2

��
q1

��

q2

��

q3

||

Φ
i
//

h

��

S2 σii

p2

��

p1

��

k

��
S1

Thus we have added the equations: h = p1 · i = k · σ · i = k · i (h just naming the composite).
When modelled in Set this will exactly mean that Φ is the subset of pairs of elements that
satisfy the unity-condition, i.e. the subset {(x, e) ∈M ×M |x · e = e · x = x}.

But since we need the formula ∃e¬(∃x¬(x · e = e ·x = x)), we introduce ¬Φ by distinguishing
the discrete co-cone

S2

Φ

i
DD				

¬Φ

j
\\99999

following the set theoretical meaning of the complement of Φ in S2 (i.e. in terms of formulas
all pairs not fulfilling Φ).
Remark: One should here keep in mind that the uniqueness of ¬Φ given Φ, is in no way
guaranteed in an arbitrary model, since it is a special property of Set. This means that we
are already envisaging certain types of models having the property that one co-projection in
a binary co-product completely determines the other co-projection as subobject of the co-
product (sum).
To express the central part of the definition 2. (i.e. the existence of a unit element as a
property of the binary operation; not itself introduced as a 0-ary operation as in µ1 ) we need
to distinguish certain factorizations of certain arrows: for a formula Θ (figuring in a sketch as
a vertex of a distinguished cone, like Φ) we can express ∃yΘ as the ”image” of the projection
forgetting the variable y. So to get ∃x¬Φ we add a factorization of the map p1 · j:

S2

p1

''OOOOOOOOOOOOOO

¬Φ
p1·j //

j

77nnnnnnnnnnnnnn

p′1
�

''PPPPPPPPPPPPP S1

∃x¬Φ
j′�

77nnnnnnnnnnnnn

and distinguish p′1 as a potential epi and j′ as a potential mono.
As before (with Φ) we distinguish the ”complement” of ∃x¬Φ as ”complementary subobject”
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in S1, by distinguishing the co-cone

S1

∃x¬Φ

j′ ??�����
¬∃x¬Φ

i′
aaCCCCC

To be able to talk about the truth of our formula we add the object S0 (= 1) a vertex of the
empty cone (terminal object in the model)

S0

		�
�

�
�

. ∅ .

and projection p : S1 // S0 . Thus we can as before get the formula ∃e¬(∃x¬Φ), as ”sub-
object” of 1, by adding the factorization:

S1

p

((QQQQQQQQQQQQQQQQ

¬∃x¬Φ
p·i′ //

i′
55kkkkkkkkkkkkkkkk

p′� ))SSSSSSSSSSSSSS S0

∃e¬∃x¬Φ
ι�

66mmmmmmmmmmmmmmm

and again p′ should be realized as epi and ι as mono.
Our formula ∃e¬∃x¬Φ is to be true in any model, so we need distinguish ι as invertible, i.e.
add an arrow ι′ : 1 // ∃e¬∃x¬Φ and equation ι · ι′ = 11 and ι′ · ι = 1∃e¬∃x¬Φ.
All in all, we get the underlying multiplicative graph of µ2:

S3

k1

��

r1

  

r2

&&

k2

��
q1

��

q2

��

q3

}}

Φ
i

//

h

""

S2 σii

p2

��

p1

��

k

��

¬Φ
j

99rrrrrrrrrrr

p′1
��

∃x¬Φ
j′ // S1

p

��

¬(∃x¬Φ)

i′
99ssssssssss

p′

��
∃e¬(∃x¬Φ)

ι
&&

hh
ι′

S0
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Cones and equations are the ones gradually introduced in the above.

Following the general problem we wish to find an equivalence ϕ : Setµ2 ∼ Setµ1 , derived
from a sketch-morphism υ : µ2 // µ1 , i.e. such that ϕ = Setυ but obviously it is not pos-
sible to get a sketch morphism µ2 // µ1 in the strict sense, by lack of distinguished cones
and co-cones in µ1. So we add to µ1 what is needed to get a sketch-morphism, in a way such
that the new larger sketch µ̄1 has the same models in Set as both µ1 and µ2.
We thus get two sketch morphisms to µ̄1 in the following way

µ2
υ // µ̄1

µ1

incl

OO

and we are then interested in determining a general type in which, both of these two sketch-
morphisms induce an equivalence of model categories and hence an equivalence:

ModC(µ1) ∼ ModC(µ2)

for all categories C of this type.

Construction of µ̄1: we just add and distinguish the cones and co-cones missing to get a mor-
phism υ : µ2 // µ̄1 . We thus add to µ1 objects X1, X2, X3, X4 and distinguish co-cones
and cone:

S2 S1 X3

X1

i1

EE������
X2

i2

YY333333

X3

i3

EE������
X4

i4

YY333333

X3

EE������
X3

YY333333

X2

EE������

YY333333

X1

i
��
S2

p1
��

k
��

k·σ
��

S1
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hence µ̄1 has underlying multiplicative graph:
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with equations and cones as µ1 plus u ◦ i4 =!, p1 ◦ i2 = i3 ◦ p′1, the three distinguished
co-cones and the distinguished cone, above.
µ̄1 has same models as µ1 in Set, since any model R : µ1

// Set can be expanded to a

model R̄ : µ̄1
// Set . Because R̄X1 is determined as the vertex of a limit, then X2 can (up

to iso) only be mapped to the complement of R̄X1 in R̄S1× R̄S1 and R̄X3 will be determined
by epi-mono factorization and at last R̄X4 will be determined in the same way as R̄X2. So
we in fact get an isomorphism of set model categories.
Now this makes use of some properties particular for the category Set: the existence of
complements and unique epi-mono factorization. But we are interested in identifying which
general properties a category need to satisfy for µ1 and µ̄1 to have the same models therein.
We want to arrive at a general strict type of categories that has the properties needed.
We can systematize this procedure by checking the properties of (iii) in the standard theorem
stated earlier concerning equivalences of categories (theorem 7.1).

We thus investigate the properties of a category C needed for Mod(µ̄1, C) incl∗ //Mod(µ1, C)
to have the properties of (iii):
-incl is an inclusion so incl∗ is evidently full.
-incl∗ is faithful, i.e. for any R,R′ models of µ̄1, the map

HomMod(µ̄1)(R,R′) // HomMod(µ1)(incl∗R, incl∗R′)

is injective: take τ, τ ′ : R // R′ two natural transformations such that τ 6= τ ′, then there
is at least one object S in Obµ̄1 such that τS 6= τ ′S . If S is in µ1 we evidently have incl∗τ 6=
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incl∗τ ′. If not we must have S = Xk for some k ∈ {1, . . . , 4} and by naturality

RXk

τXk

��

τ ′Xk

��

Rik // RSj

τ
Sj

��

τ ′
Sj

��

R′ikτXk = τSjRik

R′Xk
R′ik

// R′Sj R′ikτk = τ ′
Sj
Rik

and

Now if all R′ik’s are monomorphism, we have τXk 6= τ ′Xk implies R′ikτXk 6= R′ikτ
′
Xk

and hence
τSjRik 6= τ ′

Sj
Rik which gives us τSj 6= τ ′

Sj
and hence incl∗τ 6= incl∗τ ′, i.e. incl∗ is faithful.

We have that R′i1 and R′i3 are monomorphisms for C any category, and if C has the property
that a co-projection in a sum is a monomorphism then R′i2 and R′i4 will be monomorphisms
too.
To show the last property of (iii) take a model of µ1 R : µ1

// C , we then wish to find an
expansion of R to a model R̄ of µ̄1 such that incl∗R̄ ∼= R.
First we suppose the category C to be at least of type tclf , i.e. it has finite limits and co-limits,
then R̄X1 is determined up to isomorphism (it is the vertex of a equalizer cone), so we need
C to have properties assuring the existence of objects R̄X2, R̄X3, R̄X4 defining a model R̄ of
µ̄1.
As already pointed out, the properties that all monomorphisms are co-projections in a binary
sum and that all such co-projection determines the other up to isomorphism are desired. We
will call the latter the sum-property. Now:
-We can expand R to model X2: if monomorphisms are co-projections in some sum (in C)
R̄X2 will be determined by R̄X1 up op isomorphism by the sum-property.
-We can expand R to model X3: because of the way we (in µ2) sketched the notion of existence
following the second definition of monoids any category serving as target for models will have
some epi-mono-factorization property. So if we demand that C has epi-mono-factorization for
all arrows (not necessarily unique) then the existence of R̄X3 will follow.
-We can expand R to model X4: again if all monomorphisms are co-projections in some sum,
R̄X4 will be determined by the sum-property.
We conclude that incl∗ is an equivalence of model categories if C is of the type tclf with
the extra properties: the sum-property, all arrows have epi-mono-factorization, all monomor-
phisms are co-projections in a binary sum and all co-projections are monomorphisms.
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We now look at υ : µ2 // µ̄1

S3 υ //
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p′1 ��

X2

p′1��

i2
55kkkkkkkkkkkk
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êii
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p′��
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##
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ι′ S0 // S0

e

HH

We are interested in when υ∗ : ModC(µ̄1) //ModC(µ2) is an equivalence, so again we check
the properties of (iii):
We start with the last property of (iii) (assuming that C has the properties arrived at for incl∗

to be an equivalence): Take R : µ2
// C a model of µ2. We then again wish the existence

of an extended model R̄ of µ̄1 such that υ∗R̄ ∼= R. If C has properties that permit, from R(µ2)
the existence of arrows modelling the arrows e, ê, v1, v2 (in µ̄1), we will have the extension
searched for. If C has the property that all epimorphisms are split and we note εsplit the
split morphism of an epimorphism ε in C, then R̄ can be defined as equal to R on everything
hit by υ (meaning that we get υ∗R̄ = R) and then we define R̄(e) = R(i′)R(p′)splitR(ι′)
and R̄(v1) = 1RS1 × R̄(ê), R̄(v2) = R̄(ê) × 1RS1 . Then R̄ is obviously a functor ex-
tending R to µ̄1, but it is not obvious that it defines a model. We need to proof that
R̄(p1)R̄(v1) = R̄(k)R̄(v1) = R̄(σk)R̄(v1).

I had overlooked this in the first version of this paper, so I have not yet proven that we
only need the properties arrived at so far in order to prove that R̄ is a model of σ̄1. But it is
obviously true for set theoretical models, since sums are disjoint unions in Set, the question is
wether the sum property assures the connection between the two ways of sketching unitarity,
I am not sure, but if we add the property that all arrows from the terminal object to a sum
will facter through one and only one of its co-projections, then we get the connection searched
for. We shall leave this at that since we have no particular use of this example other than to
illustrate how the ”the mashinery” works.

υ∗ is faithful: same procedure as before (with incl∗) and it follows from the fact that υ
is surjective on objects.
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υ∗ is full: take any pair of models R,R′ ∈ ObMod(µ̄1,C) then

HomMod(µ̄1,C)(R,R
′) // HomMod(µ2,C)(υ

∗R, υ∗R′)

is surjective: if we take a natural transformation

τ : υ∗R // υ∗R′

then we need to find a natural transformation τ̄ : R // R′ such that υ∗τ̄ = τ . υ is
surjective on objects, so it is enough to show that the naturality of τ extends to the arrows
v1, v2, e, ê. As long as we are talking about models in a category C with all epis split there is
no harm in adding the pair of potential split maps p′split, 11

S × ê of p′, p1 to the sketch µ2

(as above indicated by dotted arrows).
Then we can set υ(11

S × ê) = v1 and the naturality of τ will follow easily by the equations
v2 = σv1, ê = p2v1, ep = ê.

7.3.1 A type confusing the two sketches of monoids

By the above systematic request for equivalent model categories, we can conclude1 that a
sufficient2 type of category, in which the two sketches µ1 and µ2 have the same models, is
a category with finite limits and co-limits and furthermore satisfying: the sum-property, all
epimorphisms are split, all arrows have some epi-mono factorization, all monomorphisms are
co-projections in some sum and all co-projections in a sum are monic.
In fact the last property follows from the others:

Lemma: A sufficient type for which µ1 and µ2 have equivalent model categries, is
the type: categories with finite limits and co-limits, with the sum-property, where
all epis split, where all arrows have epi-mono factorization and where all monos
are co-projection in some sum.

Proof:
In a category of the type in the Lemma, all co-projections in a binary sum are monomorphisms:
take a sum

A+B

A

a 99tttt
B

beeJJJJ

and take an epi-mono factorization of, lets say, a

A a
//

ε '' ''OOOOOO A+B

I
55 m

55llllll

then the diagram
A+B

I
::
m ::uuuu

B

beeJJJJ

1up to the missing verification.
2remember that we nowhere proved necessity of all of these properties
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is a sum. Because, take any diagram

C

I

c ??���
B

c′``AAA

then, since (A+B, (a, b)) is a sum, there exists a unique arrow h : A+B // C such that
ha = cε and hb = c′. Now since a = mε we have that ha = hmε = cε which, by ε epimorphic,
gives hm = c. So (A + B, (m, b)) is a sum, and hence by sum-property A ∼= I, thus a is a
monomorphism (same goes for b).

�

We will call the properties arrived at, the ∗monoids-properties. i.e. the properties: sum-
property, all epimorphisms split, all arrows have some epi-mono factorization and all monos
are co-projections. The corresponding sketch of the type confusing the two sketches of
monoids, will hence be noted τ̄cl∗monoidsf

, and this sketch will be constructed in the follow-
ing, by adding the ∗monoids-properties to the sketch τ̄clf one by one:

The sum-property: given a binary co-product (co-limit indexed by the discrete graph 2),
if one co-projection is known then the other is known up to isomorphism. So in the sketch
τ̄clf we need make the restriction, required by this sum-property, on the object destined to
be the set of binary co-products:
For I = 2 = {• •} we have our choice of co-limits, by the arrow L2 destined to choose a
2-co-limit of all pairs of objects in the underlying graph of the model. We will call sums all
co-limits indexed by 2, so ”the object of sums” will be the object 2-co-limits(S) as introduced
in the construction of τ̄clf . This is practical since the sum-property concerns all sums and
not just the chosen ones, though the chosen ones are representative up to isomorphism.

We have (in the model) the object of sums Sum(S), as the subobject of S↗↖ such that
the hook by the comparison map (the arrow u between the vertexes of the two co-cones
compared) is an isomorphism, i.e the following cone is distinguished:

Sum(S)

g

��<<<<<<<<<<<<<<<

m�
sum

�����������������

S↗↖

quC2 %%JJJJJJJJJJ Iso(S)

m�
isoyyssssssssss

S2

Where C2 is the comparison map, taking a 2-co-cone to the diagram comparing it with
the chosen sum of the same basis and qu is the projection of the hook between vertexes in
the comparison diagram. So g will (up to isomorphism) be the map taking a sum to the
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isomorphism from the chosen sum of the same basis:

Σ
g : � // A+B // Σ

A

GG������
B

WW//////

where we (abusively) let A+B note our choice of co-limit by (the model of) L2 for the pair
A,B.

We introduce the graph K5 = · · // · and then the joint graph 1K5 :

·

·

GG����
·

WW0000

y
// ·

ll

and inclusions:

· ·
� � η1 //

·

GG����
·

WW0000
·

GG����
·

WW0000

y
// ·

ll

· ·
� � η2 //

·

GG����
·

WW0000
·

GG����
·

WW

y
// ·

ll

the object S

·

·

GG���
·

WW000

y
// ·

ll

= S1K5 and a new comparison map C ′2:

Sum(S)
C′2

--

msum $$JJJJJJJJJ S1K5

η∗1qq
η∗2

llS↗↖

such that η∗1C
′
2 = msum, to make sure that any sum is embedded into a comparison graph; it

is actually being compared. We then continue to consider what we are comparing a sum to,
by the map C ′2.
If we note c∗ the composition from the right by graph morphism

· ·
� � c //

·

GG����
·

GG����
·

WW0000

,
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we can introduce (up to isomorphism) the ”object of co-projections”, as ”Copr(S)” by adding
the following factorization of the map c∗msum that forgets the right leg in a sum:

Sum(S)

m�
sum $$JJJJJJJJJ

ε�
copr // Copr(S)

L′2

yy

m�
copr

��

S↗↖

c∗
%%KKKKKKKKKK

S2

where L′2 is added destined two be a right inverse to the epi εcopr, i.e. we add equation
εcoprL

′
2 = 1Copr(S). Since we sketch theoretical types set-theoretically, i.e. to be modelled

in Set, there is nothing ”wild” in adding L′2 to the sketch, because in Set all epimorphisms
(surjections) have a right inverse (given of course that we believe in the axiom of choice).
Then in a model R, RL′2 will be a new choice map, from the object of co-projections to the
object of sums, taking a co-projection to a sum where it is the left leg, we will call this sum
the ”complement sum”.
Now we add equation η∗2C

′
2 = msumL

′
2εcopr

Sum(S)

εcopr

��

C′2

$$

msum
// S↗↖ S1K5

η∗2

ll

Copr(S)

L′2

DD
,

meaning that C ′2 compares (by ”new hook” y) any sum to its corresponding sum obtained by
forgetting one co-projection and then choosing a sum by L′2 and that all sums, in this way,
will be compared to their corresponding ”complement sum” by a (model of) the ”new hook”
map y.
Now the sum-property comes down to adding a map γ : Sum(S) // Iso(S) and distinguish
the cone

Sum(S)

�"
===============

===============

γ

�����������������

Iso(S)

miso
%%KKKKKKKKKK

Sum(S)

yyrrrrrrrrrrr
C′2
��

S2 S1K5qy
oo

Then in a model the pullback of miso along qyC
′
2 is an isomorphism, meaning that for any

sum, we have that the ”new hook” in the ”new comparison graph” (comparing the sum to
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the ”complement sum” of one of its co-projections) is an isomorphism, and hence γ is the
arrow modelled as

Σ Σ
γ : � //

A

i

GG������
B

WW000000
// {i

ii

A

GG

B

WW

// {i

ii .

We have now sketched the sum-property: for a co-projection q in a sum, any sum with q as
one co-projection (”left leg”), will compare two L′2(q) by an isomorphism, so q does determine
the other co-projection up to isomorphism.

All arrows have an epi-mono factorization: we add an object, that we call ”Fact(S)”, to be
modelled as a subobject of composable pairs of arrows consisting of an epimorphism followed
by a monomorphism. This object can be added to the sketch as vertex of the following
distinguished cone:

Fact(S)

~~}}}}}}}}}}}}}}}}

m�
fact

�� ��????????????????

Monos(S)

m�
mono ��???????

S3

p1
���������

p2
��;;;;;;; Epis(S)

m�
epi���������

S2 S2

i.e mfact is modelled as, at the same time, the pullback of the subobject of monomorphisms
along the first projection of pairs of composable arrows, and the pullback of the subobject of
epimorphisms along the second projection of composable arrows, so clearly mfact is a poten-
tial monomorphism.
Then distinguish km�fact as a potential epimorphism. Since epis have right inverse in Set we
get that there are choices of epi-mono factorizations for all arrows (in any given model in
Set), by the possible right inverses (sections) of the model of kmfact.

All epimorphisms are split: first we add the object ”of all split diagrams”, ”Split(S)”, to

be modelled as the subobject of the object S�, of diagrams of the sort •
a
55 A

a′
vv such that
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aa′ = 1A. By distinguishing the cone

Split(S)

msplit

��
S�

h
��
S3

k

��

p1

���������

S2

c

��
S1

id ��<<<<<<<

S2

.

Notice how this is just the left part of the diagram we saw earlier (p.30) distinguishing the
object ”Iso(S)”.
Now if we denote ı∗ : S� // S2 the composition from the right with the graph inclusion

· // · � � ı // · 88 ·xx

Then we distinguish the object ”Split-with-epi(S)”, to be modelled as subobject of split
diagrams where the co-section is an epimorphism, by pulling back mepi along ı∗msplit. We
thus distinguish the cone:

Split-with-epi(S)

""FFFFFFFFFFFFFFFFFF

p�
epi

||yyyyyyyyyyyyyyyyyy

Epis(S)

mepi
((QQQQQQQQQQQQQQ S�

ı∗

��

Split(S)
msplitoo

ı∗msplit
vvmmmmmmmmmmmmmm

S2

and furthermore that the pullback pepi of ı∗msplit along mepi is a potential epimorphism,
which, for a model R, in set gives the existence of a right inverse

R(pepi)′ : Epis(S) // split-with-epi(S) ,
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choosing, for each epi, a split diagram where it itself is the left inverse.
Monos are coprojections: The lemma gives a potential mono Copr(S) � //Monos(S) so we
just need to distinguish this map to sketch an epi as well and our sketch is final.

The sketch τ̄cl∗monoidsf
was here constructed in a manner taking very much advantage of the

fact that it is to be modelled in set. As well as viewing the fact that we wish for a strict type,
i.e. we wish to take advantage of the proposition 3 and corollary 2 and hence want, as much
as possible, to restrict our expansion of tclf to a finite series of expansions by cones.

The theoretical type tcl∗monoidsf
and its corresponding free generator Tt

cl
∗monoids
f

of

tcl∗monoidsf
-types.

proposition 4:
tcl∗monoidsf

: ελ // τ̄cl∗monoidsf

is a set-model-epi, i.e a strict theoretical type.

Proof: The only part of τ̄cl∗monoidsf
not achieved by a finite sequence of expansions by cones of

τ̄clf are the maps L′2 : Copr(S) // Sums(S) ”choice of complement sum” and C ′2 : Sums(S) // S1K5

”comparison (by y )of a sum to the complement sum of its left leg”.
Take ϕ s // ψ the natural isomorphism between models of τ̄cl∗monoidsf

induced by corollary

2. (i.e not yet natural on L′2, C
′
2) and take q an element of ϕ(Copr(S)), then

ϕL′2(q) = ·

·
q @@��� ·

{ϕq^^<<<

ψL′2(scoprq) = ·

·
scoprq @@��� ·

{ψscoprq^^<<<

and since sCopr(S)ϕεcopr = ψεcoprsSum(S) we get that sSum(S)(q, q′) = (sCorp(S)q, sCopr(S)q
′)

and then sSum(S)ϕL
′
2(q) = sSum(S)(q, {ϕq) = (sCopr(S), sCopr(S){ϕq) and ψL′2sCopr(S)(q) =

(sCopr(S)q, {ψsCopr(S)). Now by the sum-property we get {ψsCopr(S)
∼= sCopr(S){ϕq, meaning

we only get naturality of the isomorphism s up to isomorphism. This is however not a serious
problem, because the model of L′2 is just one of several isomorphic sections of the epimorphism
forgetting the ”right-leg” co-projection in a given sum. Any model (ϕ) will naturally posses all
possibilities for modelling L2 and one of these (or rather all of them together) will furnish the

pure naturality of s : ϕ
∼= // ψ . Said differently, the model ψ : τ̄cl∗monoidsf

// Set posses

(in Set) a map isomorphic to ψL′2 and naturally isomorphic to ϕL′2 by the isomorphism s.

�

We have thus found a strict type tcl∗monoidsf
confusing our two sketches of monoids µ1 (follow-

ing ”Def. 1”) and µ2 (following ”Def. 2”).
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Now keeping to the general problem, and in good mathematical tradition, we point out
at least one category discriminating between µ1 and µ2, i.e. a category C such that Cµ1 is not
equivalent to Cµ2 .

Discrimination of the two sketches of monoids:(Coppey, L. [1992]) If K is a com-
mutative field, we call K-Vect the category of K K-vector spaces with arrows all K-linear
maps.
Then if (M,k, e) signifies a monoid in the sense of µ1 internally of the category K-Vect (i.e.
(M,k, e) is the image of a model RM : µ1

// K −Vect we get:

-M is a K-vector space.
-The unit element e : M0 //M is a K-linear map, so since M0 is the zero-
space e must be the zero-map. Meaning that the unit element for the (K-linear)
composition k is the vector 0. Now since (x, y) = (x, 0)+(0, y) we get by unitarity
(in the sense of µ1):

k(x, y) = k((x, 0) + (0, y))
= k(x, 0) + k(0, y)
= k(x, e) + k(e, y)
= x+ y.

So for a K-Vector space m there is exactly one possibility for a monoid-structure on M (in-
ternally of K-Vect), the one obtained by the addition of vectors in M .

Now suppose that (M,k) is a monoid in the sense of µ2 (internally of K-Vect), then:

-M is a K-vector space.
- k : M ×M //M is a K-linear map.
-We already have k(0, 0) = 0.
-Because of associativity of k, we get:

k(k(x, 0), 0) = k(x, k(0, 0)) = k(x, 0)

-Consequently the map λ : M //M , λ(x) = k(x, 0) is an idempotent K-
linear map; the same goes for the map φ : M //M , φ(y) = k(0, y), and we
see that:

k(k(x, y), z) = λ(λ(x) + φ(y)) + φ(z)
= λ2(x) + λφ(y) + φ(z)
= λ(x) + λφ(y) + φ(z)

and
k(x, k(y, z)) = λ(x) + φ(λ(y) + φ(z))

= λ(x) + φλ(y) + φ2(z)
= λ(x) + φλ(y) + φ(z).
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Hence by associativity of k we can deduce λφ = φλ, thus the law of composition must be of
the form k = λp1 + φp2 where p1, p2 are the two projections M2 //M and λ, φ are two
commuting idempotent K-linear maps.
The other way around, if M is a K-vector space and λ, φ : M //M two commuting
idempotent K-linear maps, then (M,k) is, at least, a semi-group (internally of K-Vect). But
there is nothing in the previous calculations that prevents unitarity (in the sense of µ2):

-The ”only possible monoid structure” in the sense of µ1, is one among ”the pos-
sible” structures in the sense of µ2, by putting λ, φ = 1M .
-Better yet, there exist non-isomorphic monoid structures in the sense of µ2 (in-
ternally of K-Vect) having the same underlying semi-group.

To show the last statement, take for example λ = 1M and φ = 0. Then k = p1 and the trivial
semi-group (M,p1) can be equipped with two different monoid structures in the sense of µ2:

- Φ is the diagonal of M2.

- ¬Φ is one ”complement” of this diagonal.

- ∃x¬Φ is the then either isomorphic to M or to {0}, according to the choice of ”comple-
ment” above (either it is different from p2(M2) or it is equal to p2(M2)).

- ∃e¬(∃x¬Φ) is always true since every K-linear subspace of {0} is {0}.

If we only require M 6= {0}, we here have two non-isomorphic monoid structures on the same
vector space in K-Vect. Hence K-Vect discriminate between µ1 and µ2, and hence is not of
type tcl∗monoidsf

.
However, we observe that monoids in K-Vect, in the sense of µ2, perhaps have a unit element
as models of µ2. But at the same time (and in the same sense) they don’t have unit element,
because all models of µ2 into K-Vect extend (uniquely) to a model (into K-Vect) of the sketch
obtained by adding the object ¬(∃e¬(∃x¬Φ)) to the sketch µ2.
There is no more contradiction in this than in the fact that 0 = 1 in K-Vect. So we are just
confirming the fact that our choice of interpretation of the negation, when constructing µ2,
was indeed set-theoretical (or Boolean); we were not thinking about monoids in the sense of
Def. 2 internally of additive categories when we sketched µ2.

The core of the above demonstration of K-Vect not being of type tcl∗monoidsf
is that K-Vect

does not satisfy the sum-property, for example the diagonal of M2 has complements that
define different subobjects of M2 whenever the vector space M is non-zero.

We thus conjecture that Tt
cl
∗monoids
f

(K − V ect) (”forcing” the sum-property) will give the

trivial category of just one object and one arrow (the zero-vector space with zero-map)

Since tcl∗monoidsf
is strict we can profit from the application of generalized associated sheaf

theorem, in the ways discussed in section 6. We conclude:

-The two sketch morphisms incl : µ1
// µ̄1, υ : µ2 // µ̄1 indicate the theorem, relative

to the two sketches µ1 and µ2 for tcl∗monoidsf
-models, that the two sketches describe the same
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mathematical theory. The proof is obtained by the factorization µ̄1 //

e &&MMMMMM
Tt
cl
∗monoids
f

(µ̄1)

µ̄1
′

44jjjjjj

where µ̄1
′ is a sketch evidently modelling both sketches and could be the followning sketch:

Underlying multiplicative graph of µ̄1
′ : S3
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only adding the arrow h : S1 // X1 and equations v1 = i1h which in any model is as-
sured by the universal property of the equalizer distinguished by X1, since we in µ1 have
the equations kv1 = kσv1 = p1v1 = 1S1 . This makes evident that a model of µ̄1

′ is at
the same time a model of µ1 and µ2 describing one and same structure, by the equations
v2 = σv1, ê = p2v1, ep = ê.
One could then discuss whether it is necessary to add the arrow h, or even whether it is
enough to add h to obtain the evidence. Personally I think there should be something in
the proof-factorization directly showing the connection between the two descriptions, even
though anyone with a trained eye will notice the existence of the map h in any model.

-The natural conjecture that µ1 and µ2 are confused when modelled in any boolean topos,
has been checked and confirmed! (Boolean toposes are clearly of type tcl∗monoidsf

).

-In the process of showing that K-Vect discriminate between µ1 and µ2, we came across
another theorem: that any law k of a semi group internally of K-Vect, is of the form
k = λp1 + φp2 where λ, φ are commuting idempotent linear maps. This gives rise to an
object proving a theorem relative to the sketch of semi groups, valid in the additive type
(exercise).
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8 Conclusion

We have clearly been supporting the seven mottos stated in the introduction and we have
arrived at a basic understanding of theoretical strict types as subcategories in the category
of sketches furnishing a general machinery for proving and discriminating.
A machinery that applies whenever we (within the given size frame) are able to sketch our
problem, i.e. whenever we can get a strict type containing the theory in which we want to
show a certain property related to a certain concept, and whether we can sketch this concept
and formulate the property as a sketch morphism. Then we can examine whether the property
gives rise to a theorem in our theory by examining (as we did in the example of monoids) for
what types of models the sketch morphism gives rise to an equivalence of model categories,
or by directly progressing towards the free types (in our Type) generated by the sketches of
our sketch morphism. Then if the sketch morphism gives rise to an isomorphism/equivalence
of generated free types we have a general proof that our concept has the considered property
in any category of the considered strict type, thus also in the theory we started out with.
The examples supply us with ideas for a manual to this machinery of checking conjectures
since they give samples of how to proceed in praxis, when we want two confuse/discriminate
sketches or prove theorems in the frame Esqλ.
We also see from the examples that many usual (λ-small) categories will be of some strict
type so the above machinery can be supposed to apply to many mathematical problems and
perhaps fruitfully.

Concerning further work, there are two main questions now urged upon us:
Firstly, how do we optimize the search for the confusing type, meaning on the one hand that
it is wishful to minimize the properties needed in a category in order for two sketches to
have the same models therein and on the other hand assuring this by a systematization of
the progression/mounting towards a sketch that evidently shows the confusion in models of
a necessary and sufficient type. Secondly, the question of application, of finding interesting
examples showing that this machinery does indeed bare fruit in mathematical practice.
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