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Abstract

Bases are exhibited for Kn, Kp,q, and Qd, and it is shown how each

cycle of the various graphs can be built as a hierarchical ordered sum

in which all of the partial sums are (simple) cycles with each cycle

from either the basis or one of the hierarchically constructed cycle-sets

meeting the partial sum of its predecessors in a nontrivial path. A

property that holds for this “connected sum” of two cycles whenever it

holds for both the parents is called constructable. It is shown that any

constructable property holding for the specified basis cycles holds for

every cycle in the graph, that commutativity is a constructable property

of cycles in a groupoid diagram, and that “economies of scale” apply

to ensuring commutativity for diagrams of the above three types. A

procedure is given to extend a commutative groupoid diagram for any

digraph that contains the diagram’s scheme.

Keywords. Robust basis, well-arranged sum, blocking number, groupoid.
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Preface

The intended readership of this paper are category-theorists and systems-

biologists with an interest in the work of Professor Andrée Ehresmann. How-

ever, the main tool turns out to be topological graph theory; graph theorists

can skip to sections 5 through 8, where constructions are given in which a cycle

may be seen as being built up (“growing” in a sense) through the successive

attachments of new cycles along a common nontrivial path. After developing

this first portion, we proceed to the case of directed graphs and graph embed-

dings of various types including as diagram schemes in a category. Finally,

there is an application to commutativity of diagrams, and this is the pay-off

for our typical reader. Accordingly, such a reader may wish to first go to sec-

tions 10 through 19, going back to the preceding sections as needed to follow

the arguments.

To describe biological form and function, we suggested in [16] that all the

branches of mathematics and perhaps some new ones will be required. The

present work uses algebra, combinatorics, and topology, and provides insight

into the notion of cycle. Present in so many aspects of biology, from circadian

rhythms, to the cell-cycle, to population growth and decline, the treatment

of cycles should be keystone for biological theory; see [13]. Broad-brush, any

notion of biological action should incorporate a flexible but powerful notion of

cycle, which addresses the problem of freedom vs. constraint.

The connection of this work with that of Professor A. C. Ehresmann is

through its utilization of hierarchical constructions and its potential applica-

tion to error-control for the elaborate diagrammatic schema required for higher

category theory and biological networks. An early version of these ideas [15]

was presented at a conference in Amiens.
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Our theory proposes that the sort of dynamic, symbol-bearing graphs de-

scribed in the Ehresmann-Vanbremeersch theory can be structured so that

their cycles evolve through a finite, hierarchical process. At each stage, a

cycle meets the partial sum of its predecessors in a nontrivial path so under

mod-2 addition, the repeated path disappears and each partial sum constitutes

a cycle.

In this direction, building up (or “composition”), the process is determin-

istic. However, in the reverse direction, a single cycle can develop a cross-path

connecting two of its non-adjacent vertices by a path whose internal vertices

are disjoint from the cycle. Thereby the original cycle can split into two cy-

cles in many possible ways. Thus, cycles already contain features of biological

flavor.

Moreover, if two cycles have some nice property and meet in a common

nontrivial path, then their sum is also nice. Nice properties turn out to include:

bounding a disk if the graph is embedded in a surface, being unknotted if the

graph is embedded in 3-space, or having composite value 1 if the graph has

a diagram in some groupoid. The latter application is the one which will be

expanded upon in this study.

To help convince a skeptical reader that graph theory might be of value for

biology, let me mention a simple example that uses geometrical information

about a graph G to predict the complexity of its complement (or “anti-graph”)

Ḡ. As each distinct unordered pair of vertices is either in the graph or the

anti-graph, ¯̄G = G, so a gain for the graph is a loss for the complement and

vice-versa. We shall show that if G contains two non-adjacent vertices with

no common neighbor, then Ḡ is connected; this is (*) below. Thus, if G wants

to keep Ḡ disconnected, then G should avoid having such a pair of vertices.

(Avoiding such a pair is a necessary condition for keeping the complement
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disconnected but it is not always sufficient.)

For the argument, define distance in a graph as the length of a shortest

path joining two vertices, with value +∞ if no path joins them - i.e., if the

points chosen belong to different connected components of the graph. Let

diam(G) denote the greatest distance occurring between all possible pairs of

vertices of G, the worst-case distance one might need to travel to go from one

vertex of the graph to another. So diam(G) = ∞ iff G is not connected.

We claim that

diam(G) ≥ 3 =⇒ Ḡ is connected. (∗)

First, note that the following holds:

(G not connected) =⇒ (Ḡ has diameter ≤ 2.) (∗∗)

Indeed, if two vertices lie in different connected components ofG, then all edges

joining vertices of the two components fail to exist in G (else the components

wouldn’t be distinct), so the two vertices chosen are adjacent in Ḡ. Otherwise,

the two vertices both belong to one of the components of G and since G isn’t

connected, there is another vertex in a different component to which each of

the chosen pair is adjacent in Ḡ.

Now the result (*) follows by the logical jiu-jitsu of contraposition (If P ,

then Q; so if not Q, then not P ) applied to (**) with G and Ḡ interchanged.

While diam(G) = 1 iff every distinct pair of vertices are adjacent, diam(G) =

2 is already nontrivial; see, e.g., [7]. This simple example illustrates how

certain natural propensities of the networks themselves might allow qualitative

emergence of new properties in a fashion which the organism could exploit.
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1 Introduction

A diagram is said to commute when the morphisms produced by composing

the arrows along any two parallel paths are the same, where (directed) paths

are “parallel” if they begin and end at common nodes. It is of interest to

know when commutativity of the entire diagram follows from that of some of

its parts. Since various mathematical properties can be described via com-

mutative diagrams, the extension of commutativity could provide statistical

reliability in the determination of such properties.

Commutativity is an algebraic constraint but it is expressed within the

combinatorial context of the underlying diagram scheme, which is a directed

graph. Hence, it is not surprising that combinatorial arguments yield condi-

tions which force or block commutativity. Previously, we found such conditions

when the scheme is that of a d-dimensional hypercube (or more briefly, d-cube).

In addition, the arguments required that the category in which the diagram

appears has all of its morphisms invertible - i.e., it is a groupoid. In [14] com-

mutativity of a d-cube diagram in a groupoid was shown to be guaranteed

(i.e., “forced ”) by the commutativity of a particular family of its square faces

containing approximately 4/d of all the square faces. On the other hand, in

[15] it was shown that while d − 1 square faces can “block” commutativity,

d − 2 cannot; that is, a non-commutative d-cube diagram must have at least

d− 1 non-commuting square faces (as conjectured in [14]).

Here these prior results are extended. We have tried to include sufficient

background that any category theorist or systems biologist can understand

the underlying topological and combinatorial results. Aspects related only

to (undirected) graphs are considered first. Cycle bases with desired special

properties are constructed for the three standard graph families consisting of
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hypercubes, complete and bipartite complete graphs, and the combinatorial

isolation theorem for cubes given in [15] are extended to comparable results for

complete and bipartite graphs. This is extended to the case of directed graphs

and conditions are reviewed for embeddability of such “digraphs” in suitable

host graphs. We then apply the developed cycle theory to commutativity

of diagrams in general and particularly in groupoid categories to give some

new results regarding both forcing and blocking of commutativity in various

diagram schemes.

In [6], A. C. Ehresmann and J.-P. Vanbremeersch describe the notion of

an evolutionary and hierarchical system of categories and functors, which we

call an EV-model. The biologically oriented Ehresmann-Vanbremeersch the-

ory builds on Charles Ehresmann’s foundational work on categories both alone

and, in later years, with Andrée Ehresmann (see [5]) while the EV-theory also

includes the contributions of gerontologist, Jean-Paul Vanbremeersch. The

EV-theory is very detailed and attempts to give a complete account of biolog-

ical function and misfunction (e.g., aging) from the conceptual down to the

cellular level.

The intriguing idea of a sequence of hierarchically organized implicit dia-

grams however seems to need some form of error-correction to ensure coher-

ence, and it is the intent of this paper to consider tools appropriate for the

task. Interestingly, giving a full account of the notion of cycle “robustness” re-

quired for the combinatorics led to an enriched hierarchical structure in which

cycles are constructed in a topologically natural way.

A diagram is just a subdigraph of the digraph skeleton of a category, sim-

ilar to what C. Ehresmann called a “sketch” By implicit diagrams of an EV-

model, we mean not just the “web of interactions” of the centers of regulation

(CR), but also the categorical machinery itself since all basic notions of cat-
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egory theory, such as functors and natural transformations, can be presented

as commutative diagrams. In addition to describing the syntactic rules, dia-

grams may also encode semantics such as products, limits, pullbacks, and dual

notions such as colimit.

In an EV-type category-theoretic model, the cooperating CRs transmit

information. Making the identification of morphism with message, coherence

in such transmission corresponds to the condition that the implicit diagrams of

an EV-model are commutative. Further, one would like to have some assurance

in constructing an EV-model that “sufficiently close” ensures correctness and

that there is a reward for intelligence which improves with complexity.

Thus, the goals of coherent information, correction of errors, and cognitive

leverage provide our primary motivation for offering a paper on the theory of

commutative and partially commutative diagrams as part of this compendium.

The paper is organized as follows. Sections 2–4 cover some graph theory

basics. Section 5 presents a generalization of the “robust basis” theory in-

troduced in [14] with results in sections 6–8. Section 9 reviews digraphs and

diagrams, and gives the notion of a face of a digraph. Sections 10 and 11 con-

sider how commutativity of a diagram is related to commutativity of bases,

while Sections 12 and 13 tabulate the commutativity properties of diagrams

on the scheme of certain standard orientations of the complete graph and of

the hypercube. There is an exploration of the geometry of hypercube faces in

Section 14, while the classical “cube lemma” and its groupoid simplification

appear in section 15. Section 16 describes commutativity in hypercubes in

more detail. Thresholds for commutativity and blocking numbers are studied

in Section 17. Finally, in Section 18, we give a theorem on groupoid diagram

extension, showing it is not possible when the category where the diagrams

live is not a groupoid. Section 19 puts the results into the context of biology.
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2 Graphs, paths, and cycles

Let N, Z, R, and C denote the sets of nonnegative integers, all integers, real,

and complex numbers, respectively. Write #S for the number of elements in

a finite set S. For n > 0 in N, [n] := {1, 2, . . . , n}. If S is a set, diag(S) :=

{(s, s) : s ∈ S} ⊆ S × S, where equality holds iff #S = 1. We briefly define

various graph theory terms used throughout this paper; see, e.g., [10].

A graph G = (V,E) consists of a finite, non-empty set V = V (G) of vertices

and a set E = E(G) of edges which are unordered pairs of distinct vertices.

Equivalently, (V,E) is a graph if 0 < #V < ∞ and

E ⊆ V × V \ diag(V )

τ
,

where τ is the equivalence relation with equivalence classes {(v, w), (w, v)}.

Two vertices v, w are said to be joined by the edge e = vw (the equivalence

class of (v, w)), and v and w are the endpoints.

A multigraph (V,E,Φ) is an ordered triple, where V is a non-empty finite

set, E is a finite set, and Φ is an incidence function which maps each edge

e ∈ E to an unordered pair of not-necessarily-distinct vertices in V , called

the endpoints of e. If Φ(e) has only one endpoint, the edge e is a loop. Two

distinct edges e, e� are called parallel if they are incident to the same unordered

pair {v, w} of vertices. When Φ is implicit, we will denote a multigraph merely

by (V,E). We sometimes write “graph” instead of “multigraph” for brevity.

Graphs are multigraphs without loops or parallel edges. Further, each

graph determines a symmetric, irreflexive relation on its vertex set; two vertices

v, w are adjacent iff they are joined by an edge of the graph. The intersection

of two edges is the set of their common endpoints. In a multigraph, two

edges can intersect in two vertices but in a graph, two edges can have at
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most one common endpoint. Topologically, multigraphs are 1-dimensional

CW-complexes, while graphs are 1-dimensional simplicial complexes.

Let G = (V,E) be a graph. If E � ⊆ E, we write G(E �) for the graph

(V �, E �) where V � is the set of all vertices in V which are endpoints of an edge

in E �. If W ⊆ V , let G(W ) be the graph (W,E|W ), where E|W is the set of all

edges in E which join two vertices in W ; the adjacency relation determined

by E|W on the set W is exactly the same as the restriction of the adjacency

relation on V determined by E. In general, H = (W,F ) is a subgraph of

G = (V,E) if H is a graph, W ⊆ V , and F ⊆ E. Subgraphs of the form G(E �)

and G(W ) are called induced. Then G(E �) is the smallest subgraph H of G

with E(H) ⊇ E � while G(W ) is the largest subgraph H of G with V (H) ⊆ W .

The degree deg(v) of a vertex v is the number of edges which are incident

with it, and we write deg(H, v) to denote the degree of v with respect to some

subgraph H. Technically, it is sometimes more convenient in the definition

of G(E �) to let V � = V , where vertices not incident with an edge in E � have

degree zero with respect to G(E �).

Let G,H be graphs. A one-to-one correspondence φ : V (G) → V (H) given

by v �→ v� is an isomorphism of G and H if vw ∈ E(G) iff v�w� ∈ E(H).

The two graphs are called isomorphic, denoted G ≡ H. Two multigraphs

G = (V,E,Φ) and G� = (V �, E �,Φ�) are isomorphic if there are one-to-one

correspondences α : V → V �, β : E → E � which commute with the respective

attaching maps Φ and Φ�; that is, the following square is commutative.

E −→ (V × V )/τ

↓ ↓

E � −→ (V � × V �)/τ

9
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Every multigraph G = (V,E) has a topological realization |G| which is the

topological space obtained by identifying #V points and #E pairwise-disjoint

copies of the unit interval [0, 1] =: I according to the way the edges intersect

at their endpoints with respect to the incidence function Φ. In fact, |G| can

be embedded in 3-dimensional Euclidean space, R3, and if G is a graph, then

|G| is homeomorphic to a subset of R3 in such a way that edges correspond

to straight-line segments.

Indeed, the union of any finite (or even countable) family of lines and planes

is of 3-dimensional Lebesgue measure zero. Hence, one can place the vertices

of G in R3 with no 3 vertices on a line and no 4 vertices in the same plane

(this is called being in general position). Each straight-line-segment

[v, w] = {(1− t)v + tw : 0 ≤ t ≤ 1}

determined by all convex combinations of a pair of distinct points v, w ∈ R3

is homeomorphic to I, and general position ensures that two distinct line

segments of this type can only intersect at common endpoints of the edges

to which they correspond. The union of the set of line-segments determined

by the edges is a geometric representation of the graph (corresponding to the

particular general-position placement of its vertices). For a graph, the topology

which such a geometric representation inherits as a subspace of R3 is identical

to that of the topological realization.

We say that a multigraph is connected precisely when its topological real-

ization is a connected topological space.

A path is a connected graph which is either trivial (i.e., has one vertex) or

which has exactly two vertices of degree 1 (the endpoints) with all other ver-

tices, if any, of degree 2. Thus, a path corresponds to a sequence v1, v2, . . . , vr

of distinct vertices with each successive pair vi, vi+1 adjacent, 1 ≤ i ≤ r−1. A
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path in a graph is a subgraph which is a path. A graph is connected if and only

if every pair of distinct vertices are the endpoints of a path. The endpoints

of a path are said to be joined by the path. Two paths with the same pair of

endpoints are called internally disjoint (i.d.) if they have no other common

vertices.

The length of a path is the number of edges it contains, and a v-w-path

has v and w as endpoints. The distance between two vertices v and w in a

connected graph is the minimum length of any v-w-path. A path is called

geodesic if it has length equal to the distance between its endpoints.

A cycle is a graph which is connected and regular of degree 2. Adding

an edge between the two endpoints of a path of length ≥ 2 creates a cycle.

A cycle in a graph is a subgraph which is a cycle. In a graph, the shortest

possible cycle has length 3, where the length of a cycle is the number of edges.

(In a multigraph, loops are cycles of length 1 and two parallel edges constitute

a 2-cycle.) For instance, the complete graph K4 on 4 vertices contains four

distinct 3-cycles. Any two distinct vertices in a cycle are joined by two i.d.

paths, and a cycle is geodesic if at least one of these paths is geodesic.

A graph is bipartite if its vertices can be 2-colored with no two adjacent

vertices colored the same. In a bipartite graph, all cycles have even length.

Two vertices (resp., two edges) of a cycle of length 2k are said to be diametrical

or diametrically opposite if they are separated by paths of length k (resp. k−1).

A tree is a connected graph with no cycles.

If G,H are graphs, then their cartesian product G × H is the graph with

vertex set V (G×H) := V (G)× V (H) and

E(G×H) := E(G)× V (H) ∪ V (G)× E(H).

If G,H are connected, then so is their product.

11
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3 Algebra of cycles in a graph

One can do useful algebra with the subgraphs of a graph by identifying sub-

graphs with their edge-sets. Using the finite field Z2 = {0, 1}, a set of edges cor-

responds to a linear combination of edges with coefficients in Z2. As 1+1 = 0

in this field, the algebraic sum of two linear combinations of edges corresponds

to the symmetric difference of the corresponding edge-sets.

More formally, a 1-chain c =
�

e∈E� e has support E � and the support of

c1 + c2 is E1 ∪E2 \E1 ∩E2, where E1, E2 are the supports of c1, c2. Let C1(G)

denote the set of 1-chains. Similarly, let C0(G) denote the set of 0 chains which

are Z2-linear combinations of vertices of G. One defines ∂ : C1(G) → C0(G)

as the unique linear extension of the correspondence vw �→ v + w; that is,

∂




�

e∈E�
e



 =
�

{v:deg(G(E�),v) is odd}
v.

Hence, the set of all edge-sets F ⊆ E with ∂(F ) = 0 constitutes a Z2-vector

space and consists of all edge-sets F for which deg(G(F ), v) is even for every

vertex v of G. These are called the algebraic cycles and correspond to the

Eulerian subgraphs of G. Every cycle is an algebraic cycle but the Fis clearly

false. However, every algebraic cycle is the sum of a set of cycles which are

edge-disjoint.

A set S of cycles in a graph is called spanning if it has the property that

every cycle in the graph is the algebraic sum of some subset of S. A cycle

basis of a graph is a spanning set of cycles which is minimal in the sense

that no proper subset is spanning. A set of cycles is independent if a linear

combination (over Z2) of members of the set is zero if and only if all coefficients

of combination are zero. By linear algebra, a set of cycles is a basis for the

cycles if and only if it is a maximal independent set and all cycle-bases of a
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graph G have the same cardinality, denoted β(G) and called the cyclomatic

number of G.

It is well-known and easy to prove that for any graph G,

β(G) = #E(G)−#V (G) + π0(G), (1)

where π0(G) denotes the number of connected components of the graph.

Given a graph G = (V,E) and an edge e ∈ E, the elementary subdivi-

sion Ge of G replaces e by a path of length 2; this introduces one new vertex

while removing one edge, creating two new edges which join the new vertex

to the endpoints of the removed edge. Since the number of connected compo-

nents remains constant when G is replaced by Ge, by equation (1), cyclomatic

number doesn’t change under elementary subdivision. Now if one iterates the

elementary process; say,

((Ge)e�)e�� , . . . , e� ∈ E(Ge), e
�� ∈ E((Ge)e�), . . . ,

subdividing newly created edges and edges from the original graph, then one

obtains a general subdivision where various edges of G are subdivided multiple

times and cyclomatic number will be unchanged. The relation of subdivision

is a partial order on graphs; also for any edge e of the path, (Pn)e ≡ Pn+1 and

similarly for cycles. Two graphs G1 and G2 have homeomorphic realizations if

and only if there is a graph H which is a common subdivision of both G1 and

G2. Hence, β(G) depends only on the topology |G| of the graph so cyclomatic

number is a topological invariant (in fact, it is an invariant up to homotopy

equivalence).

Note that G is a tree if and only if G is connected with β(G) = 0.

13
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4 Three graph families

We consider graph families: complete graphs Kn, bipartite complete graphs

Kp,q, and hypercubes Qd.

A graph is complete if every distinct pair of vertices are adjacent, and

Kn denotes a complete graph with n vertices. For example, the competition

between teams in a league determines a complete graph when each pair of

teams competes. A triangle in Kn is a subgraph which is complete of order 3;

let T (Kn) denote the set of all triangles in Kn, so

#T (Kn) =

�
n

3

�

. (2)

From equation (1), one has

β(Kn) =

�
n

2

�

− n+ 1 =

�
n− 1

2

�

. (3)

A bipartite graph is complete if all pairs ij�, 1 ≤ i ≤ p, 1 ≤ j ≤ q of

different type vertices are adjacent and Kp,q denotes the complete bipartite

graph with p “red” vertices and q “blue” ones. A complete bipartite graph is

formed if each of p humans is able to operate each of q machines. A square in

Kp,q is a subgraph which is isomorphic to K2,2. Let S(Kp,q) denote the set of

all squares; this set has positive cardinality

#S(Kp,q) =

�
p

2

��
q

2

�

(4)

if min{p, q} ≥ 2. A similar calculation as for the complete graph determines

the cyclomatic number:

β(Kp,q) = pq − (p+ q)− 1 = (p− 1)(q − 1). (5)

For d any non-negative integer, the hypercube of dimension d (or more

briefly, the d-cube), Qd, d ∈ N, is the graph (V,E) with V = {0, 1}d and vw in

14
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E iff v and w differ in exactly one coordinate; i.e., the vertices are the length-d

bit strings and adjacency corresponds to Hamming distance 1. This graph has

2d vertices each of degree d, so there are d2d−1 edges. Let wt(v) denote the

weight of a vertex v, which is the number of 1s in the bit-string v - i.e., the

number of coordinates with value 1. Every hypercube is a bipartite graph as

edges must join vertices with different parity weights.

A square in Qd consists of an induced subgraph which is isomorphic to Q2.

Thus, a square s in Qd is determined by two of the d coordinates - say i and

j - and the four vertices of the square are identical in all coordinates except

for coordinates i and j, where all four possible pairs of values 0 and 1 appear.

Let S(Qd) denote the set of squares in Qd. Then

#S(Qd) =

�
d

2

�

2d−2 = d(d− 1)2d−3. (6)

As K2,2 ≡ C4 ≡ Q2, the notion of “square” for Kp,q and Qd is the same. Again,

one can easily calculate the number of elements in a cycle basis of Qd,

β(Qd) = d2d−1 − 2d + 1 = (d− 2)2d−1 + 1. (7)

The d-cube may be viewed as two copies of the d − 1-cube (say, bottom

Q0
d
and top Q1

d
) with a set of disjoint edges connecting each vertex v0 in one

copy with the corresponding vertex v1 in the other copy; that is, Qd is the

cartesian product of Qd−1 with K2, Qd = Qd−1 ×K2. Hence, hypercubes are

connected graphs.

We give a direct inductive argument for the connectedness of hypercubes

which generalizes usefully. The result holds for Q0 and Q1. Suppose it’s true

for Qd−1 and let u, v ∈ V (Qd). If u, v belong to some Qd−1-subgraph, then by

the induction hypothesis, they are joined by a path in Qd−1 and hence in Qd.

If u ∈ Q0
d
and v ∈ Q1

d
, then by induction there is a path P in Q0

d
from u to

15
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the unique vertex v� ∈ Q0
d
with vv� ∈ E(Qd) and extending P by the edge vv�

gives a path in Qd from u to v. A similar inductive argument proves that Qd

is d-connected; that is, any two distinct vertices are joined by d pairwise-i.d.

paths.

In spite of its apparent simplicity, the hypercube graph has many unsolved

problems. For example, even the order of magnitude of the number of Hamil-

tonian cycles (that is, cycles which include all of the vertices) is unknown.

Lovasz [19] conjectured that the set of vertices of weight k or k + 1 in the

2k + 1-cube always induce a subgraph of the cube which has a Hamiltonian

cycle. This has been shown to be true up to d = 35 [26]. Geometric ques-

tions also abound for the hypercube - for instance, Hadamard’s conjecture

that every hypercube of dimension 4k (with vertex set {−1,+1}4k) contains

an orthogonal subset with 4k members. Also, it is unknown whether the upper

bound of d− 1 on the book thickness of Qd [1] is best possible.

Hypercubes have been used as an architectural model for parallel com-

puters, and they provide the geometry of digital codes. If hypercubes can be

applied as a model for cognition, then they might enable a graceful approach to

complexity as theorems in the sequel show a computational advantage which

grows with the dimension of the hypercube.

5 Well-arranged sequences of cycles

We define special types of cycle basis with the property that every cycle can

be built up from the members of the basis in a recursively convenient fashion.

These include robust bases [14], of interest in mathematical biology [17], [24],

and a generalization, introduced here, called a robustly hierarchically generat-

ing basis (or rhg-basis), which uses a hierarchical construction.
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Two elements of cyc(G) are called compatible if their intersection is home-

omorphic to P2; i.e., if they intersect in a nontrivial path. The sum of two

compatible cycles is a cycle. As in [14], call a sequence z1, . . . , zk of cycles well

arranged if for each i, 1 ≤ i ≤ k−1, the partial sum z1+ · · ·+zi intersects zi+1

in a nontrivial path. By induction, each of the partial sums of a well-arranged

sequence is a cycle, and each cycle in the sequence is compatible with the

previous partial sum.

Let S be any set of cycles in some graph G and let z be a cycle of G.

The set S will be said to robustly span z if there is a well-arranged sequence

z1, . . . , zk of elements in S such that z = z1 + · · ·+ zk, and S robustly spans a

set T of cycles if S robustly spans each cycle in T . A set of cycles is a robust

spanning set if it robustly spans the set cyc(G) of all cycles in the graph.

We write rspan(S) for the set of all cycles robustly spanned by S.

In [14], we focused on the question of when a graph has a cycle basis which

is also a robust spanning set. Such a basis, if it exists, is called a robust basis

for the given graph. Every graph has a robust spanning set of cycles - for

instance, cyc(G) suffices with well-arranged sequences of length 1 for every

cycle! But the cardinality of the smallest robust spanning set is not known.

Here we shall weaken the notion of “robustly spanning” in order to generate

all cycles of certain graphs with well-arranged sequences. This will be sufficient

to ensure that various properties holding for the generating cycles must also

hold for all cycles which was our original motivation for introducing the notion

of a robust spanning set.
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5.1 Hierarchically well-arranged sums

Let S, T ⊆ cyc(G); S robustly hierarchically generates T if there is a positive

integer k and a sequence F0 ⊆ F1 ⊆ · · · ⊆ Fk such that S = F0, T = Fk, and

Fi robustly spans Fi+1 for 0 ≤ i ≤ k − 1; we call k the depth of the hierarchy

by which S robustly hierarchically generates T . We write

rhg(S) :=
�

T ,

where the union is over all T which are robustly hierarchically generated by

S. Thus, rhg(S) = cyc(G) if and only if every cycle of G can be hierarchically

constructed from the cycles in S where in each step of the hierarchy, cycles

are the sum of well-arranged sequences of cycles from lower levels.

Conjecture 5.1 For every graph G there is a basis S of cycles such that

rhg(S) = cyc(G).

We show that Conjecture 5.1 does hold for the three graph families: com-

plete, bipartite complete, and hypercubes. For complete graphs, one only

needs k = 1; that is, they do have a robust basis (as shown in [14]). However,

for bipartite complete graphs and for hypercubes, the previous arguments were

incomplete and one needs k > 1.

5.2 An example of non-robustness

To show that this property of robustness is nontrivial, we exhibit a graph and

a non-robust basis due to Andrew Vogt; see [14] just before Proposition 1.

Consider the plane graph G which is formed by a hexagon, with an inscribed

triangle. As G has 6 vertices, 9 edges, and is connected, there must be 4

elements in any basis for its cycles. Labeling the 6 nodes in counter-clockwise
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order by 1, 2, 3, 4, 5, 6, with 1, 3, 5 as the inscribed triangle, consider the basis

V formed by the boundaries of the three diamond-shaped regions,

z1 = 1235, z2 = 3451, z3 = 5613

and z4 = 135. The 6-cycle z = 123456 is the sum of the three diamonds

z = z1 + z2 + z3,

but because any two of the diamonds intersect in the disconnected graph

formed by an edge of the inscribed triangle (with its endpoints) together with

the opposite vertex of the inscribed triangle,

V is not a robust basis of G. (8)

In fact, this graph and basis don’t even satisfy the weaker condition that

the sum of the first two cycles in the sequence is itself a cycle; that is, the

basis is not “cyclically robust” in the sense of [14]. For an example which is

cyclically robust but not robust, consider K4 with the basis 1243, 1234, 134.

Then 1324 is the sum of 1243 and 1234 but the latter two cycles intersect in

two disjoint edges 12 and 34.

6 Examples of hierarchically robust bases

Hierarchically robust bases will be shown to exist for three of the most regular

graphs: complete, bipartite complete, and hypercube graphs.

First, we show that for any graph the geodesic cycles robustly hierarchi-

cally generate all cycles. Our argument follows that of Georgakopoulos and

Sprűssel [8] who extended the fact that geodesic cycles span to the case of

graphs with infinitely many vertices (but with finite vertex degrees). It might

19

197



be interesting to consider the extension of both the graph theory and its ap-

plications to diagrams for countably infinite, locally finite situations. Would

such an extension be relevant for the field of theoretical biology? We leave

these questions to another paper.

Theorem 6.1 Let G be a graph and let GE = GE(G) denote the set of geodesic

cycles of G. Then rhg(GE) = cyc(G) and one can require that all geodesic

cycles used in the hierarchical well-arranged (hwa) sum for a cycle z have

length not exceeding the length of z.

Proof. Suppose that the theorem were false. Then there would exist some

cycle z of G which is not a hwa sum and, among all such cycles, z has minimum

length. Since z is not geodesic cycle, there must exist a nontrivial path P

intersecting z in exactly two vertices v, w, where the length of P is less than

the length of either of the paths P1, P2 within z joining v and w. Let z1, z2,

resp., denote the two cycles obtained by replacing P1 (or P2) with P . As

the new cycles are shorter, each is an hwa-sum and z1, z2 is a well-arranged

sequence for z. This contradicts the assumption that z is not an hwa sum. ✷

While this proves that the geodesic cycles robustly hierarchically generate

all cycles, the method is existential. An algorithmic approach should also give

information on the depth of such hwa sums.

6.1 The complete graphs Kn

The set K(Kn) consisting of the triangles formed by a fixed vertex 1 with all

possible distinct pairs {i, j}, 2 ≤ i, j ≤ n, is an independent set of cycles for

Kn with cardinality
�
n−1
2

�
, but by equation (3) this is the same as β(Kn) and

so K(Kn) is a basis. This set robustly spans all the cycles of Kn [14].
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Theorem 6.2 The set K(Kn) is a robust basis for Kn.

Proof. Let z = (i, j, k, . . . , �,m) which misses 1. Then z is the sum of the

well-arranged sequence 1ij, 1jk, . . . , 1�m, 1mi. To get a cycle z which includes

the special vertex 1 let i and m be the nearest neighbors of 1 on the cycle and

consider the well-arranged sequence 1ij, 1jk, . . . , 1�m, where i, j, k, . . . , �,m is

the unique path in z joining i and m and avoiding 1. ✷

6.2 The bipartite complete graphs Kp,q

Let K(Kp,q) be the set of all squares in Kp,q of the form 1, 1�, i, j�, where

2 ≤ i ≤ p, 2 ≤ j ≤ q, and x, x� denote vertices in the bipartite decomposition

corresponding to Kp,q. This is the set of all 4-cycles containing the edge 11�.

The lines ij� are all distinct, so the members of K(Kp,q) form an independent

set of cycles and has cardinality (p− 1)(q − 1) so by (5) it is a basis.

Theorem 6.3 Let p, q ≥ 2. Then K(Kp,q) robustly hierarchically generates

GE(Kp,q) with hierarchical depth k = 2.

Proof. The squares which include the chosen edge 11� are already in the basis.

To get a square which includes exactly one endpoint of the chosen edge, say

ij�1k�, add the basis squares ij�11� and ik�11� which meet in the path 11�i. To

get a square ij�k�� which is (vertex) disjoint from 11�, start with ij�k1� and add

ij���1� to get k��11�. Add ij�11� to get ij�k�� as required. Note that for each

of these sums, the two cycles intersect in nontrivial paths. Thus, the basis

of special squares K(Kp,q) generates all squares, using two hierarchical levels.

But a cycle in the bipartite complete graph is geodesic if and only if it is a

square. ✷

Corollary 6.4 For p, q ≥ 2, rhg(K(Kp,q)) = cyc(Kp,q).
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7 Cycles in the hypercube Qd

We will frequently use the decomposition

E(Qd) = E(Q0
d
) + E(Q1

d
) + E(Si(Qd)), (9)

where

Q0
d
= {0}×Qd−1 and Q1

d
= {1}×Qd−1

denote the “bottom” and “top” of the d-cube, while

Si(Qd) = Qd − (E(Q0
d
) ∪ E(Q1

d
))

denotes the remainder of the cube (its “sides”).

Let K(Qd) be the following recursively defined collection of squares in Qd.

For d = 0 and d = 1, the set is empty, and K(Q2) = {Q2}. Having defined

K(Qd−1) for d ≥ 3, let S � the corresponding set of squares in the bottom of

Qd and let S �� be the set of all squares in the “sides” of Qd. Then

K(Qd) = S � ∪ S ��.

that is,

K(Qd) = K(Q0
d
) ∪

�

e∈E(Qd−1)

(Q1 × ē),

where ē denotes the K2 determined by e and its endpoints. So K(Q3) consists

of the bottom square and the four side squares. For convenience, we write

Qd “contains” a square to mean the square is a subgraph and use similar

transparent phrasings on occasion for descriptive clarity.

We claim that K(Qd) is a cycle basis. It is independent since by induction

the squares in S � in the decomposition (9) are independent and the squares in

the sides, S ��, are independent of those in the bottom S and also of each other
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since each corresponds to a different edge. But again by induction

#K(Q0
d
) + #E(Qd−1) = 1 + (d− 3)2d−2 + (d− 1)2d−2 = 1 + (d− 2)2d−1

so the set K(Qd) is a maximum independent set of cycles by (7).

Theorem 7.1 The basis K(Qd) robustly hierarchically generates the geodesic

cycles of Qd with a depth 2 hierarchy.

We prove this by generating the squares of Qd as members of the robust

span of K(Qd) and showing the squares robustly span the geodesic cycles.

Theorem 7.2 For every d ≥ 2, rspan(K(Qd)) ⊇ S(Qd).

Proof. Every square in 1 × Qd−1 (i.e., every square in the top of Qd) is the

top square of 3-cube with base in 0×Qd−1 and sides in the sides of Qd. Hence,

the following argument, for the 3-cube itself, applies to all such squares.

A well-arranged sequence to build the top square Q1
3 of the cube is as

follows:

Q0
3, ē1 ×K2, . . . , ē4 ×K2,

where e1, . . . , e4 is an ordering of the edges of the 4-cycle Q0
3. ✷

In fact any ordering which starts with the bottom square is well-arranged;

a sequence which is not well-arranged would be any sequence starting

ē1 ×K2, ē3 ×K2, . . .

since the two cycles don’t intersect.

Next we characterize the geodesic cycles of the hypercube.

Lemma 7.3 A cycle in Qd is geodesic if and only if the corresponding sequence

of coordinate-flips corresponding to the sequence of its edges (starting anywhere

on the cycle) consists of a permutation repeated twice.
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Proof. It is easy to see that a cycle satisfying the permutation condition must

be geodesic. Conversely, in each cycle, each bit must change its state an even

number of times. Each edge flips a bit. If two edges change the same bit and

no other edge changing that bit is between them, then the bit must be changed

in opposite directions by that pair of edges. If in a cycle z of length 2k two

such successive i-th bit flipping edges e, e� are not diametrically opposite in

the cycle, then there exist two diametrically opposite vertices v, w in the cycle

such that there exists a v-w-path P contained in z with e, e� ∈ P (E). But then

v and w are also joined by a path of length less than k obtained by making

exactly the same bit flips as in P except that the i-th bit is never flipped.

Hence, in a geodesic cycle, the permutation condition holds. ✷

An example of two internally disjoint paths in Q4 corresponding to non-

reversed permutations may help for understanding. Let P1 be the path

P1 = 0000, 1000, 1100, 1110, 1111

which corresponds to the permutation 1234; let P2 be the path

P2 = 0000, 0010, 1010, 1011, 1111

corresponding to the permutation 3142. The vertices v = 0010 and w = 1110

have distance 4 around the cycle formed by P1 and P2, but u = 1010 is adjacent

to both v and w.

Notice that in any geodesic cycle, no two successive edges can flip the same

bit. A cycle of length 4 corresponds to a square of Qd and vice versa. To get

a geodesic cycle, one needs to generate permutations and this can be done by

composing a sequence of transpositions which exactly correspond to squares.

Lemma 7.4 Every geodesic cycle in Qd is robustly spanned by the squares;

24

202



that is,

rspan(S(Qd)) ⊇ GE(Qd).

Proof. It suffices to show that the geodesic cycle zd in Qd determined by the

identity permutation π : i �→ i (i.e., (123 · · · d) in one-line notation), repeated

twice as required by Lemma 7.3, is a well-arranged sum of squares. The cycle

zd consists of the two internally disjoint paths P (d) and P �(d), both from 0̄ to 1̄

where P �(d) corresponds to the reverse permutation πop := πd, πd−1, . . . , π2, π1.

For example, in cyclic order, starting at 0̄, the cycle for d = 3 is given by

z3 = (000, 100, 110, 111, 011, 001).

To make the induction work, we show further that the family of squares

constituting a well-arranged sequence can be chosen so that every edges along

P are taken in order of their appearance between 0̄ and 1̄.. This corresponds

to the sequence τ1, τ2, . . . , τr, where r = (d2 + d)/2 formed by concatenating

the interchange sequences

{12, 13, . . . , 1d}, {23, 24, . . . , 2d}, . . ., {(d−2)(d−1), (d−2)d}, and {(d−1)d}.

Alternatively, writing the permutation of S as a sequence of members of

S, σ := π−1 ◦ πop which carries π to πop can be factored as a sequence of

transpositions of members of the current permutation string which are adjacent

to one another in the current string. This can be visualized in the usual fashion

of topology in terms of braids by interchanging the first string consecutively

with each of the others till it is in the last position. Then do the same thing

moving the second string into the next to last place, and so forth.

Now Qd consists of two copies of Qd−1, and in the bottom copy by the

inductive hypothesis, there is a well-arranged sequence of squares which sums
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to 0 × zd−1 in such a way that the edges in the forward path 0 × P (d − 1)

are covered in sequential order by the well arranged sequence of squares in

0 × Qd−1. Since the sequence of squares 12, 13, . . . , 1d is well arranged and

sums to a cycle which meets 0× zd−1 in 0×P (d− 1), the induction holds and

the result is established. ✷

For instance, apply {12, 13, 14, 23, 24, 34} to π = 1234 to get 4321. Now 12

and 13 correspond to the squares

0000 → 1000

↓ ↓

0100 → 1100

and

0100 → 1100

↓ ↓

0110 → 1110

, respectively,

meeting in edge 0100 → 1100. The sum of these two squares is the cycle

z� = (0000, 1000, 1100, 1110, 0110, 0100),

where as always (a1, a2, . . . , ak) means the cycle with edges [a1, a2], . . . [ak−1, ak].

The transposition 14 corresponds to the square

0110 → 1110

↓ ↓

0111 → 1111

which intersects z� in the edge 0110 → 1110. Let z�� be the sum of the square

corresponding to 14 with the cycle z�, so

z�� = (0000, 1000, 1100, 1110, 1111, 0111, 0110, 0100).

But {0}× z3 is the cycle (0000, 0100, 0110, 0111, 0011, 0001, 0000) which inter-

sects z�� in {0}× P (3).

Theorem 7.1 now follows from Theorems 6.3 and 7.2 and Lemma 7.4.
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8 Isolation theorems

The combinatorial results proved in this section will allow us to later derive

corresponding results on blocking of commutativity. The first is from [15].

Theorem 8.1 Let d ≥ 3. For any nonempty set S of d− 2 or fewer squares

in Qd, there exists a Q3-subgraph of Qd containing exactly one element of S.

Using the method given in [15], one can prove an analogous theorem for

the complete graph.

Theorem 8.2 Let n ≥ 4. For any nonempty set T of n−3 or fewer triangles

in Kn, there exists a K4-subgraph of Kn containing exactly one element of T .

Proof. The result holds for n = 4. Suppose the result holds for n = p−1 and

let T be a nonempty set of at most p− 3 triangles in Kp. Then either

(i) T is contained in the set of triangles of some Kp−1-subgraph G of Kp or

(ii) there exists a proper subset T � ⊂ T with T � contained in the set of triangles

of some Kp−1-subgraph H of Kp.

In case (i), every t ∈ T is in the K4 subgraph determined by t∪{v}, where

v is the unique vertex in V (Kp) \ V (G). In case (ii), 1 ≤ |T �| ≤ p − 4 so by

the inductive hypothesis there is a K4-subgraph of H (and hence of Kp) which

contains exactly one member of T �. ✷

Similarly, one has a result for the bipartite complete graph.

Theorem 8.3 Let p ≥ 2, q ≥ 2, p+q ≥ 5. For any nonempty set S of p+q−4

or fewer squares in Kp,q, there exists a K3,2-subgraph (or a K2,3-subgraph) of

Kp,q containing exactly one element of S.
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Proof. Let S(G) denote the set of squares in G. Either

(i) S ⊆ S(G), where G is isomorphic to Kp−1,q, p ≥ 3, or to Kp,q−1, q ≥ 3, or

(ii) ∃ a proper subset S � ⊂ S such that S � ⊆ S(G), with same condition on G.

In case (i), every square K2,2 is isolated by the K3,2 obtained by appending

the missing “red” vertex or the missing “blue” vertex according to the color

of the vertex removed to obtain G. Case (ii) follows from induction on p+ q.

✷

9 Digraphs, Faces, and Diagrams

A digraph D = (V,A,Ψ) is a finite nonempty set V of vertices, a set A of arcs,

and an incidence function Ψ : A → V × V . Define the source of an arc a ∈ A

as Π1(Ψ(a)) =: src(a) and the target of a as Π2(Ψ(a)) =: tgt(a), where Π1,Π2

denote the first and second coordinate projection. We write a = (v, w) for an

arc a when src(a) = v, tgt(a) = w. If A ⊆ V × V and Ψ is the inclusion,

then D is simply a relation on V . An isomorphism from D = (V,A,Ψ)) to

D� = (V �, A�,Ψ�) is a pair of bijections φ1 : V → V �, φ2 : A → A� such that for

every a ∈ A, Ψ�(φ2(a)) = (φ1(src(a)),φ1(tgt(a)). Two digraphs are isomorphic

if there is an isomorphism from one to the other.

For a digraph D = (V,A,Ψ), the underlying multigraph G = U(D) is

G = (V,A,Φ), where Φ(a) = {v, w} if Ψ(a) = (v, w);

that is, one forgets the sense of direction of the arcs. Given any multigraph

G, an orientation of G is a directed graph whose underlying multigraph is G.

Equivalently, an orientation is a function which assigns to each edge e = vw

of G one of the two ordered pairs (v, w) or (w, v).

Let Ω(G) denote the set of orientations of G; for a labeled graph G with
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m non-loop edges, there are 2m distinct orientations. For instance, K2 has a

unique (up to isomorphism) orientation but if the vertices are labeled, say with

v, w, then the two digraphs (v, w) and (w, v) can be distinguished. Taking

hypercubes as labeled graphs, Qd has 2d2
d−1

distinct orientations; for d =

0, 1, 2, 3, this gives 1, 2, 16, 4096, respectively.

An ordered pair of arcs (a1, a2) in a digraph are called composable if and

only if src(a2) = tgt(a1). If (φ1,φ2) : D → D� is an isomorphism, then

an ordered pair (a1, a2) in A(D) are composable if and only if the ordered

pair (φ2(a1),φ2(a2)) of arcs in A(D�) are composable. A digraph D is called

transitive if for every pair (a, b) of composable arcs, there is an arc c = (v, w),

where v = src(a) and w = tgt(b); D is reflexive if for every vertex v there is a

loop (v, v) in A; and D is symmetric if and only if (v, w) is an arc whenever

(w, v) is an arc. A small category is a reflexive digraph with an associative law

of composition on the set of composable arcs which has an identity for each

vertex. See [20] for category theoretic concepts.

A small category C has a digraph skeleton Sk(C) (forget the composition)

Sk(C) = (V,A,Ψ), where V = Obj(C), A := mor(C) =
�

x,y∈Obj(C)
C(x, y),

and for a ∈ A,

Ψ(a) = (x, y) if a ∈ C(x, y).

A digraph is the digraph skeleton of a small category if and only if it is tran-

sitive and reflexive, and it is the digraph skeleton of a small groupoid if and

only if it is reflexive, symmetric, and transitive.

For k ≥ 1, a sequence of arcs a1, a2, . . . , ak of arcs in A(D) is called a dipath

(or dicycle) of length k if and only if (i) for each i, 1 ≤ i ≤ k − 1, (ai, ai+1) is

composable and (ii) all of the k+1 vertices src(a1), src(a2), . . . , src(ak), tgt(ak)

are distinct (or (ii)’ all of the k vertices src(a1), src(a2), . . . , src(ak) are distinct
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and tgt(ak) = src(a1) so (ak, a1) is composable). A dipath (a1, a2, . . . , ak) with

src(a1) = v and tgt(ak) = w is called a v-w-dipath. Given a ∈ A(D) and

v ∈ V (D), we say that a is incident to v (or “directed toward”) if v = tgt(a)

and that a is incident from v (or “directed away from”) if v = src(a). Let

outdeg(v) denote the number of arcs directed away from v and let indeg(v)

denote the number of arcs directed toward v.

A source vertex in D is a vertex v with indeg(v) = 0, and a target vertex

v in D satisfies outdeg(v) = 0. A digraph is acyclic if it contains no dicycle.

Each acyclic graph contains a source; dipaths are acyclic and have a unique

source. By reversing all arcs, each acyclic graph has a target and dipaths have

a unique target. A pair of dipaths are called parallel if they have common

source and target vertices, say, v and w. Two dipaths are said to be internally

disjoint if they are parallel v-w paths with v and w the only common vertices.

A face of the digraph (from v to w) is a pair of internally disjoint v-

w-dipaths; the length of the face is the sum of the lengths of the dipaths.

To avoid trivial faces, we assume that v �= w. This is not the same as the

notion of “face” of a polytope unless the digraph has a plane embedding, and

the two dipaths constituting a digraph face from v to w have topologically

realizations which together bound a 2-dimensional disk (e.g., for the 3-cube

with its standard orientation. From now on, face means in the digraph sense.

A face f of D gives rise to a cycle in U(D) by means of the natural function

ν : F(D) → cyc(U(D))

where if f = {P1, P2}, then ν(f) = U(P1) ∪ U(P2).

We call a digraph essential if the faces of D correspond under ν to an

rhg-spanning set of cycles. For example, the standard tournament K∗
n
and

standard directed hypercube Q∗
d
are essential, while an inessential digraph can
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be formed by attaching acyclic triangles to each arc of an alternating square.

The resulting digraph has 8 vertices, 12 arcs, and (being a connected graph)

has a cycle basis with 5 cycles but it has only 4 faces (the acyclic triangles).

Let D be a digraph and let C be a small category. A diagram on the scheme

D in the category C is a pair of functions (both denoted δ for convenience)

which maps the vertices of D to the objects of C and the arcs of D to the

morphisms of C in a compatible way; that is,

δ : D → C,

where for v, w ∈ V (D) and a = (v, w) ∈ A(D),

δ(v), δ(w) ∈ Obj(C) and δ(a) ∈ C(δ(v), δ(w)).

LetD be a digraph which is isomorphic to a subdigraph of the skeleton digraph

of some small category C. Then D determines a diagram and conversely every

diagram arises in this way.

When a diagram δ : D → C exists, each pair of parallel dipaths in D

provides alternative morphism strings with common source and target objects.

If the composition of these morphism strings gives the same result for any two

v-w-parallel dipaths, then the diagram is said to commute between v and w. A

diagram is commutative if it commutes between all pairs of distinct vertices.

Commutative diagrams can be used to express many mathematical facts.

For example, if D is the digraph Q2 with its standard orientation and C is any

category, then for all A,B,C,D ∈ Obj(C), there are commutative diagrams

δ = δA,B,C,D on the scheme D in the category of sets Ens given by

C(A,B)× C(B,C)× C(C,D)
a−→ C(A,B)× C(B,D)

↓b ↓c

C(A,C)× C(C,D)
d−→ C(A,D)
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where

a = (1, ◦B,C,D) : (α, β, γ) �→ (α, β ◦ γ),

and similarly b = (◦A,B,C , 1), c = ◦A,B,D, and d = ◦A,C,D.

Commutativity of diagrams such as these can be used to express various

algebraic properties of a category. For example, in this case, the diagrams

express the associativity of composition.

Let δ : D → C be a diagram. If both morphism strings in C corresponding

under δ to the two internally-disjoint dipaths in a face of D give the same

composition, then the face commutes with respect to δ.

Theorem 9.1 Let δ : D → G be any diagram with G a groupoid. Then δ is

commutative iff and only if every face of D commutes with respect to δ.

Proof. Let v, w ∈ V with parallel dipaths P, P � joining v to w. Then there

exists a positive integer k and dipath decompositions

P = P1 ∗Q1 ∗ P2 ∗Q2 ∗ · · ·Pk ∗Qk

and

P � = P �
1 ∗Q1 ∗ P �

2 ∗Q2 ∗ · · ·P �
k
∗Qk,

where ∗ denotes composition of dipaths and for each i, 1 ≤ i ≤ k, the pair

Pi, P �
i
determine a face. Note that the common dipath segments Qi can be

trivial dipaths consisting of a single vertex. Induction on k completes the

argument. ✷

We write F(D, v, w) to denote the set of v-w-faces in the digraph D and

F(D) for the set of all faces. In fact one only needs to examine the faces

corresponding to a robust hierarchically generating set of cycles. In the best

case, an rhg-basis suffices.
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10 Commutativity in groupoids

Even if faces intersect in a common nontrivial dipath, their sum might not be

a face (although it is a cycle) since there may not be unique source and target

vertices.

The difficulty can be alleviated by assuming that C is a groupoid; that is,

every morphism has an inverse. In this case, one can extend δ : D → C to

δ̃ : D̃ → C, where D̃ is the intersection of all symmetric digraphs which contain

D (that is, D̃ is obtained from D by appending the reverse arcs a−1 = (w, v)

for each arc a = (v, w) ∈ A(D), ∀v, w ∈ V (D), setting

δ̃(a−1) = (δ(a))−1.

For every cycle z ∈ cyc(U(D) and all distinct vertices v, w ∈ V (z) there is a

unique v-w face f of D̃ with U(f) = z. Thus, the natural function ν is onto

and the cardinality of ν−1(z) is
�
k

2

�
where k = #V (z).

Groupoid categories provide a convenient environment for diagrams since

one can “forget” the direction of the arcs, following a path in the underlying

undirected graph. This means that given a diagram in the groupoid, any

path or cycle in the underlying graph produces uniquely specified string of

morphisms. When an edge is traversed in its proper sense as an arc, use the

morphism associated with the arc; otherwise, use the inverse morphism to

represent the oppositely oriented arc.

Cycles were defined above as connected subgraphs which are regular of

degree two. However, one may also regard a cycle z as the sequence of its edges

(or vertices) taken in fixed clockwise or counterclockwise order and starting

at any v ∈ V (z). Thus, a cycle of length k gives rise to 2k distinct ordered

cycles, denoted (z, v,+), (z, v,−), v ∈ V (z). Similarly, any nontrivial path P

gives rise to two ordered paths P±.
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Let δ : D → G be a diagram, where G is a groupoid. An ordered cycle in

the underlying graph of D starting at a vertex v has a natural interpretation

as a morphism in G from δ(v) to itself, while an ordered v-w-path can be

interpreted as a morphism in G from δ(v) to δ(w) in the “positive” orientation

(or in reverse in the negative orientation).

Indeed, let D be a digraph whose underlying graph is a cycle or path, and

let a1, . . . , ak be the sequence of arcs corresponding to some choice of starting

point v and direction of traversing the cycle or path. Suppose that δ : D → G

is a diagram on the scheme D in a groupoid. Then each ai is either traversed

in its proper or reversed sense and we accordingly assign either δ(ai) or δ(ai)−1

to the edge traversal. Let (z, v,+) or P+ denote an ordered cycle or path, and

define the value of δ(z, v,+) or δ(P+) to be

δ(a1)
ι1 ◦ δ(a2)ι2 ◦ · · · ◦ δ(ak)ιk ,

where the exponents ιj are±1 according to whether the arc aj is traversed in its

proper or reversed sense when following the given order. Clearly, δ(z, v,+) ∈

G(δ(v), δ(v)) and if P is a v-w-path, then δ(P+) ∈ G(δ(v), δ(w)).

A cycle in the underlying graph of the digraph scheme of a groupoid dia-

gram will be called a cycle of the diagram. A cycle z of a diagram δ : D → G

is a commutative cycle if δ(z, v,+)) = 1v for some ordering (z, v,+). This

condition is independent of the ordering chosen. Indeed, if vw ∈ E(z) with

a = (v, w) ∈ A(D), then

(δ(a))−1 ◦ δ(z, v,+) ◦ δ(a) = δ(z, w,+)

so δ(z, w,+) = 1w iff δ(z, v,+) = 1v. Hence, starting point doesn’t matter and

reversing direction takes the inverse of the morphism

With respect to diagrams in groupoids, a face f commutes if and only if

the corresponding cycle ν(f) is commutative.
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Lemma 10.1 Let δ : D → G be a groupoid diagram with internally disjoint

v-w-dipaths P1, P2. Then δ(P1) = δ(P2) if and only if ν(P1, P2) commutes.

We call a diagram in a groupoid strongly commutative if all of its cycles

commute. A diagram is strongly commutative if and only if all orientations of

its underlying graph are commutative, so a strongly commutative diagram is

commutative.

However, the converse is false. Consider a diagram on the scheme of an

alternatingly oriented cycle in which arcs meet either head-to-head or tail-

to-tail. Such a diagram is trivially commutative since maximal dipaths have

length 1 so the diagram has no faces. But the corresponding cycle may not

commute. Indeed, let G be the category F of finite sets and bijections, let

[2] be the set with two elements, and let τ : [2] → [2] be the non-identity

bijection. For the alternating orientation D of C4, let δ : D → F be defined

by δ(v) = [2] for every vertex and let δ assign τ to exactly one of the arcs and

the identity to the others. If z is any ordering of C4, then δ(z) = τ .

11 Sums of commutative cycles

Suppose that a diagram in a groupoid has the property that every cycle in a

cycle basis is commutative. Must the diagram be strongly commutative? In

[14, Thm 1], we argued that this is true using the assertion that, if a cycle z

is a sum of commutative cycles, then z also must commute.

We use Vogt’s basis (see (8) and the paragraph preceding) to show that

the sum of commutative cycles can be a cycle which does not commute. Make

the graph G into a digraph D by orienting the hexagon in counter-clockwise

order, and similarly orienting the three edges of the inscribed triangle 135
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in counter-clockwise order. The digraph D, in turn, is enriched to form a

diagram δ in the category C of complex vector spaces and linear isomorphisms

by letting each node of the diagram be the vector space C and each of the

9 arrows be multiplication by the complex number i. Then since i4 = 1, zj

commutes, j = 1, 2, 3. However, the hexagon does not commute and (the

inscribed triangle) z4 also does not commute. If one reverses the orientations

of the edges 35, 56, 45, 34 and replaces the previous morphisms (multiplication

by i) assigned to the corresponding arcs by the morphism multiplication by

−i, then for the resulting orientation D� of G and corresponding diagram

δ� : D� → C, the diamonds are commutative faces but the hexagon is a non-

commutative face from vertex 6 to 3.

We now show that if a groupoid diagram gives the identity on two com-

patible cycles, then it gives the identity on the cycle which is their sum.

Lemma 11.1 Commutativity is constructable for cycles of groupoid diagrams.

Proof. Let δ : D → G be any diagram in a groupoid and z1, z2 be two cycles in

cyc(U(D)) intersecting in a nontrivial path P . Choose one of the two possible

orderings of P as P+. Put P1 = z1 − P and P2 = z2 − P , and let P+
1 and

P+
2 be the orderings so that all three paths proceed in parallel from the first

vertex of P+ to the last vertex of P+. As z1 and z2 commute, by Lemma 10.1,

δ(P+
1 ) = δ(P+) = δ(P+

2 ).

Hence, z = z1 + z2 commutes. ✷

Theorem 11.2 Let δ : D → G be a diagram, G a groupoid, and B an rhg-basis

of G = U(D). Then δ commutes if and only if for every cycle z ∈ B, δ(z) = 1.
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Proof. The theorem is true for a hierarchy of depth k = 1 by induction on

the number of terms in the longest well-arranged sequence for any member of

the robust span, using the preceding Lemma. Now by induction on the depth

of the hierarchy, again using Lemma 11.1, the theorem holds. ✷

12 Standard diagrams in Kn

The standard orientation K∗
n
of a labeled Kn has e = ij oriented as (i, j) iff

i < j. This is the tournament in which there is a strict pecking order and

competitions are always won by the higher-ranking team. For the standard

orientation, if i < j are vertices of Kn, then the set Fi,j,n := F(K∗
n
, i, j) of

all faces of K∗
n
from i to j is in one-to-one correspondence with the set of all

unordered pairs of disjoint subsets

S, T ⊆ {i+ 1, i+ 2, . . . , j − 1}

where at least one of S and T is nonempty. The interior vertices of the two

internally disjoint dipaths constitute S and T . Conversely, two such subsets

determine the dipaths as the graph is complete and the vertices are totally

ordered. Thus, the number of (i, j)-faces, for i < j is the number of edges

in the graph Ī(P({i + 1, i + 2, . . . , j − 1}) which is the complement of the

intersection graph of the family of all subsets of {i, i+1, . . . , j}. In particular,

this number is independent of n for n ≥ j.

Lemma 12.1 Let i < j ≤ n. Then

#Fi,j,n = (3j−i−1 − 1)/2.
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Proof. Let S, T be disjoint subsets of {i + 1, i + 2, . . . , j − 1}. Let Ξ :

{i + 1, i + 2, . . . , j − 1} → {0, 1, 2} send k to 0 if it is not chosen for either S

or T , to 1 if it is chosen for S, and to 2 otherwise, i.e., when it is chosen for T .

As the choice S = {} = T is excluded, the disjointness of S and T guarantees

S and T are distinct. Hence, interchanging S with T produces an involution

with no fixed points and the result follows. ✷

For instance F1,4,4 has 4 elements, {124, 134}, {14, 124}, {14, 134}, and

{14, 1234} agreeing with (32 − 1)/2 from the theorem.

The total number of faces of K∗
n
is the sum

#F(K∗
n
) =

�

1≤i<j≤n

F(i, j, n) (10)

and this is Sequence A052150 in the OEIS [23] with the following formula:

Theorem 12.2 The total number of faces in K∗
n
is given by

#F(K∗
n
) =

�
(3n+3)− [2 ∗ n2 + 12n+ 19]

�
/8 ≈ (9/8) ∗ 3n+1.

Orientations of Kn are called tournaments. For tournaments in general,

i.e., for orientations of Kn which aren’t isomorphic to the standard orienta-

tion, there is a famous conjecture (attributed to Kelly [22, p. 7]: every regular

tournament with in-degree and out-degree equal at every vertex has an arc de-

composition into spanning dicycles. This is reminiscent of physics and suggests

graph theory could be useful in the study of dynamic systems.

The only reasonable “standard Kp,q” should have all arcs directed from,

say, red to blue. But then no dipath of length greater than 1 exists and so

there are no faces in such a digraph.
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13 Directed hypercubes

In this section we consider directed hypercubes and diagrams defined on such

schemes, extending some results from [14]. It is necessary to carefully distin-

guish between properties which involve merely its graph structure and those

which describe its various digraph orientations.

Among the orientations of the d-cube, we write Q∗
d
for the standard directed

hypercube in which adjacent vertices v and w determine an arc (v, w) iff for

the unique coordinate i in which the corresponding bit strings disagree, vi = 0

while wi = 1; i.e. for all v, w ∈ V (Q∗
d
),

(v, w) ∈ A(Q∗
d
) ⇐⇒ ∃i ∈ [d] s.t. vi = 0, wi = 1, and ∀j ∈ [d] \ {i}, vj = wj.

Thus, the digraph Q∗
d
is the Hasse diagram of the Boolean lattice of subsets

of [d]. So Q∗
0 is the trivial graph, Q∗

1 is a directed arc, with its two endpoints,

and so forth. Note that Q∗
d
is acyclic since arcs always point toward the vertex

of larger weight.

If v, w are vertices in Q∗
d
, then a dipath from v to w has length equal to

|wt(w)−wt(v)| and a dipath exists if and only if for every i, 1 ≤ i ≤ d, vi = 1

implies wi = 1. Let 0̄ (or 1̄) be the vector with all coordinates equal to 0 (resp.

1) which is the unique source (resp. target) vertex of Q∗
d
. As its bits can be

turned on in any order, any vertex v of the cube is an endpoint of exactly k!

distinct dipaths from 0̄, where k is equal to the weight of v. Equivalently, one

sees the following.

Lemma 13.1 For d ∈ N, the set S of all dipaths in Q∗
d
from 0̄ to 1̄ has

#S = d!.

In fact, the directedness (i.e., the orientation) of the hypercube corresponds
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in a nice way to the graph-theoretic geometry defined by the distance function

of the graph.

Lemma 13.2 For d ∈ N, a path P is geodesic in Qd if and only if there exists

an orientation D isomorphic to Q∗
d
such that P corresponds to a dipath of D.

Geometry and order coincide nicely for Qd.

Lemma 13.3 A subgraph H of Qd is a 4-cycle if and only if H = ν(f), where

f is a face of Qd of length 4.

Proof. Let z = uvwx. Then the corresponding permutation of length 2 gives

the two coordinates which are changing, determining the square face. ✷

In the 3-cube, consider the geodesic 6-cycle z = (001, 011, 010, 110, 100, 101)

which is alternating in the standard orientation. Add 001 to each element of

the string using mod-2 addition on each coordinate. This isomorphism moves

000 to the first position, then in order 010, 011, 111, 101, 100. So the geodesic

cycle corresponds to a digraph face of Q∗
d
. Further, the sequence generated

by the position of the changing bit for each edge of the ordered cycle starting

with 000 is 231231, a repeating permutation as stated in Lemma 7.3.

The same argument characterizes the geodesic cycles.

Theorem 13.4 For d ∈ N, a cycle z in Qd is geodesic if and only if there

exists D ∈ Ω(Qd) such that D is isomorphic with Q∗
d
and z corresponds under

the isomorphism to a face of D.
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14 The graph of dipaths

Let P(D, v, w) denote the set of all dipaths in D from v to w. Recall that

F(D, v, w) denotes the set of digraph faces from v to w. We define a graph

Φ(D, v, w) = (P(D, v, w),F(D, v, w))

which has dipaths for its vertices with edges corresponding to those pairs of v-

w-dipaths which are internally disjoint. Thus, an edge of the graph corresponds

to a face of D from v to w. Under some conditions, e.g., if D = Q∗
d
, Φ will be

regular with an easily determined number of vertices. Knowing all the vertex

degrees, one can count the edges via the basic formula

#E(Φ) =
�

v∈V (Φ)

deg(v)/2 (11)

If there are n vertices each of degree k, then #E = nk/2. When Φ(D, v, w) is

regular of degree k, then we say that the v-w-dipaths have binding number k.

Let #P(D, v, w) be called the dipath number (of D from v to w). Then the

number of v-w-faces is half the product of the binding and dipath numbers.

Note that Φ(K∗
n
, 1, n) is not a regular graph. It has 2n−2 vertices which

correspond to the possible sets of internal vertices in the dipath. The 1-n-

dipath 1n, which corresponds to the empty set, is internally disjoint with all

other dipaths, while the dipath 12 · · ·n is i.d. with only one other dipath.

Every 0̄-1̄-dipath in Q∗
d
is a geodesic path in Qd and so by Lemma 7.3

corresponds to a permutation on [d]. Hence, the dipath number of (Q∗
d
, 0̄, 1̄)

is d!. The binding number of (Q∗
d
, 0̄, 1̄) turns out to be related to the number

of primitive elements in a certain Hopf algebra; see [8]. We need one notion

from combinatorics. A permutation π of [d] is indecomposable if for 1 ≤ j < d,

π|[j] is not a permutation; that is, for each j, 1 ≤ j < d, there exists i,
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1 ≤ i ≤ j for which π(i) > j. The indecomposable permutations of [3] are (in

1-line notation) 231, 312, 313. Let a(d) denote the number of indecomposable

permutations of [d]. For d = 2, 3, 4, 5, a(d) = 1, 3, 13, 71. Further, a(d) satisfies

a recursion:

a(d) = d!−
d−1�

i=1

i!a(d− i); (12)

see sequence A003319 in [23].

Lemma 14.1 Let d ≥ 2. Then the binding number of (Q∗
d
, 0̄, 1̄) is the number

a(d) of indecomposable permutations of [d].

Proof. By symmetry, it suffices to consider the standard 0̄-1̄-dipath corre-

sponding to the sequence 1, 2, . . . , d of bit positions which is the identity per-

mutation. Any other permutation σ of [d] produces a parallel 0̄-1̄-dipath,

which is internally disjoint from the standard dipath if and only if σ is inde-

composable. Indeed, if the two dipaths intersect before reaching 1̄, then at the

first vertex where they intersect, the same set of bit-flips has occurred along

both dipaths; hence, the corresponding permutation is not indecomposable.

Conversely, if π|[j] is a permutation for j < d, then the dipath determined by

π intersects the standard dipath in the j-th element. ✷

This proves the following result.

Theorem 14.2 #(F(Q∗
d
)(0̄, 1̄)) = d!a(d)/2

For example, the number of 0̄-1̄-faces of Q∗
3 is 9 and of Q4 156. Further,

Φ(Q∗
3, 0̄, 1̄) ≡ K3 × K2. The total number of faces of Q∗

d
is obtained from

Theorem 14.2 by counting the cube subdigraphs.

Theorem 14.3 #F(Q∗
d
) =

�
d

j=2

�
d

j

�
2d−jj!a(j)/2.
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15 The Cube Lemma and groupoids

In this section, we state and prove the elementary (and well-known) lemma

which plays a fundamental role. The description is kept informal here for

brevity and clarity.

Consider the graph formed from the 8 corners and 12 edges of a standard

3-dimensional cube, and make this into a digraph by orienting the edges, say,

from left to right, top to bottom, and front to back. As a digraph, this cube

has a unique source vertex (with all arrows out) and a unique target vertex

(with all arrows coming in). As “C” is reserved for “cycle,” the usual notation

is Q3 for the underlying graph, and we write Q∗
3 for the standard (directed)

3-cube. Viewed in 3 dimensions, Q3 is a “box” with six square faces (the four

sides plus top and bottom). The term “square” here just means a cycle C4

of length 4 (also written Q2), and we write Q∗
2 consisting of two internally

disjoint directed paths as shown in the figure below.

• −→ •

↓ ↓

• −→ •

Just as graphs can be enriched by drawing them on a surface, digraphs can

have value added by placing them in a category, where the vertices become

objects of the category and an arrow between two vertices becomes a mor-

phism between the corresponding objects. This is called a “diagram” on the

“scheme” of the digraph. For example, the digraph C∗
4 above gives rise to

diagrams of the form
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A
a→ B

↓b ↓c

C
d→ D

If two vertices in the digraph are joined by a directed path, then there is an

induced morphism between the corresponding objects of the category. When

this morphism is independent of the choice of directed path between the ob-

jects, we say that the diagram “commutes.” For example, the preceding square

diagram commutes iff b ◦ d = a ◦ c, where “◦” denotes composition in the cat-

egory defined when the target of the first morphism is equal to the source of

the second morphism.

Recall that a morphism e is called an epimorphism provided that

e ◦ f = e ◦ g ⇒ f = g,

where we write composition algebraically from left to right (so e ◦ f means do

e first, then f). For example, for the category of sets and functions, epimor-

phisms are just the surjective (“onto”) functions. By virtue of the categorical

notion of duality which reverses all of the arrows, one obtains the definition

of monomorphisms which are cancellable post-composition, and correspond to

the injective (“one-to-one”) functions.

The following little result is key to our arguments. We give it first as

explicitly stated in Mitchell [21].

Lemma 15.1 (Cube Lemma) Let C be any category. If δ : Q3 → C is any

diagram, if every square face commutes except possibly for the top, and if the

morphism e to the source node of the top square is an epimorphism, then the

top square must also commute.
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Proof. Preceding the composition of the two dipaths of the top square by

e yields two length-3 dipaths which are equal by a simple “diagram-chasing”

argument utilizing commutativity of the other five squares. Since e is an

epimorphism, the top square is commutative. ✷

The categorical dual of this lemma says that the bottom square must com-

mute if the morphism from its target object is a monomorphism and the other

squares commute. Furthermore, each square of the cube corresponds to top

or bottom under the cube’s three-fold directional symmetry.

A groupoid is a category where every morphism has an inverse and hence is

both a monomorphism and an epimorphism. Therefore, in a groupoid category,

one has the following more convenient symmetric form [14] of the Cube Lemma:

In a groupoid diagram on the scheme of the standard 3-cube, if any five of the

six squares are commutative, then the sixth square must also commute.

We use groupoids as the co-domain of diagrams to apply cancellation argu-

ments to all pairs of parallel paths. Groupoids are a topic of current research

in several rather diverse areas - for example, within topology [3], Lie theory

[30], networks and biology [9], [28], and the theory of ribbon categories [25].

Another attractive property of groupoids is their capacity to model the notion

of reversible computation and, in particular, of quantum computation; see,

e.g., [2], [29], [4].

16 Commutativity in hypercubes

In this section, we study the connection between commutativity of some faces

in hypercubes. By Lemma 7.3, every square in the graph Qd corresponds to a
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face of length 4 in Q∗
d
. Hence,

K(Qd) ⊆ S(Qd) = F4(Q
∗
d
) ⊆ F(Q∗

d
),

where Fr(D) := set of faces of D with length r.

Now let δ : Q∗
d
→ C be any diagram. Consider the following three state-

ments, each of which is implied by the next.

Every face in K(Qd) commutes with respect to δ. (13)

Every square of Q∗
d
commutes with respect to δ. (14)

Every face of Q∗
d
commutes with respect to δ. (15)

We will show that (14) and (15) are equivalent, while (13) and (14) are equiv-

alent if C is a groupoid.

The first theorem is from [14]. For the reader’s convenience, we repeat the

brief argument. A different proof is given in the next section.

Theorem 16.1 If δ : Q∗
d
→ G with G a groupoid, (13) ⇒ (14); that is, if

every special square commutes, then every square commutes.

Proof. By the decomposition (9), squares in Qd are of three types - from the

bottom, from the sides, and from the top. The first two types are already in

the recursive basis K(Qd), while every square from the top of the d-cube is the

top of a 3-cube whose bottom and sides are in K(Qd). By the Cube Lemma

(Lemma 15.1), such squares must also be commutative. ✷

The next theorem is also from [14]. The proof-sketch given there used

the fact that every permutation is a composition of transpositons, but the

argument actually needs these transpositions to be of adjacent symbols in the

permutation.
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To give the proof, we introduce some convenient ad hoc notation. Each arc

in the standard directed d-cube Q∗
d
corresponds to incrementing exactly one

of the d coordinates (from 0 to 1). Let εj denote the standard unit vector of

length d with 1 in coordinate j and 0 everywhere else. Then a typical arc a in

Q∗
d
is of the form

a = (v, v + εj)

for some vertex vector v which has vj = 0. When v = 0̄, we denote the arc

a = (v, v + εj) merely by εj, where context makes clear the distinction. If

σ is any sequence of arcs which constitutes a dipath, we write P (σ) for the

corresponding dipath. By Lemma 7.3 the permutations of [k] are in one-to-one

correspondence with the dipaths from 0̄ to 1̄ in Qk. We write P (σ) for this

dipath. For any dipath P in a digraph D and any diagram δ : D → C, write

δ(P ) for the induced morphism in C.

The following lemma says that the morphism induced by any permutation

(that is, by the dipath in the cube which corresponds to the permutation) is

unchanged if the permutation is composed with any transposition of adjacent

terms - i.e.,

δ(P (η) = δ(P (η1, . . . , ηi−1, ηi+1, ηi, ηi+2, . . . , ηk)).

Lemma 16.2 Let k ≥ 2 be a positive integer and let η be any permutation

of [k]. Let δ : Qk → C be any diagram on the scheme Qk. Suppose that

1 ≤ i ≤ k − 1 and that

δ(P (ηi, ηi+1) = δ(P (ηi+1, ηi).

Then for the transposition τ = (i, i+ 1), we have

δ(P (η) = δ(P (τ ◦ η).
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Proof. By definition,

δ(P (τ ◦ η) = δ(P (η1, . . . , ηi−1) ◦ δ(P (ηi, ηi+1) ◦ δ(P (ηi+2, . . . , ηk)).

Using the assumption, we obtain the desired conclusion. ✷

We use this lemma repeatedly in the proof of the following theorem.

Theorem 16.3 For every diagram δ : Q∗
d
→ C with d ∈ N, (14) ⇒ (15); that

is, if every square commutes, then so does every face.

Proof. Let F be any face of δ. Then there exist

(i) a subset I = {i1, . . . , im} ⊆ [d] with 2 ≤ m ≤ d,

(ii) vertices v, w ∈ V (Qd) with v(i) = 0 ∀i ∈ I, w(i) = 1 ∀i ∈ I, with

v(j) = w(j) ∀j ∈ [d] \ I, and

(iii) permutations π and σ of I such that

F = P (π) ∪ P (σ),

where

P (π) := P (v, v + επ(1), v + επ(1) + επ(2), . . . , w)

and similarly for σ.

Let π ◦σ−1 = τ1 ◦ τ2 · · ·◦ τn be any factorization of the permutation π ◦σ−1

into adjacent transpositions. Then using Lemma 16.2 n times,

δ(P (σ)) = δ(P (τn ◦ σ)) = δ(P (τn−1 ◦ τnσ)) = · · · = δ(P (τ1 ◦ · · · ◦ τn ◦ σ)).

But τ1 ◦ · · · ◦ τn ◦ σ = π ◦ σ−1 ◦ σ so δ(P (σ)) = δ(P (π)). Hence, every face of

δ commutes if every square of δ commutes. ✷
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17 Threshold for commutativity

For all three of the test graph families, Kn, Kp,q, Qd, we built up commutativity

beginning with the minimal cycles, triangles and squares, respectively. Here

we show that for groupoid diagrams on the scheme of such a graph, there is a

threshold value such that if at least that number of minimal cycles commute,

then all cycles must commute. that is, the number of noncommuting cycles

can’t be smaller than a certain value.

The results follow from our isolation theorems.

Theorem 17.1 Let n ≥ 4 and let G be a groupoid. If δ : Kn → G is a diagram

and if at least
�
n

3

�
−n+3 cycles in T (Kn) commute w.r.t. δ, then δ is strongly

commutative.

Proof. Suppose that at least
�
n

3

�
− n + 3 triangles in T (Kn) commute w.r.t.

δ. If all triangles commute, we’re done. Otherwise, by (2), there must be a

nonempty set S of at most n − 3 cycles which don’t commute. But then by

Theorem 8.2 there is a K4-subgraph of Kn which contains exactly one, say

T ∈ S, of the noncommuting triangles. Since the triangles robustly span K4,

the commutativity of the other 3 triangles in K4 contradicts the supposed

noncommutativity of T . Hence, δ is strongly commutative. ✷

Hence, the smallest number of noncommutative faces which can block com-

mutativity, the blocking number, is n− 2 for Kn. It follows from the theorems

below that the blocking number of Kp,q is p+ q − 3 and the blocking number

of Qd is d− 1.

Theorem 17.2 Let p ≥ 2, q ≥ 2, p + q ≥ 5, and let G be a groupoid. If

δ : Kp,q → G is a diagram and if at least
�
p

2

��
q

2

�
− (p+ q) + 4 cycles in S(Kp,q)

commute w.r.t. δ, then δ is strongly commutative.
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Theorem 17.3 Let d ≥ 3 and let G be a groupoid. If δ : Qd → G is a diagram

and if at least

1 + (d− 2)2d−1 − d+ 2 = (d− 2)2d−1 − d+ 3

cycles in S(Qd) commute w.r.t. δ, then δ is strongly commutative.

18 Digraph embedding and diagram extension

Some digraphs can be embedded in our standard digraph families. Of course,

any graph embeds in a complete graph, but not every digraph embeds in

K∗
n
(for instance, it must have no dicycles). An odd cycle can’t embed in a

bipartite graph, so it is rather natural to allow subdivision of the graph before

embedding, and this applies just as well to digraphs.

The following theorem was proved in [11, Thm. 4.1].

Theorem 18.1 (Hechler and Kainen, 1974) Let D be any acyclic digraph

with n vertices. Then D has a subdivision D� which is isomorphic to a subdi-

graph of Q∗
2n.

Moreover, for every n, there are acyclic digraphs with 9n vertices which do

not have subdivisions embeddable in a cube of dimension less than 10n. (This

follows from [11, Thm. 3.7, Lemma 4.2], using the fact that Lemma 4.2 there

is actually an equivalence.) Hence, one could at best replace 2 by 10/9 in any

improvement of the above result. However, for particular digraphs, one can

possibly obtain subdivisions embedding in cubes of much lower dimension -

e.g., if D consists of two internally-disjoint paths of length d so D has n = 2d

vertices, then D embeds in a cube of dimension d.
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How can one extend hypercube embeddings of subdivisions of digraphs

to the enriched case of diagrams in a category C? In fact, once one has an

embedding, the extension turns out to be easy. A subdivision of a diagram

is obtained by replacing some of the morphisms by sequences of pairwise-

consecutively-composable morphisms; it is called a parsimonious subdivision

if at most one non-identity morphism in the diagram is assigned to some arc

in the dipath replacing each morphism.

If D is a subdigraph of Q∗
d
and δ : D → C is a diagram, then a diagram

δ̂ : Q∗
d
→ C extends δ if δ̂|D = δ. Extension itself is trivial; it becomes

interesting and nontrivial when the diagram and its extension are required to

be commutative.

18.1 The groupoid case

If a diagram δ : G → G is strongly commutative, then all v-w-paths induce

the same G-morphism which we denote by δ(v, w). Let δ(v, v) be the identity

on v. The extension problem for a diagram in a groupoid whose underlying

graph is a subgraph of some given graph is straight-forward. Moreover, one

can achieve this using the least possible number of nonidentity morphisms. If

one has a strongly commutative diagram, then by Theorem 18.1 there is an

extension of the diagram (or of some subdivision) to a hypercube. Having a

groupoid category is crucial for the argument which follows.

An infiltrating forest for a subgraphG in a graph Γ is a set of trees contained

in Γ, each containing a single vertex from V (G) such that every vertex of Γ

belongs to one of the trees. For a graph H, �H� := #EH and |H| := #V H.

Lemma 18.2 Let F be the set of edges in an infiltrating forest for G in Γ.

Then #F = �Γ(F )� = |Γ|− |G|.
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Proof. Each edge of Γ not in G or F , when added to the subgraph of Γ

determined by G∪F ∪ set of previously selected edges, causes the cyclomatic

number to increase by 1. Since the total increase is β(Γ)− β(G), we have

�Γ� − �G� −#F = �Γ� − |Γ|+ 1− (�G� − |G|+ 1),

so #F = |Γ|− |G|. ✷

Theorem 18.3 (Embedding Theorem for Diagrams) Let G ⊂ Γ be a

subgraph, let F be any infiltrating forest for G in Γ, and δ : G → G a strongly

commutative diagram. Then there is a strongly commutative diagram

δ̄ : Γ → G

which extends δ using only identity morphisms on F . Moreover, each edge xy

in Γ not in G ∪ F is assigned the corresponding morphism δ(v, w), where v

and w are the vertices of V (G) to whose trees x and y belong.

Proof. We consider an arbitrary cycle z in cyc(Γ). Suppose the cycle contains

no edges in G or F and is given by the sequence x1, x2, . . . , xr ∈ V Γ. Then

there is a corresponding sequence v1, v2, . . . , vr ∈ V G, where the vi may not

all be distinct. As z is a cycle, the sequence of vi must be a closed walk in G.

As δ is strongly commutative, the composition of each cycle is the identity;

hence, so is the composition of each closed walk. Therefore, z is commutative

with respect to δ̄. ✷

18.2 Diagrams with no hypercube extension

When the ambient category is not a groupoid, such diagram extensions may

not exist.
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Theorem 18.4 There exists d ∈ N, a digraph D which is a subdigraph of Qd,

a finite category F , and a diagram δ : D → F such that δ is commutative, but

there is no commutative diagram δ̂ : Q∗
d
→ F which extends δ.

Proof. Take d = 2. Let D be an orientation of K1,2 with no length-2 dipath.

Then D has a unique embedding in Q∗
2. Without loss of generality, we take D

to be the digraph with vertices v1, v2, v3 and arcs (v2, v1), (v2, v3).

Now consider a category F which has four distinct objects A,B, U, V . As-

sume that F(A,B) = {a}, F(A,U) = {b}, F(B, V ) = {x}, F(U, V ) = {y},

and F(A, V ) = {α, β}, with F(X,X) = {1X} for all X ∈ Obj(F). Suppose

ax = α, by = β, where α �= β. Then the diagram δ : D → F given by

δ(v2, v1) = a, δ(v2, v3) = b is commutative (vacuously as it has no cycles) but

the unique diagram in F which extends δ to the cube Q∗
2 is not commutative.

✷

With a bit more work, the same method applies to a nontrivially com-

mutative diagram. Let D be the digraph which has two parallel, internally

disjoint dipaths R, S, T, U and R,X,U joining the two vertices R and U , where

both dipaths are oriented from R to U . Now subdivide the arc RX as the di-

path R, Y,X, and consider the corresponding digraph D� which includes all six

vertices. We can embed D� into the cube Q3 by the following vertex function

f : R �→ (000), S �→ (100), T �→ (101), U �→ (111), Y �→ (001), X �→ (011)

and this can be extended to a commutative diagram in some category F whose

objects will be denoted using the corresponding binary triple from the standard

parameterization of the vertices of Q3. We use the notation

[000, 100] := F((000), (100)), etc.
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The category F is required to satisfy the following conditions:

[000, 100], [100, 101], [101, 111], [000, 001], [001, 011], [011, 111] are all singletons.

If δ : D� → F is the commutative F -diagram obtained by requiring that

the dipath of length 3 maps to the sequence of morphisms a, b, c contained

in [000, 100], [100, 101], [101, 111], resp. and the dipath of length 2 maps to

the sequence of morphisms d, 1, e contained in [000, 001], [001, 011], [011, 111],

resp., with 1 denoting the identity map, so the F -objects (001) and (011) are

the same. By commutativity of δ we require that both sequences of morphisms

have the same composition in F ; that is, abc = de = d1e.

Suppose now that in F we also have

[000, 010], [010, 011] are both singletons.

Then as in the first example, if [000, 011] = {α, β}, the composition of the

unique morphisms in [000, 010] and [010, 011] is α while the composition of

d, e is β �= α, then there is no commutative extension of δ to Q3 (in fact, not

even to the subdigraph determined by the 8 arcs of the cube listed here).

Extending a commutative diagram with respect to a digraph embedding

may not be possible, but as the cubes are nested, if there is an embedding of D

in Qd, then there are embeddings of D into all hypercubes of dimension ≥ d.

One might take a more “spread out” embedding of D in the hypercube. In

that case, it seems possible that the nonidentity morphisms of the hypercube

diagram could be so mutually far apart in the hypercube that a commuta-

tive extension to the hypercube. That is, perhaps one can achieve diagram

extensions if the hypercube has sufficiently large dimension. One further con-

sideration is the choice of subdivision if one first starts with a commutative

diagram and the goal is to extend an embedded subdivision to a larger digraph.
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19 Cycles and commutativity as biology

Arthur Winfree’s wonderful book, The Geometry of Biological Time, con-

cerned the influence of topology on the possibilities of “phase-resetting” of

the internal clock which governs various biological processes. The EV-theory

moves from one clock to many interrelated ones.

As biology is certainly not a closed system, one can’t expect an organism

to ever return to exactly the same state. Once approximate cycles are admit-

ted, however, the periodicity depends on the tolerance chosen. In fact, there

are many simultaneously active periodic pathways in an organism - from ro-

tational modes of nuclei and molecules, to cell growth, and sleep-wake cycles

in dreaming.

It is rather natural to look at these cycles as built up hierarchically. But

then one needs to ensure that multiple routes (unknown in advance) must

provide comparable results. Comparable could mean equal up to some equiva-

lence. For instance, if myths are viewed as mechanisms to communicate from

the racial unconscious through a set of stylized behaviors and scenarios, then

Levy-Strauss’s research shows that the spatially parallel routes afforded by

distinct cultures provide agreement up to some notion of polarity, with spatial

contiguity corresponding to switches.

In dynamical systems, one can close non-repeating trajectories at points

of close self-approach. This is done, for instance, in the Kolmogorov-Arnold-

Moser Theorem, where almost periodic motion converges to the periodic. In

knot theory, there is a theorem that knots of a given complexity cannot be

approximated by strings with too large a thickness. For instance, a knot made

with string of thickness more than 1/12 of its length must be the unknot.

In the theory considered above, we find that the collective commutativity
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of a sufficient set of minimal cycles forces the commutativity of all cycles.

In our nice regular example graphs such results hold and by the Embedding

Theorem, they also hold for diagrams whose digraphs can be topologically

embedded in a nice graph.

An opposite instance is also defined above. If a sufficiently small set of

minimal cycles is suspected of failure, then the diagram must commute! In

addition to holding for our test graphs, the result holds for digraphs topologi-

cally embedded in them. Such a scenario, where only a relatively few minimal

cycles are in question could occur if one had a quantum computer which simul-

taneously checked all cycles and which was infallible in affirming commutivity

for a cycle but which could answer ”False” for some small number of cycles

due to either noise or to failure of a heuristic within the time specified.

Do such testing mechanisms occur within biology? Could thresholds ex-

ist so that error below the threshold is ignored, while error above threshold

triggers a control process? We think that the idea of implementing general dia-

grams within either the standard ordered simplexK∗
n
or especially the standard

ordered hypercube Q∗
d
would give organisms a superior tool-box for modeling

disparate phenomena with an overall efficient investment of resources.

Thus, we hope that the theory of robustly hierarchically generating sets of

cycles will be helpful in understanding the complexly interwoven “geometry of

biological time” of Ehresmann and Vanbremeersch.
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