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NON-ARCHIMEDEAN MONOTONE EMOTIONS

Wilhom H. SCHIKHOF

Groupe d’etude d’Analyse ultramétrique
(Y. AMICE, G. CHRISTOL, P. ROBBA)
6e annee, 1978/79, n° 13, 8 p. 12 mars 1979

Univ . , 

Introduction.

In the sequel, K is a non-archimedean, non-trivially valued field, that is

complete under the metric induced by the valuation. The residue class field of K

is denoted by k . X will always be a closed, non empty subset of K without

isolated points (except in 2.2, if you want).

Since K admits no ordering in the usual sense it is not possible to define mo-

notone functions X 2014~K just by taking over the classical definitions. Thus, our

procedure will be to try and find statements for functions R 2014~ R equivalent to

monotony, and formulated in terms that are translatable to K. This way we will

obtain several definitions of " f : X 2014~ K is monotone", that are, although not

equivalent, closely related.

The connections between these various definitions and the properties of the non-

archimedean monotone functions can be put together to form a little theory which is

interesting in its own right, but of which the relations to the other parts of p-

adic analysis are yet not very tight.

1. Monotone func tions .

For a function f : R the following conditions are equivalent :

(~) f is monotone ( in the non-strict sense) , ,

If C c R is convex then f" (c) is convex,

(y) If x is between y , z then f(x) is between f(y) and f(z) .

Also, the following conditions are equivalent :

(a) f is strictly monotone,

(b) f is injective. If C c R is convex then is relatively convex in
" 

.

(c) If f(x) is between f(y) and f(z) then x is between y and z .

Let x, y E Then the smallest ball that contains x, y is denoted by

~x , yJ. z E K is between x and y if z E ex , y~ . ( If z ~ [x , we

(1r) Texte regu Ie 12 mars 1979.
Wilhem H. SCHIKHOF, Math. Inst., Kath. Univ., Toernooiveld, NIJMEGEN (Pays-Bas).
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call x y y at the sane side of z ). A subset C c K is called convex if

x , y E C, z E ~x 9 y] implies z E C . Each convex subset of K can be

written in at least one of the following forms

for some ae K, re (0 , co) .

Let Zc:Y cK . Then Z is called convex in Y if Z=C n Y , where C is
convex.

With all these definitions we have the following theorem.

THEOREM 1.1. - Let f : X ~ K . Then the following conditions are equivalent :

(1) If x, y , z~X y x is between y and z then f(x) is between f(y)
and f(z) y

(2) If C c K is convex, then is convex in X .

We denote the collection of those f : X -~ K satisfying (l) or (2) by 
i. e. if , and only if, for each x , y , 

Isometries are in N (viz. exp), but also non trivial locally constant func-
tions (e. g., choose a center in each ball of radius r &#x3E; 0 , and let f be the

map assigning to x E X the center of the ball of radius r to which x belongs.
Then f 

THEOREM 1.2. - Let f : X 2014~ K . Then the following conditions are equivalent

If x , y y , z EX, f(x) is between f(y) and f(z) then x is between

y and z ,

(2t) If C c X is convex in X then f(C) is convex in f(x) . f is injec-
tive.

We denote the collection of those f : X ~ k satisfying (1’) or (21) by

M~(X) , i. e. f E if, and only if, for each x , y , z EX.

The classical situations suggests the question as to wether M (x) c and

also wether f E r.i~(x) , f injective implies In general, both state-

ments are false, but we do have the following :

THEOREM 1.3. - f ~ implies f-1 e M~(f(x)) . f E M~(x) , f injective

implies f" e Ms(f(x)) . If k is finite and X is convex, then an injective

Mb-function is in M,(x) .



13-03

So we are led to define M- (x) n as being the more or less natu-

ral translation of "the space of the strictly monotone functions ".

The following theorem concerns continuity of monotone functions. For a function

f : X - K , we define its oscillation function, in the usual way :

f is continuous at a if, and only if, 0 .

THEOREM 1.4.- Let f be either in or in (X) . 

(ii) f is bounded on compact subsets of X ,

(iii) For each a ~ X we have the following alternative. Either f is conti-

nuous at a, or for each sequence x? ~ ... (x n converging to a ,

the sequence f(X2) , ... is bounded and has no convergent subsequence 

Let is spherically complete, then so is g(Y) .

Let If Z c h(fi) is spherically complete, then so is 

Proof (sketch). - If f ~ u Ms(X) , then :

So f is locally bounded, and (ii) follows. Of (i)~ only the ~ part is in-

teresting. Choose z # a . If )x - a)  z - a) , then

Let lim x = a (x for all n ) and lim f(x ) = a. Let 1im y = a . It
n n n n

suffices to show that lim f(y ) = 03B1 . Indeed, let e &#x3E; 0 , and choose k such

that  e. Then for large n , so

for large m depending on m . Hence 

(m - oo) )f(y ) - 0~)  e , and we have (iii). The rest of the proof
is straightforward.

COROLLARY

(i) If K is a local field, then f is continuous,

(ii) If JKJ is discrete, then f~ M (x) is a homeomorphism 
and is a closed map.

(iii) The graph of f is closed in K y
(iv) If f(x) has no isolated points, then f is continuous.
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An Mb-function may be everywhere discontinuous on K (even when |K| I is dis-

crete).

THEOREM: 1.6. - Let B be the unit ball of K ,

(i) If K is a local field and f E u Ms (B) , then f has bounded dif-

ference quotients (i. e. there is C&#x3E;0 such that for

all xeB ). If, in addition, f(B) is convex, then f is a similarity (i. e., a

scalar multiple of an isometry).

(ii) If K has dis crete valuation and is bounded, then f has

bounded difference quotients. If and if f(B) is convex, then f is
a similarity.

2. Monotone functions havin a t e.

In this section, we want to translate the usual classification of (strictly)
monotone functions R 2014~ R into two types : the increasing and the decreasing

functions. The equivalence relation in o x ’" y if x and y are at the same

side of 0 , yields (- ~ y 0) and (0, as equivalence classes. The relation

’" is compatible with the canonical group homomor p hism R~‘ 2!-t R" R+ the latter
group being (l , - 1) . (usually called sgn(x) ) assigns +1 to every

positive element and - 1 to every negative element. A function f : R - R is
strictly monotone if there exists 2014~ R’~~R+ such that for all y

If a is the identity then f is called increasing ; if = - 1 ,

a(- 1) = 1, f is called decreasing. Other maps ~ : (-1 y 1 ~ - (- 1 ,1} can

not occur (i. e., there is no f such that, for all x # y ,

This rather weird description of real monotone functions can be used in the non-

archimedean case.

For x , define if x , y are at the same side of 0 . This

means : 0 ~ [x , yJ , or |x - y| &#x3E; or i l  1 . Thus x ~ y if,

and only if, e F where

We call the elements of K+ the positive element of K.

The relation ~ is compatible with the canonical homomorphism of (multiplicati-
ve) groups

We call 2 the group of signs and the sign of an element ( x is
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positive if, and only if, = 1 ).

If K is a local field, we can make a group embedding p : E ~2014~ K~ such that

Tr o p is the identity on E . For example, if K = % , õ is a primitive

(p - root of unity, then 
"~

DEFINITION 2.1. - Let a : :E ~ 03A3 be any A function f : X.... K is mono-

tone of type cr if, for all x y y EX, x ~ Y ,

(i. e., if x - y e 2 then f(x) - f(y) )~

We call f of type ~ e E if f is of type a where 0 is the multiplication

with 03B2 , i. e.

We call f increasing if f is of type a where a is the identity, i. e.,

f(x) - f(y) x - y is positive (x 1 y) .

Clearly, if f is of type , and if b ~ p , then f is increasing.

First, we look at increasing functions, then we discuss more general types o .

Notice that increasing functions are isometries hence are in If f is

increasing then f(x) = x + h(x) , where h(y)1  )x - y) x~y~ .
Such h we call pseudo-contractions.

LEMJYIA 2.2. - Let X be an ultrametric space. Then the following are equivalent

X is spherically complete,

(p) Each pseudocontraction X2014)X has a (unique) fixed points

Proof 2014~ (p)* X be a pseudocontraction. A convex

set C c X is called invariant if c C . It is easily proved that the inva-

riant convex subsets of X fora a nest. Let Co be the smallest invariant convex

set. If a E and o(a) 7~ a then

is invariant, convex, and does not contain a . Hence o(a) = a for all a ~ C~ y
and Co is a singleton. (p) ~ (a) . If B2 "# ... are balls in X with

DB 
n 

= §# then choose x 
n 

map a : X ~ X defined by

is a pseudocontraction without a fixed point.
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COROLLARY 2.3. - Let X be convex, let K be spherically conplete, and let
f : X - K be increasing. Then f (X) is convex. If f (X) eX, then f is sur-

jective.

Proof. - Let f (X) c: x . Choose 03B1 ~ X . Then x ~ -f(x) + x is a pseudo-

contraction mapping X into X , hence has a fixed point. So f(x) = a for some

x EX.

If K is not spherically complete, we have always increasing f : K -4 1 that

are not surjective. (Let h : K 2014) K be a pseudocontraction 1dthout a fixed point

Let f(x) = x - h(x) (x E K) , then 0 f). The inverse f~~’ : f (K) -~ K can~

of course, not be extended to an increasing function K 2014~ K .

THEOREM 2.4. - Let K be spherically and let f : X ~ K be increa-

sing. Then f can be extended to an increasing function K - K .

Proof. - By Zorn’s Lemma, it suffices to extend f to an increasing function on

X u ~a~ , where a ~ X . We are done if we can find a e K such that, for all

xE X,

i. e. for all These balls nest.

Let us call a function f : X 2014~K positive if f(X) c K+ .

THEOREM 2.5.

(i) If f : is increasing then f’ is positive y

(it) If g : X  K is a positive Baire class one function, then g has an in-

creasing antiderivative,

(iii) If g : is continuous and positive, then g has a C1-antideriva-

tive,

(iv) If and ft is positive then f=j+h where j is increasing

and h is locally constant. ,

EXAMPLES.

1° The exponential function (defined on its natural convergence region) is in-

creasing.

Then eO ’ °1 ’ ... form an orthonormal base of C(z) , SO there exist
11.0 ’ 11.1 ’ ... E Qp such that f = uniformly.
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f is increasing if, and only if, for all 

(where, if p+ ... + ~ pk (ai ~ (0 , 1 ,..., p- 1) for each i,

~ ~ 0) , then == a~p~).
In other words , f = ¿ A e e C(Z ) is increasing if, and only if, À /(n) is

positive for all n 

Let Qf~ 9~2 . If the set theoretic sum := (x +y; xe ~~, y~ 3}
does not contain 0 then 03B1 + fl e E y notation ty B p . It follows that a @ f3 is

defined if, and only 

If x , ye Z then I xl = )y) . This defines in a natural way.

We have the following results.

THEOREM 2.6. - Let f : be monotone of type a : &#x3E; E-~E. Let E Sy

(i) cr(- a) = -cr(a) ,

?(~) CÐ cr({3) is defined then so is and o’(a0p)=0’(~) 

(iii) implies  la(~)1 ,

jp) =1 ~ g contains an element of the prime field of K then

cr(pa) = 

(v) f E N~(K) ,
(vi) f is either nowhere continuous or uniformly continuous.

THEOREM 2.7. - Let f : K 2014) K be monotone of type o : 2:: ~ L: . Then the fol-

lowing conditions are equivalent,

(Q) o is injective,

(y) If for some a , P=2 y is defined, then so is 

( 6 ) 1 J ( G) I  I implies |03B1|  |03B2| 1 (Q, f3 E L:) .

COROLLARY 2.8. - Let k be a prime field, and let f : K--~K be monotone of

type a : E 2014~ S . Then o i s injective.

(If K = 9.p ({:.-ï) , p = 3 mod 4 , we can find an example of an f : K ~ K

monotone of type where 0 is no t injective).

EXAMPLE 2.9. - Let 

(o : 03A3 -P E ; i there is f : Q ~ , f monotone of type J)



13-08

consists of all o : S 2014~ E of the form

where s : Z --~ ~0 , 1 , 2 , ... , p-2) and X : Z -~ Z is strictly increa-

sing.

3. Functions of bounded variation.

Let f : X  K have bounded dif ference quotients. Then f is a

linear combination of two increasing functions.

Proof. - Choose 03BB E K ,

V

Then X f is a (pseudo-) contraction so g(x) := - x + A" (x E X) is

increasing. If h(x) :== x (x E X) , then Àh + Ag = f .

COROLLARY 3.2. - Let X be the unit ball of a local field K and let

f : X -~ K . Then the following are equivalent

(a) f is a linear conbination of two increasing functions,

Proofs - Use 1.6.
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