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NON-ARCHI}EDEAN MONOTONE FUNCTIONS

by Wilhen H. SCHIKHOF (¥)
[Kath. Univ., Nijmegen]

Introductions.

In the sequel, ¥ is a non-archimedean, non-trivially valued field, that is
conplete under the metric induced by the valuation. The residue class field of K
is denoted by k « X will always be a closed, non ecnpty subset of K without

isolated points (cxcept in 2.2, if you want).

Since K aduits no ordering in the usual sense it is not possible to define mo-
notone functions X —3 K Jjust by taking over the classical definitions. Thus, our
procedure will be to try and find statements for functions R — R equivalent to
monotony, and formulated in terms thet asre translatable to K . This way we will
obtain several definitions of " £ ¢+ X -3 K is monotone", that are, although not

equivalent, closely related.

The connections between these various definitions and the properties of the non-
archinedean monotone functions can be put together to form a little theory which is
interesting in its own right, but of which the relations to the other parts of p-

adic analysis are yet not very tight.

1. Monotone functions.
For a function f : R —9 R the following conditions are equivalent :

(a) f is monotone (in the non-strict sense),

. -1 .
(B)‘I£ CcR is convex then f (C) is convex,

(y) If x is between y , z then f(x) is between f(y) and f£(z) .
Also, the following conditions are equivalent :

(a) f is strictly monotone,

(b) £ is injective. If C c R is comvex then f(C) is relatively convex in
£(R) |

(¢) 1f f(x) 4is between f(y) and f(z) then x is between y and z .

Let x , y € X . Then the smallest ball that contains x , y 1is denoted by
X ,y5]. z€X is between x and y if ze€[x , y} . (If z¢[x, y], we
’ PofnSiniiheten
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call x , y at the same side of 2z ). A subset C c ¥ is called convex if

Xx,y€C, ze€[x,y] inplies z € C . Each convex subset of K can be

written in at least one of the following forms
{x: |x-af<r}, &: |x-a <}
for some a€e kK, re (0, ») .

Let Z<cYcK . Then Z is called convex in Y if Z=CnY, wvhere C is

convex,

With all these definitions we have the following theorem.

THEOREM l.le = Let f : X -3 K ., Then the following conditions are equivalent :

(1) If x,y,2z€X, x is between y and z then f(x) is between f(y)
and f(z) ,

(2) If CcK is convex, then f—l(C) is convex in X .

We denote the collection of those f : X -3 K satisfying (1) or (2) vy Mb(X) R
i.e. fe Mb(X) if, and only if, for each x , y , z € X ,
|x =y ly -2 implies [£(x) - £(y)| < |£(y) - £(2)| .

Isometries are in Mb (viz. exp), but also non trivial locally constant func-—
tions (e. g+, choose a center in each ball of radius r >0 , and let f be the
map assigning to x € X the center of the ball of radius r +to which x belongs.
Then f € Mb(X) ).

THEOREM 1.2, — Let f : X — K . Then the following conditions are equivalent

(11) If =,y ,zeXx, f(x) is between f(y) and £(z) then x is between

y and z ,

(21) If CcX is convex in X then f£(C) is convex in f(X) . f is injec-

tive.

We denote the collection of those f : X — K satisfying (1!') or (21) vy
MS(X) , ie es fe€ MS(X) if, and only if, for each x , y , z € X .

|x - y| <]y - 2| implies |f£(z) - £(y)| < |£(y) - £(2)| .

The classical situations suggests the question as to wether MS(X) c Mb(X) and
also wether f e Mb(X) , f injective implies f € MS(X) « In general, both state-

ments are false, but we do have the following :

THEOREM 1.3, -~ f € MS(X) inplies - e Mb(f(x)) . fe Mb(X) , f injective
implies £t e M (£(X)) . If k is finite and X is convex, then an injective
M, —function is in MS(X) .
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So we are led to define MbS(X) 1= Mb(X) n MS(X) as being the more or less natu-

ral translation of "the space of the strictly monotone functions",

The following thecorem concerns continuity of monotone functions. For a function

f: X-—=K, we define its oscillation function, Wo in the usual way :

wp(a) o= lim_ sup{|£(x) - £(3)| 5 |x -al s3; |y -al <3
= lin sup{|f(x) - £(a)| ; |x - al 'silf} (a €X).

f is continuous at a if, and only if, wf(a) =0 ,

THEOREM l.4. — Let f be either in Mb(X) or in MS(X) . Then

(1) u%(a) = infz#alf(z) - f(a)] (a €X)

(ii) f 4is bounded on compact subsets of X ,

(iii) For each a € X we have the following alternative. Either f is conti-

nuous at a , or for each sequence X, , X, , «.. (xn # a) converging to a ,

the sequence f(xl) ’ f(x2) , ees 1is bounded and has no convergent subsequencee.

Let g€ Mb(A) « If Y cX is spherically complete, then so is g(Y) &

Let h € MS(X) . If Z ch(X) is spherically complete, then so is h-l(Z) .

Proof (sketch), - If f €M (X) UM (X) , then :
|x -~ y| <y -z implies [£(x) - £(y)| < |£(y) - £(2)] .
So f is locally bounded, and (ii) follows. Of (i), only the £ part is in-
teresting. Choose z # a o If |x - a| < |z - a| , then
|£(x) - £(a)| < |£(z) - £(a)| whence wf(a) < |£(z2) - £(a)| o

Let l:i.mxn=a(xn7£a for all n ) and 1imf(xn)=a.Let 1imyn=a.It
suffices to show that 1lim f(yn) = o o Indeed, let € >0 , and choose k such
that |f(xk) - o < €. Then Iyn -a

< |x, - a| for large n, so

ly, - x| <lx ==
for large n depending on n . Hence |f(yn) - f(xm)l < If(xk) - f(xm)| , 80
(n — ) If(yn) -a < lf(xk) - o < ¢, and we have (iii). The rest of the proof
is straightforward.
COROLLARY 1.5. - Let £ : X —K be in M (X) un (X) .

(i) If X is a local field, then f is continuous,

(11) 1f |K| is discrete, then f € M_(X) = f is a homeomorphism X ~ £(x) ,

and f € Mb(X) =3 f is a closed map.

(1ii) The graph of f is closed in K< ,

(iv) If £(X) has no isolated points, then f is contimuous.
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An Mb—function nay be everywhere discontinuous on K (even when |K| is dis-

crete).

THEOREM 1.6. —~ Let B be the unit ball of K ,

(1) If K is a local field and f e Mb(B) U MS(B) , then f has bounded dif-
ference quotients (i. e. there is € >0 such that |f(x) - £(y)]| <€ ¢|x - y| for

all x € 3B ). If, in addition, f(B) is convex, then f is a similarity (i. Cey 2

scalyr multiple of an isometry).

(ii) If X has discrete valuation and f € M (B) is bounded, then f has

bounded difference guotients. If f € Mbs(B) and if f(B) is convex, then f is

a similarity.

2. Monotone functions having a fype.

In this section, we want to translate the usual classification of (strictly)
monotone functions R -2 R into two types : the increasing and the decreasing
functions. The equivalence relation in Eﬁ : x~y if x and y are at the same
side of 0 , yields (-« , 0) and (0, ®) as equivalence classes. The relation
~ 1is compatible with the canonical group homomorphism E? -Ee B%/ET , the latter
group being {1 , - 1} . mx) (usually called sgn(x) ) assigns + 1 to every
positive element and =~ 1 to every negative element. A function f : R - R is

strictly monotone if there exists o : Bf/ﬂf - Bf/gf such that for all x # y
m(f(x) = £(y)) = oln(z - y)) .

If o is the identity then f is called increasing ; if o(1) = -1,
o(-1) =1, f is called decreasing, Other maps o : f{-1, 1} = {~ 1, 1} can

not occur (i. e., there is no f such that, for all x #y ,
m(£(x) - £(y)) = o(nlz - y)) ).

This rather weird description of real monotone functions can be used in the non-~

archimedean case.

For x , ye K define x ~y if x , y are at the same side of O . This
means : O0¢[x, y], or |x—=y| >|yl , or !xy—l -1l <1 .Thus x ~y if,
and only if, xy-l € K where

KW= {xex; |1-x]<1}.
»

We call the elements of K'  the positive element of K .

The relation ~ is compatible with the canonical homomorphism of (multiplicati—

ve) groups
m: K K/ =2 % .

*
We call ¥ +the group of signs and n(x) the sign of an element x € X (x is
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positive if, and only if, =(x) =1 ).

If K is a local field, we can make a group embedding p : X &= K* such that
Mo p is the identity on ¥ . For example, if K = Qp , O is a primitive
(p - l)th root of unity, then
n k !
“(Zﬁgk a, P ) =28 D (kez, 2 #0)
(Here a € {0, 1,8, «eo, 6p-2} for each n ).

DEFINITION 2.,1. ~ Let ¢ : £ - % be any map. A function f : X - K 1is mono-

tone of type ¢ if, for all x ,ye X, z#7y,
m(£(x) - £(y)) = olnlx - y))

(i. eey if x -ye ae T then f(x) - £(y) € ola) ).

We call f of type Be ¥ if f is of type o where o is the nultiplication

with B, i. e.

tx) - £6) ¢ g (x,yeX, x#73) .

X =Y
We call f increasing if f is of type ¢ where o is the identity, i. e.,

M is positive x#vy) .

X =3

Clearly, if £ is of type B , and if b€ B , then vt ois increasing.
First, we look at increasing functions, then we discuss more general types O .
Notice that increasing functions are isometries hence are in Mbs(X) . If £ is
incressing then f(x) = x + h(x) , where |h(z) - n(y)| < |x -yl (x,yeX , x#y) .

Such h we call nseudo-contractions.

LEMMA 2.2, - Let X be an ultrametric space. Then the following are equivalent

(a) X is spherically complete,

(8) Each pseudocontraction X - X has a (unique) fixed point.

Proof (sketch)s - (&) — (B)e Let o : X — X be a pseudocontraction. A convex
set C cX is called invariant if o(C) < C . It is easily proved that the inva-
riant convex subsets of X forn a nest. let CO be the smallest invariant convex

set. If a € C, and o(a) # a then

By = {x € X ; a(x , o(a)) <dla , o(a))}

is invariant, convex, and does not contain a . Hence o(a) = a for all a € CO ’
and C. is a singleton. () — (&) o If Bl R B2 2 «e. are balls in X with

0
nNBs = ¢ then choose x € B\B , (nelN) . Thenmap 0 : X =3 X defined by

o(x) = (x € 3\8,,,)

X
n+1

is a pseudocontraction without a fixed point.



13-06

COROLLARY 2,3+ = Let X De convex, let K Dbe spherically comnplete, and let

f: X — K be increasing. Then f£(X) is comvex. If f(X) c X, then f is sur-

jective.

Proof. - Let f(X) X, Choose «€ X . Then X »—-f(x) + x + ¢ is a pseudo-
contraction mapping X into X , hence has a fixed point. So f(x) = & for sone
xe X,

If X is not spherically complete, we have always increasing f : K —» K that
are not surjective. (Let h : XK =3 K be a pseudocontraction without a fixed point
Let f(x) =x - h(x) (x €K), then O ¢im f). The inverse £ £f(K) — K can,

of course, not be extended to an increasing function K -3 K

THEOREM 2.4. - Let K be spherically counplete, and let f : X — K be increa-

sing. Then f can be extended to an increasing function K -4 K .

Proof. — By Zorn's lemma, it suffices to extend f %o an increasing function on

————
X u {a} , where a ¢ X . We are done if we can find o€ K such that, for all
xe X,

Iaa_-f§X) _1] <1
i. e. € Bf(x)—(a—x)(la - x|—) for all x € X . These balls form a nest.

Let us call a function f : X -3 K positive if f£(X) c X' .

THEOREM 2.5.

(1) If £: X —K is increasing then f' is positive,

(ii) If g: X—K is a positive Baire class one function, then g has an in-

creasing antiderivative,

(iii) If g: X-9K is continuous and positive, then g has a Cl-antideriva—

tive,

(iv) If fe Cl(X) and f! is positive then f = j + h where J is increasing,

and h is locally constant.

EXAMPLES.

19 The exponential function (defined on its natural convergence region) is in-

creasinge.

20 let fec(gp) , and let ey =§, , for neN,

P
(L if lx = n] <&

-~

en(x) = n (x € gp) .

10 elsewhere
Then e. , ¢, , «+. forn an orthonornal base of C(Z ) , so there exist
0 1 <o -~

Moy oees € Q) such that f = 2

XO » M =0 ™n Sn ? uniformly.
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f is increasing if, and only if, for all n€ N ,
I - (2}l < {n)

. k
(where, if D=2y +a P+ ees +8 P (aie {0,1,000, p=1} for ecach i,

e #0) , then [n}; =a b ).

In other words, f = 2 A e, € C(Z_p) is increasing if, and only if, )\n/{n} is

positive for all n € N .

Let o, BE€ £ « If the set theoretic sum o+ B :={x+y; xea, ye B}
does not contain O then o+ Be T, notation a«@®p . It follows that o @B is
defined if, and only if, &« # - B .

If x, y€ ¢€ = then lx! = Iyl . This defines |@| in a natural way.

We have the following results.

THEOREM 2,6. — Let f : K — K be monotone of type ¢ : L -3 % . Lot &R € T,

(i) o(~ @) = - o(a) ,

(i1) If o(o) ®o(p) is defined then so is o ® B and o(a @ B) = o(a) ® 0(8) ,

(iii) |of < |p] iwplies |o(a)| < |o(8)] ,
(iv) If |8] =1, B contains an element of the prime field of K then
o(Ba) = po(e) ,

(v) fe MS(K) ’

(vi) f is either nowhere continuous or unifermly continuous.

THEOREM 2.7, — Let f ¢ K — K be monotone of type ¢ : ¥ — T . Then the fol-

lowing conditions are equivalent,

(0) o 4is injective,

(8) £em(x),

(y) If for sone o, BeES, o®P is defined, then so is ola) ®c(B) ,

(6) lo(e)] < |a(p)| implies |al < |B] (o, BeD) .

COROLLARY 2.8, = Let k be a prime field, and let f : XK = X be nonotone of

type 0 ¢+ ¥ -3 % . Then o is injective,

(If K = Q{p(\,:‘f) s, P=3mnod 4, we can find an example of an f : K ~= K

monotone of type © , where O is not injective).
EXAMPLE 2,9, — Let K = Q’p « Then

{o: ©-3%: there is f : Qp —-&97) , f mnonotone of type o}
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consists of all ¢ ¢ ¥ =3 % of the form
sty ot 6s(n) pk(n)

where s : Z-—3{0, 1,2, oo , p=2} and A: Z—-3Z is strictly increa—
sing.

3« Functions of bounded variation.

LEMMA 34le -~ Let £ : X —» K have bounded difference quotients. Then f is a

linear combination of two increasing functions.

Proof. -~ Chnose A € K,
T - f
| 4] >Sup{|—(—x-3;—:—3-;(l)-| s x#7y) .

Then AL £ is a (pseudo-) contraction, so g(x) = = x + AL r(x) (x e X) is
increasing. If h(x) :=x (x € X), then M+ \g=7f.

COROLLARY 3.2, - Let X be the unit ball of a local field X and let

f: X ~-3K ., Then the following are equivalent

(0) £eBaX) (. e supfli(%-{-%;—(l)-l s xAyl<e),

() £ is a linear conbination of two increasing functions,
(v e 0,07 ,
(6) £ [, (] .

Proof. - Use 1.6.
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