Groupe de travail D'ANALYSE ULTRAMÉTRIQUE

Wilhom H. Schikhof Non-archimedean monotone functions

Groupe de travail d'analyse ultramétrique, tome 6 (1978-1979), exp. no 13, p. 1-8
http://www.numdam.org/item?id=GAU_1978-1979__6_A7_0

[^0]
NON-ARCHIL EDEAN MONOTONE FUNCTIONS
 by Wilhon H. SCHIKHOF (*)
 [Kath. Univ., Nijmegen]

Introduction.

In the sequel, K is a non-archimedean, non-trivially valued field, that is complete under the metric induced by the valuation. The residue class field of K is denoted by k. X will always be a closed, non enpty subset of K without isolated points (except in 2.2, if you want).

Since K adnits no ordering in the usual sense it is not possible to define monotone functions $X \rightarrow K$ just by taking over the classical definitions. Ihus, our procedure will be to try and find statements for functions $\underset{\sim}{R} \rightarrow \underset{\sim}{R}$ equivalent to monotony, and formulated in terms thet are translatable to K. This way we will obtain several definitions of " $f: X \rightarrow K$ is monotone", that are, although not equivalent, closely related.

The connections between these various definitions and the properties of the nonarchinedean monotone functions can be put together to form a little theory which is interesting in its own right, but of which the relations to the other parts of padic analysis are yet not very tight.

1. Monotone functions.

For a function $f: \underset{\sim}{R} \rightarrow \underset{\sim}{R}$ the following conditions are equivalent :
(a) f is monotone (in the non-strict sense),
(β) If $C \subset \underset{\sim}{R}$ is convex then $f^{-1}(C)$ is convex,
(γ) If x is between y, z then $f(x)$ is between $f(y)$ and $f(z)$.
Also, the following conditions are equivalent :
(a) f is strictly monotone,
(b) f is injective. If $C \in R$ is convex then $f(C)$ is relatively convex in $f(R)$,
(c) If $f(x)$ is between $f(y)$ and $f(z)$ then x is between y and z.

Let $x, y \in K$. Then the smallest ball that contains x, y is denoted by $[x, y]$. $z \in K$ is between x and y if $z \in[x, y]$. (If $z \notin[x, y]$, we

[^1]call x, y at the same side of z). A subset $C \subset K$ is called convex if $x, y \in C, z \in[x, y]$ implies $z \in C$. Each convex subset of K can be written in at least one of the following forms
$$
\{x:|x-a|<r\},\{x:|x-a| \leqslant r\}
$$
for some $a \in K, \quad r \in\{0, \infty)$.
Let $Z \subset Y \subset K$. Then Z is called convex in Y if $Z=C \cap Y$, where C is convex.

With all these definitions we have the following theorem.

THEOREM 1.1. - Let $f: X \rightarrow K$. Then the following conditions are equivalent :
(1) If $x, y, z \in X, x$ is between y and z then $f(x)$ is between $f(y)$ and $f(z)$,
(2) If $C \subset K$ is convex, then $f^{-1}(C)$ is convex in X.

We denote the collection of those $f: X \rightarrow K$ satisfying (1) or (2) by $\mathbb{M}_{b}(X)$, i. e. $f \in \mathbb{M}_{b}(X)$ if, and only if, for each $X, y, z \in X$,

$$
|x-y| \leqslant|y-z| \text { implies }|f(x)-f(y)| \leqslant|f(y)-f(z)|
$$

Isometries are in M_{b} (viz. exp), but also non trivial locally constant functions (e. g., choose a center in each ball of radius $r>0$, and let f be the map assigning to $x \in X$ the center of the ball of radius r to which x belongs. Then $f \in M_{b}(X)$).

THEOREM 1.2. - Let $f: X \rightarrow K$. Then the following conditions are equivalent
(1^{\prime}) If $x, y, z \in X, f(x)$ is between $f(y)$ and $f(z)$ then x is between y and z,
(2^{\prime}) If $C \subset X$ is convex in X then $f(C)$ is convex in $f(X)$. f is injective.

We denote the collection of those $f: X \rightarrow K$ satisfying (1^{1}) or (2^{2}) by $M_{S}(X)$, i.e. $f \in M_{S}(X)$ if, and only if, for each $x, y, z \in X$.

$$
|x-y|<|y-z| \text { implies }|f(x)-f(y)|<|f(y)-f(z)| .
$$

The classical situations suggests the question as to wether $M_{S}(X) \subset M_{b}(X)$ and also wethor $f \in M_{b}(X)$, f injective implies $f \in M_{S}(X)$. In general, both statements are false, but we do have the following :

THEOREMI 1.3. - $f \in M_{S}(X)$ implies $f^{-1} \in M_{b}(f(X)) . f \in M_{b}(X), f$ injective implies $f^{-1} \in M_{S}(f(X))$. If k is finite and X is convex, then an injective M_{b}-function is in $M_{S}(X)$.

So we are led to define $M_{b s}(x):=M_{b}(X) \cap M_{s}(X)$ as being the more or less natural translation of "the space of the strictly monotone functions".

The following theorem concerns continuity of monotone functions. For a function $f: X \rightarrow K$, we define its oscillation function, ω_{f}, in the usual way :

$$
\begin{aligned}
\omega_{f}(a) & :=\lim _{n \rightarrow \infty} \sup \left\{|f(x)-f(y)| ;|x-a| \leqslant \frac{1}{n} ;|y-a| \leqslant \frac{1}{n}\right\} \\
& =\lim _{n \rightarrow \infty} \sup \left\{|f(x)-f(a)| ;|x-a| \leqslant \frac{1}{n}\right\} \quad(a \in X) .
\end{aligned}
$$

f is continuous at a if, and only if, $\omega_{f}(a)=0$.
THEOREM 1.4. - Let f be either in $M_{b}(X)$ or in $M_{s}(X)$. Then
(i) $\quad \omega_{f}(a)=\inf _{z \neq a}|f(z)-f(a)| \quad(a \in X)$
f is bounded on compact subsets of X,
(iii) For each $a \in X$ we have the following alternative. Either f is continuous at a, or for each sequence $x_{1}, x_{2}, \ldots\left(x_{n} \neq a\right)$ converging to a, the sequence $f\left(x_{1}\right), f\left(x_{2}\right), \cdots$ is bounded and has no convergent subsequence.

Let $g \in M_{b}(X)$. If $Y \subset X$ is spherically complete, then so is $g(Y)$.
Let $h \in M_{s}(X)$. If $Z \subset h(X)$ is spherically complete, then so is $h^{-1}(Z)$.
Proof (sketch). - If $f \in M_{b}(X) \cup M_{s}(X)$, then :

$$
|x-y|<|y-z| \text { implies }|f(x)-f(y)| \leqslant|f(y)-f(z)|
$$

So f is locally bounded, and (ii) follows. of (i), only the \leqslant part is interesting. Choose $z \neq a$. If $|x-a|<|z-a|$, then

$$
|f(x)-f(a)| \leqslant|f(z)-f(a)| \text { whence } \omega_{f}(a) \leqslant|f(z)-f(a)|
$$

Let $\lim x_{n}=a \quad\left(x_{n} \neq a\right.$ for $\left.a l l n\right)$ and $\lim f\left(x_{n}\right)=\alpha$. Let $\lim y_{n}=a$. It suffices to show that $\lim f\left(y_{n}\right)=\alpha$. Indeed, let $\varepsilon>0$, and choose k such that $\left|f\left(x_{k}\right)-\alpha\right|<\varepsilon$. Then $\left|y_{n}-a\right|<\left|x_{k}-a\right|$ for large n, so

$$
\left|y_{n}-x_{m}\right|<\left|x_{k}-x_{m}\right|
$$

for large n depending on n. Hence $\left|f\left(y_{n}\right)-f\left(x_{m}\right)\right| \leqslant\left|f\left(x_{k}\right)-f\left(x_{m}\right)\right|$, so $(m \rightarrow \infty) \quad\left|f\left(y_{n}\right)-\alpha\right| \leqslant\left|f\left(x_{k}\right)-\alpha\right|<\varepsilon$, and we have (iii). The rest of the proof is straightforward.

COROLLARY 1.5. - Let $f: X \rightarrow K$ be in $M_{b}(X) \cup M_{s}(X)$.
(i) If K is a local field, then f is continuous,
(ii) If $|K|$ is discrete, then $f \in M_{S}(X) \Rightarrow f$ is a homeomorphism $X \sim f(X)$, and $f \in M_{b}(X) \Rightarrow f$ is a closed map.
(iii) The graph of f is closed in K^{2},
(iv) If $f(X)$ has no isolated points, then f is continuous.

An M_{b}-function may be everywhere discontinuous on K (even when $|K|$ is discrete).

THEOREN 1.6. - Let B be the unit ball of K,
(i) If K is a local field and $f \in M_{b}(B) \cup M_{s}(B)$, then f has bounded difference quotients (i.e. there is $C>0$ such that $|f(x)-f(y)| \leqslant c|x-y|$ for all $x \in B$). If, in addition, $f(B)$ is convex, then f is a similarity (i.e., a scalar multiple of an isometry).
(ii) If K has discrete valuation and $f \in M_{s}(B)$ is bounded, then f has bounded difference quotients. If $f \in M_{b s}(B)$ and if $f(B)$ is convex, then f is a similarity.

2. Monotone functions having a type.

In this section, we want to translate the usual classification of (strictly) monotone functions $\underset{\sim}{R} \rightarrow \underset{\sim}{R}$ into two types : the increasing and the decreasing functions. The equivalence relation in $\underset{R^{*}}{R^{*}} \mathrm{X} \sim \mathrm{y}$ if x and y are at the same side of 0 , yields $(-\infty, 0)$ and $(0, \infty)$ as equivalence classes. The relation \sim is compatible with the canonical group homomorphism ${\underset{\sim}{R}}^{*} \xrightarrow{\pi} \underset{\sim}{R^{*}} /{\underset{\sim}{R}}^{+}$, the latter group being $\{1,-1\} . \pi(x)$ (usually called $\operatorname{sgn}(x)$) assigns +1 to every positive element and -1 to every negative element. A function $f: \underset{\sim}{R} \rightarrow \underset{\sim}{R}$ is strictly monotone if there exists $\sigma:{\underset{\sim}{R}}^{*} /{\underset{R}{R}}^{+} \rightarrow{\underset{\sim}{R}}^{*} /{\underset{\sim}{R}}^{+}$such that for all $x \neq y$

$$
\pi(f(x)-f(y))=\sigma(\pi(x-y)) .
$$

If σ is the identity then f is called increasing ; if $\sigma(1)=-1$, $\sigma(-1)=1, f$ is called decreasing. Other maps $\sigma:\{-1,1\} \rightarrow\{-1,1\}$ can not occur (i. e., there is no f such that, for all $\mathrm{x} \neq \mathrm{y}$,

$$
\pi(f(x)-f(y))=\sigma(\pi(x-y)))
$$

This rather weird description of real monotone functions can be used in the nonarchimedean case.

For $x, y \in K^{*}$ define $x \sim y$ if x, y are at the same side of 0 . This means : $0 \notin[\mathrm{x}, \mathrm{y}]$, or $|\mathrm{x}-\mathrm{y}|>|\mathrm{y}|$, or $\left|\mathrm{xy}^{-1}-1\right|<1$. Thus $\mathrm{x} \sim \mathrm{y}$ if, and onily if, $x^{-1} \in K^{+}$where

$$
K^{+}:=\{x \in K ;|1-x|<1\} .
$$

We call the elenents of K^{+}the positive element of K .
The relation \sim is compatible with the canonical homonorphisn of (nultiplicative) groups

$$
\pi: K^{*} \rightarrow K^{* *} / K^{+}=: \Sigma
$$

We call Σ the group of signs and $\pi(x)$ the sign of an elenent $x \in K^{*} \quad(x$ is
positive if, and only if, $\pi(x)=1)$.
If K is a local field, we can make a group embedding $\rho: \Sigma \hookrightarrow K^{*}$ such that $\pi \circ \rho$ is the identity on Σ. For example, if $K=Q_{p}, \delta$ is a primitive $(p-1)^{\text {th }}$ root of unity, then

$$
\pi\left(\sum_{n \geqslant k} a_{n} p^{n}\right)=a_{k} p^{k} \quad\left(k \in \underset{\sim}{z}, \quad a_{k} \neq 0\right)
$$

(Here $a_{n} \in\left\{0,1, \delta, \ldots, \delta^{p-2}\right\}$ for each n).
DEFINITION 2.1. - Let $\sigma: \Sigma \rightarrow \Sigma$ be any map. A function $f: X \rightarrow K$ is monotone of type σ if, for all $x, y \in X, x \neq y$,

$$
\pi(f(x)-f(y))=\sigma(\pi(x-y))
$$

(i.e., if $x-y \in \alpha \in \Sigma$ then $f(x)-f(y) \in \sigma(\alpha)$).

We call f of type $\beta \in \Sigma$ if f is of type σ where σ is the rultiplication with β, i.e.

$$
\frac{f(x)-f(y)}{x-y} \in \beta \quad(x, y \in X, x \neq y)
$$

We call f increasing if f is of type σ where σ is the identity, i.e., $\frac{f(x)-f(y)}{x-y}$ is positive $(x \neq y)$.
Clearly, if f is of type β, and if $b \in \beta$, then $b^{-1} f$ is increasing. First, we look at increasing functions, then we discuss more general types σ. Notice that increasing functions are isometries hence are in $M_{b s}(X)$. If f is increasing then $f(x)=x+h(x)$, where $|h(x)-h(y)|<|x-y| \quad(x, y \in X, x \neq y)$. Such h we call pseudo-contractions.

LENMA 2.2. - Let X be an ultrametric space. Then the following are equivalent
(α) X is spherically complete,
(β) Each pseudocontraction $X \rightarrow X$ has a (unique) fixod point.
Proof (sketch). - (α) $\rightarrow(\beta)$. Let $\sigma: X \rightarrow X$ be a pseudocontraction. A convex set $C \subset X$ is called invariant if $\sigma(C) \subset C$. It is easily proved that the invariant convex subsets of X forn a nest. Let C_{0} be the smallest invariant convex set. If $a \in C_{0}$ and $\sigma(a) \neq a$ then

$$
B_{0}:=\{x \in X ; d(x, \sigma(a))<d(a, \sigma(a))\}
$$

is invariant, convex, and does not contain a. Hence $\sigma(a)=a$ for all $a \in C_{0}$, and C_{0} is a singleton. $(\beta) \rightarrow(\alpha)$. If $B_{1} \not \subset B_{2} \neq \ldots$ are balls in X with $\cap B_{n}=\varnothing$ then choose $x_{n} \in B_{n} \backslash B_{n+1} \quad(n \in \underset{\sim}{\mathbb{N}})$. The map $\sigma: X \rightarrow X$ defined by

$$
\sigma(x)=x_{n+1} \quad\left(x \in B_{n} \backslash B_{n+1}\right)
$$

is a pseudocontraction without a fixed point.

COROLLARY 2.3. - Let X be convex, let K be spherically conplete, and let $f: X \rightarrow K$ be increasing. Then $f(X)$ is convex. If $f(X) \subset X$, then f is surjective.

Proof. - Let $f(X) \subset X$. Choose $\alpha \in X$. Then $X \longrightarrow-f(x)+X+\alpha$ is a pseudocontraction mapping X into X, hence has a fixed point. So $f(x)=\alpha$ for some $\mathrm{x} \in \mathrm{X}$.

If K is not spherically complete, we have always increasing $f: K \rightarrow K$ that are not surjective. (Let $h: K \rightarrow K$ be a pseudocontraction without a fixed point Let $f(x)=x-h(x)(x \in K)$, then $0 \notin i m f)$. The inverse $f^{-1}: f(K) \rightarrow K$ can, of course, not be extended to an increasing function $K \rightarrow K$.

THEOREM 2.4. - Let K be spherically corplete, and let $f: X \rightarrow K$ be increasing. Then f can be extended to an increasing function $K \rightarrow K$.

Proof. - By Zorn's Lema, it suffices to extend f to an increasing function on $X \cup\{a\}$, where $a \notin X$. We are done if we can find $\alpha \in K$ such that, for all $x \in X$,

$$
\left|\frac{a-f(x)}{a-x}-1\right|<1
$$

i. e. $\quad \alpha \in B_{f(x)-(a-x)}\left(|a-x|^{-}\right)$for all $x \in X$. These balls form a nest. Let us call a function $f: X \rightarrow K$ positive if $f(X) \subset K^{+}$.

THEOREM 2.5.
(i) If $f: X \rightarrow K$ is increasing then f^{\prime} is positive,
(ii) If $g: X \rightarrow K$ is a positive Baire class one function, then g has an increasing antiderivative,
(iii) If $g: X \rightarrow K$ is continuous and positive, then g has a C^{1}-antiderivative,
(iv) If $f \in C^{1}(X)$ and f^{\prime} is positive then $f=j+h$ where j is increasing, and h is locally constant.

EXAMPLES.

10 The exponential function (defined on its natural convergence region) is increasing.
2° Let $f \in \mathbb{C}(\underset{\sim}{z})$, and let $e_{0}={\underset{\sim}{Z}}_{\underset{\sim}{Z}}$, for $n \in \underset{\sim}{\mathbb{N}}$,

$$
e_{n}(x)=\left\{\begin{array}{ll}
1 & \text { if }|x-n|<\frac{1}{n} \\
0 & \text { elsewhere }
\end{array} \quad\left(x \in{\underset{Z}{p}}^{Z_{p}}\right)\right.
$$

Then e_{0}, e_{1}, \ldots form an orthonormal base of $c\left(z_{p}\right)$, so there exist $\lambda_{0}, \lambda_{1}, \ldots \in Q_{p}$ such that $f=\sum_{n=0}^{\infty} \lambda_{n} e_{n}$, uniformily.
f is increasing if, and only if, for all $n \in \mathbb{N}$,

$$
\left|\lambda_{n}-\{n\}\right|<\{n\}
$$

(where, if $n=a_{0}+a_{1} p+\ldots+a_{k} p^{k}\left(a_{i} \in\{0,1, \ldots, p-1\}\right.$ for each i, $\left.a_{k} \neq 0\right)$, then $\{n\}_{i}=a_{k} p^{k}$).

In other words, $f=\sum \lambda_{n} e_{n} \in C\left({\underset{\sim}{p}}_{p}\right)$ is increasing if, and only if, $\lambda_{n} /\{n\}$ is positive for all $n \in \mathbb{N}$.

Let $\alpha, \beta \in \Sigma$. If the set theoretic sum $\alpha+\beta:=\{x+y ; x \in \alpha, y \in \beta\}$ does not contain 0 then $\alpha+\beta \in \Sigma$, notation $\alpha \oplus \beta$. It follows that $\alpha \oplus \beta$ is defined if, and only if, $\alpha \neq-\beta$.

If $x, y \in \alpha \in \Sigma$ then $|x|=|y|$. This defines $|\alpha|$ in a natural way.
We have the following results.
THEOREM 2.6. - Let $f: K \rightarrow K$ be monotone of type $\sigma: \Sigma \rightarrow \Sigma$ Let $\alpha, \beta \in \Sigma$,
(i) $\sigma(-\alpha)=-\sigma(\alpha)$,
(ii) If $\sigma(\alpha) \oplus \sigma(\beta)$ is defined then so is $\alpha \oplus \beta$ and $\sigma(\alpha \oplus \beta)=\sigma(\alpha) \oplus \sigma(\beta)$,
(iii) $|\alpha|<|\beta|$ implies $|\sigma(\alpha)|<|\sigma(\beta)|$,
(iv) If $|\beta|=1, \beta$ contains an element of the prime field of K then $\sigma(\beta \alpha)=\beta \sigma(\alpha)$,
(v) $f \in M_{s}(K)$,
(vi) f is either nowhere continuous or uniformly continuous.

THEOREM 2.7. - Let $f: K \rightarrow K$ be monotone of type $\sigma: \Sigma \rightarrow \Sigma$. Then the following conditions are equivalent,
(α) σ is injective,
(β) $f \in M_{b}(X)$,
(γ) If for some $\alpha, \beta \in \Sigma, \alpha \oplus \beta$ is defined, then so is $\sigma(\alpha) \ominus \sigma(\beta)$,
(8) $|\sigma(\alpha)|<|\sigma(\beta)|$ implies $|\alpha|<|\beta| \quad(\alpha, \beta \in \Sigma)$.

COROLLARY 2.8. - Let k be a prine field, and let $f: K \rightarrow K$ be monotone of type $\sigma: \Sigma \rightarrow \Sigma$. Then σ is injective.
(If $K=Q_{p}(\sqrt{-1}), p=3 \bmod 4$, we can find an example of an $f: K \rightarrow K$ monotone of type σ, where σ is not injective).

EXAMPLE 2.9. - Let $K=Q_{p}$. Then
$\left\{\sigma: \Sigma \rightarrow \Sigma:\right.$ there is $f: Q_{p} \rightarrow Q_{p}, f$ monotone of type $\left.\sigma\right\}$
consists of all $\sigma: \Sigma \rightarrow \Sigma$ of the fom

$$
\delta^{i} p^{n} \longmapsto \delta^{i} \delta^{s(n)} p^{\lambda(n)}
$$

where $s: \underset{\sim}{Z} \rightarrow\{0,1,2, \ldots, p-2\}$ and $\lambda: \underset{\sim}{Z} \rightarrow \underset{\sim}{Z}$ is strictly increasing.
3. Functions of bounded variation.

LEMMA 3.1. - Let $f: X \rightarrow K$ have bounded difference quotients. Then f is a linear combination of two increasing functions.

Proof. - Choose $\lambda \in K$,

$$
|\lambda|>\sup \left\{\left|\frac{f(x)-f(y)}{x-y}\right| ; x \neq y\right\} .
$$

Then $\lambda^{-1} f$ is a (pseudo-) contraction, so $g(x):=-x+\lambda^{-1} f(x)(x \in X)$ is increasing. If $h(x):=x \quad(x \in X)$, then $\lambda h+\lambda g=f$.

COROLLARY 3.2. - Let X be the unit ball of a local field K and let $f: X \rightarrow K$. Then the following are equivalent
(α) $f \in B \Delta(X)$ (i. e. $\sup \left\{\left|\frac{f(x)-f(y)}{x-y}\right| ; x \neq y\right\}<\infty$),
(β) f is a linear conbination of two increasing functions,
(y) $f \in\left[i r_{s}(X)\right]$,
(δ) $f \in \llbracket i_{b}(X) \rrbracket$.
Proof. - Use 1.6.

REFERENCES

[1] ROOIJ (A. C. M. van). - Non-archimedean functional analysis. - New York, Marcel Dekker, 1978 (Pure and applied Mathematics. Dekker, 51).
[2] SCHIKHOF (W. H.). - Nonmarchinedean calculus, Report 7812, Lecture Notes, Mathematisch Institut, Nijnegen, 1978, p. 1-129.

[^0]: © Groupe de travail d'analyse ultramétrique
 (Secrétariat mathématique, Paris), 1978-1979, tous droits réservés.
 L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

[^1]: (*) Texte reçu le 12 mars 1979.
 Wilhem H. SCHIKHOF, Math. Inst., Kath. Univ., Toernooiveld, NIJIEGEN (Pays-Bas).

