Groupe de travail D'ANALYSE ULTRAMÉTRIQUE

Marius Van der Put
 Harmonic analysis on p-torsional groups

Groupe de travail d'analyse ultramétrique, tome 6 (1978-1979), exp. no 14, p. 1-6
http://www.numdam.org/item?id=GAU_1978-1979__6_A8_0
© Groupe de travail d'analyse ultramétrique
(Secrétariat mathématique, Paris), 1978-1979, tous droits réservés.
L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

HARMONIC ANALYSIS ON p-TORSIONAL GROUPS

> (after A. M. M. Gommers)
> by Marius van der PUT (*)
> [Rijksuniversiteit, Utrecht]

The following is a presentation of results obtained by A. M. M. GOMMERS. Full details will appear in his forthcoming thesis prepared under the guidance of A. C. M. $\operatorname{van} \mathrm{ROOIJ}$.

1. The groups G that we consider are torsional, i. e. G satisfies the equivalent conditions :
(a) G is a commutative topological group, and G has a zero-dimensional open compact subgroup H such that G / H is a torsion group.
(b) G is a commutative, locally compact, zero-dimensional group such that every finite subset of G lies in a compact subgroup.

Let p be a prime number ; then G is called p-torsional (resp. p-free) when for any open compact subgroup H of G the group G / H is a p-torsion group (resp. has no p-torsion).

The field k is supposed to be a non-archimedean valued complete field with residue field \bar{k} of characteristic p.
(1.1) LEMMA. - G has a unique decomposition as a topological product $G=G_{1} \times G_{2}$, where G_{1} is p-torsonial and G_{2} is p-free.

Proof. - For a compact zeromdimensional group G this decomposition is well known. In the general case, each open compact subgroup H of G has an unique decomposition $H_{1} \times H_{2}$. Then $G_{i}=U\left\{H_{i} ; H\right.$ open compact subgroup of $\left.G\right\} \quad(i=1,2)$ provides the unique decomposition of G.
(1.2) Remarks. - On the part G_{2} of G there exists a (k-valued) Haar measure μ. Let $C_{\infty}\left(G_{2}\right)$ denote the Banach space of the continuous functions $G_{2} \rightarrow k$ which are "zero at ω ", provided with the supremum norm. On $C_{\infty}\left(G_{2}\right)$ we have a convolution

$$
(f * g)(a)=\int f(b) g(a-b) d \mu(b)
$$

[^0]and $L\left(G_{2}\right)$ denotes $C_{\infty}\left(G_{2}\right)$ with the algebra structure given by the convolution.
Let us suppose, for convenience, that k is algebraically closed. Then the dual of G_{2} is $\hat{G}_{2}=$ the continuous homomorphisms $G_{2} \rightarrow k^{*}$, provided with the compact open topology. The Fourier theory ([2], [3]) states :
$$
F: L\left(G_{2}\right) \rightarrow C_{\infty}\left(\hat{G}_{2}\right)
$$
is an isometric isomorphism of Banach algebra's where the Fourier transform F is defined by :
$$
F(f)(x)=\int f(b) x(-b) d \mu(b) \text { with } f \in L\left(G_{2}\right) \text { and } x \in \hat{G}_{2} .
$$

On the part G_{1} of G there is (in general) no Haar-measure. So $L\left(G_{1}\right)$ is meaningless. One studies instead $M\left(G_{1}\right)$. In general, $M(G)=$ the Banach space of tight measures on $G=\operatorname{inj} \lim \left\{C_{\infty}(H)^{\prime} ; H\right.$ compact in $\left.G\right\}$. In particular, if G is compact then $M(G)=C_{\infty}(G)^{\prime}$ = the topological dual of the Banach space $C_{\infty}(G)$. On $M(G)$ the convolution is defined by

$$
(\mu * \nu)(f)=\iint f(a+b) d \mu(a) d \nu(b)
$$

If G is p-free then $M(G) \xrightarrow{\sim} B U C(\hat{G})=$ the bounded uniformly continuous functions on \hat{G}. This isomorphism is given by :
$\mu \mapsto \hat{A}$ and $\hat{A}(\chi)=\int X(a) d \mu(a)$, where $\mu \in \mathbb{M}(G) ; \quad X \in \hat{G}$.
In general, the algebra $M(G)$ is (morally speaking) determined by $M\left(G_{1}\right)$ and $\mathbb{M}\left(G_{2}\right)$. Since the part $M\left(G_{2}\right)$ is well known as an algebra, the remaining part $M\left(G_{1}\right)$ will have most of our attention.

We can formulate the connection between $M(G), M\left(G_{1}\right), M\left(G_{2}\right)$ as follows :
(1.3) PROPOSITION. - If G_{2} is compact then $M(G) \approx M\left(G_{1}\right) \circ M\left(G_{2}\right) \quad$ (as Banach algebra's) .

Proof. - The operation O is a variant of the tensor product of Banach spaces. We define O only for pairs (E, F^{3}), where $F^{\mathbf{y}}$ is the dual of some Banach space F.

Definition. - E $O F^{1}=\operatorname{proj} \lim \left\{E F_{0} ; F_{0}\right.$ finite dimensional subspace of $\left.F\right\}$. In our case, $M\left(G_{2}\right)$ is naturally given as the dual of $C_{\infty}\left(G_{2}\right)$. One easily verifies the formula when G_{2} is finite (then O and \otimes agree). From this the general case follows.
(1.4) Remarks.

10 If G_{2} is not compact then $\mathbb{M}(G) \approx \operatorname{inj} \lim M\left(G_{1}\right) \circ M\left(H_{2}\right)$, where H_{2} runs in the set of all open compact subgroups of G_{2}. The isomorphism is again an isomorphism of Banach algebras.
2° If G_{2} is compact, and k is algebraically closed, then $M\left(G_{2}\right)=B\left(\hat{G}_{2}\right)=$
the bounded functions on \hat{G}_{2}. Proposition (1.3) yields

$$
M(G) \simeq \prod_{X \in \hat{G}_{2}} M\left(G_{1}\right) * X \text { and every } M\left(G_{1}\right) * X \cong M\left(G_{1}\right)
$$

3° In many cases, one can show that there is a (1-1)-correspondance between the homomorphisms $\varphi: \mathbb{M}(G) \rightarrow k$ and the pairs of homomorphisms

$$
\varphi_{i}: M\left(G_{i}\right) \rightarrow k \quad(i=1,2)
$$

This holds for instance if k is not locally compact.

2. In this section, we assume that G is a p-torsional group.

Let T denote the discrete p-torsion group Q_{Q} / Z_{p}. If the field k has charao teristic 0 and is algebraically closed then we can identify T with the subgroup of k^{*} consisting of the elements of order $p^{n}(n \geqslant 0)$.

For a p-torsional group G we define a dual $G^{*}=$ the continuous homomorphisms $G \rightarrow T$, provided with the compact open topology.
G^{*} is again p-torsional ; $G \xrightarrow{\sim} G^{* * *} ; G$ is compact if, and only if, G^{*} is discrete.

There are two extrene cases for p-torsional groups :
Type (1) : G has no elements ($\neq 0$) of finite order.
Type (2) : The elements of finite order are dense in G.
For compact G one has : G is of type (1) if, and only if, G^{*} is a p divisible group ; G is of type (2) if, and only if, G^{*} has no p-divisible subgroups $\neq 0$. Further, if G is compact then $G=G_{1} \times G_{2}$ where G_{i} is of type (i). This follows from $G^{*}=H_{1} \times H_{2}$ where H_{1} is a maximal p-divisible subgroup of G^{*} and so $G=H_{1}^{*} \times H_{2}^{*}$.

The compact groups G of type (1) are easily determined : G^{*} is p-divisible and (as is well known) it follows that $G^{*}=T(I)$ for some index set I. Then $G \cong{\underset{\sim}{Z}}_{I}$ since $T^{*}=Z_{p}$.

The compact groups G of type (2) (or their duals G^{*}) are very complicated in general. One can however prove the following :
(2.1) PROPOBITION. - Let G be compact, then there exists an exact sequence of topological groups

$$
0 \rightarrow{\underset{\sim}{Z}}_{I}^{I} \rightarrow G \rightarrow \Pi_{j \in J} Z / p^{n_{j}} \rightarrow 0
$$

If $\sup \left(x_{j}\right)<\infty$ then the sequence splits topologically.
Next, we have the following :
(2.2) PROPOSITION. - The following properties of the p-torsional group G are equivalent :
(a) G has no elements $(\neq 0)$ of finite order (i.e. G of type (1)),
 pact subgroup of G,
(c) the norm on $\mathbb{H}(G)$ is multiplicative,
(d) for any $\mu \in \mathbb{M}(G), \mu \neq 0$, one has :

$$
\mu \text { is invertible in } M(G) \Longleftrightarrow\|\mu\|=|\mu(G)| .
$$

Proof. - Since $M(G)=$ proj $\operatorname{lin}\{\mathbb{M}(H) ; H$ open compact subgroup of $G\}$, it suffices to consider compact groups G. In this case, (b) can be replaced by (be) : $G \cong{\underset{\sim}{p}}_{\mathrm{I}}$.

Another argument shows that the general case will follows from the case where G is topologically finitely generated. Such a group has the form

$$
G=\prod_{i=1}^{n} \underset{\sim}{Z} / p^{m_{i}} \underset{p}{z} \text { with } 0<m_{i} \leqslant \infty
$$

In (2.3) and (2.4), $M(G)$ is explicitely given and one can verify (2.2).
(2.3) PROPOSITION. - Let $G=\underset{\sim}{Z_{p}^{n}}$ then $\mathbb{N}(G) \approx k\left\langle X_{1}, \ldots, X_{n}\right\rangle=$ the Banach algebra of all power series $\sum a_{\alpha} X_{1}^{\alpha_{1}} \ldots X_{n}^{\alpha_{n}}$ with supla $a_{\alpha}<\infty$.

Proof. - $C(\underset{\sim}{z})$ has the orthonormal base

$$
\left(\begin{array}{l}
X_{\alpha}
\end{array}\right)=\binom{X_{1}}{\alpha_{1}} \ldots\binom{X_{n}}{\alpha_{n}},
$$

considered as a function : $\underset{\sim}{2} \underset{p}{n} \rightarrow k$. The isomorphism of (2.3) is given by the map

$$
\mu \longmapsto \sum_{\alpha} \mu\left(\left(\begin{array}{l}
x_{\alpha}
\end{array}\right)\right) x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}} .
$$

(2.4) COROLLARY. - Let $G=\prod_{i=1}^{n} \underset{\sim}{Z} / p_{i}^{m_{i}}{\underset{\sim}{p}}$ then $M(G)=k\left\langle X_{1}, \ldots, X_{n}\right\rangle / I$, where I is the ideal generated by $\left(x_{i}+1\right)^{p^{p / 4}}-1$ (all i with $\left.n_{i} \neq \infty\right)$.
(2.5) Remark.- If G is compact then there exists a surjective map $\underset{\sim}{Z_{p}^{I}} \rightarrow G$. Hence $M(G)$ is a quotient of $M\left({\underset{\sim}{T}}^{I}\right)=k\left\langle X_{i} \mid i \in I\right\rangle$. If I is infinite then it is not clear what the kernel $M\left({\underset{\sim}{p}}_{(\underset{T}{p}}^{p}\right) \rightarrow M(G)$ should be.
3. We suppose in this section that G is a compact p-torsional group.
(3.1) PROPOSITION. - Suppose that k has characteristic p. Then
(a) $M(G)$ has no idempotents $\neq 0,1$,
(b) any character $X: G \rightarrow k^{*}$ with open kernel is trivial,
(c) if $\mu \in \mathbb{M}(G)$ satisfies $\|\mu\|=|\mu(G)| \neq 0$, then μ is invertible and $\left\|\mu^{-1}\right\|=|\mu(G)|^{-1}$.

Proof. - Let $\mu=\mu^{2} \in \mathbb{M}(G)$, let H be an open compact subgroup of G, and let $\nu \in \mathbb{M}(G / H)$ be the image of μ. Then $\nu^{2}=\nu$ and $\nu=0$ or 1 since $M(G / H)$ is a local ring. It follows easily that $\mu=0$ or 1 . Statement (b) follows since k contains no p-th roots of unity. Statement (c) is easily seen for finite groups and follows from that special case.

Suppose now that k has characteristic zero (hence $k \supset Q_{p}$). If k is algebraically closed then we can identify G^{*} with the characters $X: G \rightarrow k^{*}$ with open kernel. Further $M(G)$ can contain idempotents $\neq 0$, 1 . Namely, let H be a finite subgroup of G, and let $X: H \rightarrow k^{*}$ be a character then

$$
\mu_{x}=\frac{1}{p^{n}} \sum_{h \in H} x(-h) \delta_{h} \in \mathbb{M}(H) \subset \mathbb{M}(G),
$$

where p^{n} is the order of H , is clearly an idempotent. For any finite set $E \subset H^{*}$ one can form

$$
\mu_{E}=\sum_{X \in E} \mu_{X} .
$$

In this way we have described all idempotents, with support in H . Now A. M. N. GOMMERS conjectures that there are no other idempotent elements in $M(G)$. We can state this as follows :
(3.2) CONJECTURE. - Every idempotent in $M(G)$ has finite support.

One has to work with G^{*} the characters of G to find a proof. The elements in G^{*} are linearly independent functions on G, but they are by no means orthogonal. This is the main difficulty in the verification of (3.2).
A. M. M. GOMMERS gives a proof of a special case :
(3.3) PROPOSIPION. - For $G=(z / p)^{I}$ every element $\mu \in M(G)$ with $\mu=\mu^{2}$ has finite support.

We give some comment on the conjecture. Let G be a group of order p^{n}. Let $E \subset G^{*}$ be given, then

$$
\mu_{E}=\sum_{X \in E} \mu_{X}=\sum_{g \in G}\left(\frac{1}{p^{n}} \sum_{X \in E} x(-g)\right) \delta_{g}
$$

is an idempotent.
It has the property $\mu_{E}(X)=1$ or 0 according to $X \in E$ or $X \notin E$. One sees that in general $\left\|\mu_{\mathrm{E}}\right\|=\mathrm{p}^{\mathrm{n}}$. If μ_{E} has support in a subgroup H of G with order p^{k}, then $\left\|\mu_{\mathrm{E}}\right\| \leqslant p^{k}$. This yields the following.
(3.4) CONJECTURE. - Let G be a group of order p^{n}, let $\mu \in \mathbb{M}(G)$ be an idempotent with norm $\leqslant p^{k}$. If n is "large with respect to $k "$ then μ has support in a proper subgroup of G.

We note that (3.4) implies (3.2). A first step towards (3.4) is estimating the
absolute value of sums of $p^{\text {d }}$-th roots of unity. This is done in :
(3.5) LEMIA. - Let $\omega \in k$ be a primitive p^{d}-th root of unity and let $\ell, n_{i} \in \underset{\sim}{Z}$; $\ell \geqslant 1$. Then equivalent are :
(a) $\left|\sum_{i=0}^{p^{d}-1} n_{i} w^{i}\right| \leqslant \frac{1}{p^{2}}$,
(b) For all $0 \leqslant i, j<p^{d}-1$ with $i \equiv j\left(p^{d-1}\right)$ one has $n_{i} \equiv n_{j}\left(p^{\ell}\right)$.

Proof. - $(b) \Longrightarrow(a)$ follows easily from the minimal equation ($x^{p^{d}}-1 / x^{p^{d-1}}-1$) satisfied by ω.

Further, we note that it suffices to show $(\mathrm{a}) \Longrightarrow(\mathrm{b})$ for $\ell=1$; $\ell>1$ follows easily by induction.

We consider $\underset{\sim}{Z}[\omega]={ }_{-1}^{Z}[\xi]$ where $\omega=1+\xi$. This is a subring of k. Since $|\xi|^{p^{d-1}(p-1)}=\frac{p_{p}}{p}$, it follows that the elements in ${\underset{\sim}{p}}_{Z}[\xi]$ with absolute value $\leqslant \frac{1}{p}$ form the ideal $I=p \underset{\sim}{Z}[\xi]$. Dividing by this ideal one finds :

$$
{\underset{\sim}{p}}_{[}[\omega] / I={\underset{\sim}{p}}_{p}[T] /\left(1+T^{p^{d-1}}+T^{2 p^{d-1}}+\cdots+T^{\left.(p-1) p^{d-1}\right)}\right.
$$

where T has image w. Hence $\left|\sum_{i=0}^{d}-1 n_{i} w^{i}\right| \leqslant \frac{1}{p}$ irplies $\sum \bar{n}_{i} t^{i}=0$ (where \bar{n}_{i} is the image of n_{i} in ${\underset{\sim}{p}}^{p}$.

This means

$$
\sum \bar{n}_{i} T^{i}=\left(a_{0}+a_{1} T+\ldots+a_{p-1} T^{p-1}\right)\left(1+T^{p^{d-1}}+T^{2 p^{d-1}}+\ldots+T^{(p-1) p^{d-1}}\right)
$$

for certain $a_{0}, a_{1}, \ldots, a_{p-1} \in F_{p}$. This is equivalent with statement (b) for $\ell=1$ 。

REFERENCES

[1] GOMMERS (A. M. M.). - Thesis, University of Nymegen, 1979.
[2] ROOIJ (A. C. M. van-). - Non-archimedean functional analysis. - New York and Basel, Marcel Dekker, 1978 (Pure and applied Mathematics. Dekker, 51).
[3] SCHIKHOF (N. H.). - Non-archimedean harmonic analysis, Dissertation, Univ. Nymegen, 1967.

[^0]: (*) Texte reçu le 12 mars 1979.
 Marius Van der PUT, Mathenatisch Instituut der Rijksuniversiteit, UTRECHT (PaysBas).

