Groupe de travail D'ANALYSE ULTRAMÉTRIQUE

Marius Van der Put p-adic Whittaker groups
Groupe de travail d'analyse ultramétrique, tome 6 (1978-1979), exp. no 15 , p. 1-6
http://www.numdam.org/item?id=GAU_1978-1979__6_A9_0

© Groupe de travail d'analyse ultramétrique
(Secrétariat mathématique, Paris), 1978-1979, tous droits réservés.
L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathrm{p}-A D I C$ WHITTAKER GROUPS

$$
\begin{gathered}
\text { by Marius van der PUT (*) } \\
\text { [Rijksuniversiteit, Utrecht] }
\end{gathered}
$$

An algebraic curve (non singuler, irreductble and complete) over C which is hyperelliptic can be uniformized by a Whittaker group (see [1], p. 247-249). We will treat the rigid analytic case for complete non-archimedean valued fields k with characteristic $\neq 2$. In order to avoid rationality problems the field k is supposed to be algebraically closed. A part of the results in this paper was independently proved by G. Van STEEN.

1. Combinations of discontinuous groups.

Let $\Gamma \subset \operatorname{PGI}(2, k)$ be a discontinuous group. Ve will assume that $\infty \in{\underset{\sim}{p}}^{1}(k)={\underset{\sim}{P}}^{1}$ is an ordinary point for Γ. A fundamental domain F for Γ, containing ∞, is a subset p of ${\underset{\sim}{P}}^{1}$ satisfying :
(i) ${\underset{\sim}{p}}^{1}-F$ is a finite union of ppen spheres B_{1}, \ldots, B_{n} in k such that the corresponding closed spheres $B_{1}^{+}, \ldots, B_{n}^{+}$are disjoint,
(ii) The set $\{\gamma \in \Gamma ; \gamma F \cap F \neq \varnothing\}$ is finite,
(iii) if $\gamma \neq 1$ and $\gamma F \cap F \neq \varnothing$ then $\gamma F \cap F \subseteq U_{i=1}^{n}\left(B_{i}^{+}-B_{i}\right)$,
(iv) $U_{\gamma \in \Gamma} \gamma F=\Omega=$ the set of ordinary points of Γ.

We will write $\stackrel{\circ}{\mathrm{F}}$ for $\mathbb{P}^{1}-U_{i=1}^{n} B_{i}^{+}$.
One can show that a fundamental domain for Γ exists if Γ is finitely generated (see [2] and [3]).

PROPOSITION. - Let $\Gamma_{1}, \ldots, \Gamma_{m}$ be discontinuous groups with fundamental domains containing the point $\infty, F_{1}, \ldots, F_{m}$. Suppose that ${ }^{\circ}{ }_{i} \supset \underline{p}^{1}-F_{j}$ for all $i \neq j$. Then the group Γ generated by $\Gamma_{1}, \ldots, \Gamma_{m}$ is discontinuous. Moreover $\Gamma=\Gamma_{1} * \ldots * \Gamma_{m}$ (the free product) and $\cap F_{i}$ is a fundamental domain for Γ.

Proof. - Put $F=\bigcap_{i=1}^{m} F_{i}$ and $\stackrel{\circ}{F}=\bigcap_{i=1}^{m} \stackrel{\circ}{F}_{i}$. Let $W=\delta_{S} \delta_{S-1} \ldots \delta_{1}$ be a reduced word in $\Gamma_{1} * \ldots * \Gamma_{n}$, i. e. each $\delta_{i} \in \cup \Gamma_{j}-\{1\}$ and if $\delta_{i} \in \Gamma_{2}$ then $\delta_{i+1} \notin \Gamma_{\ell}$. Then $W(\stackrel{\circ}{F}) \subseteq \underline{p}^{1}-F$. Hence Γ is equal to $\Gamma_{1} * \ldots * \Gamma_{n}$. Further $W(F) \cap F \neq \emptyset$ inplies that $W \in U \Gamma_{j}$. So we have shown that F satisfies the conditions (i), (ii) and (iii). Let $\delta>0$, then there are finite sets $W_{1} \subset \Gamma_{1}, \ldots, W_{m} \subset \Gamma_{m}$ such that the complement of $U_{\gamma \in W_{i}} \gamma_{i}$ consists of
(*) Texte reçu le 12 mars 1979.
Marius van der PUT, Mathematisch Instituut der Rijksuniversiteit, UTRECHT (PaysBas).
finitely many spheres of radii $<\delta$.
Given $\varepsilon>0$ then there is $\delta>0$ and some $n \gg 0$ such that the complenent of $U_{\gamma \in W} \gamma F$, where W consists of all reduced words in W_{1}, \ldots, W_{m} of length $\leqslant n$, is a finite union of spheres of radii $<\varepsilon$.

This shows that the set of limit points of Γ is equal to the compact sot

$$
\underline{P}^{1}-U_{\gamma \in \Gamma} \gamma F
$$

2. Example. If each $\Gamma_{i} \cong Z$, so Γ_{i} is generated by an hyperbolic element, then Γ is a free group on n generators. We will call such a Γ a Schottky group of rank m. It can be shown that any group Γ, which satisfies :
(i) Γ discontinuous ;
(ii) Γ is finitely generated ;
(iii) Γ has no elements of finite order $(\neq 1)$,
is a Schottky group of rank m. Moreoever S / Γ turns out to be an algebraic curve over k with genus m.
3. Definition of the p-adic Whittaker groups. (characteristic $k \neq 2$.)

Let s be an element of order two in $\operatorname{PGl}(2, k)$. Then s has two fixed points a and b. Moreover s is determined by $\{a, b\}$. Let B be an open sphere in ${\underset{P}{ }}^{1}$ maxinal, w, r. t. the condition $s B \cap B=\varnothing$ and let c be a point of B.

There exists a $\sigma \in \operatorname{PGI}(2, k)$ with $\sigma(a)=1, \sigma(b)=-1, \sigma(c)=0$. Then $t=\sigma s \sigma^{-1}$ has the form $z \longmapsto 1 / z ; \quad t$ has $1,-1$ as fixed points and $\sigma(B)=\left\{z \in \underline{P}^{1} ;|z|<1\right\}$. It follows that $\underline{p}^{1}-B$ is a fundaraental domain for the group $\{1, s\}$.

Let $(g+1)$ elements s_{0}, \ldots, s_{g} of order two in $\operatorname{PGI}(2, k)$ be given. Suppose that their fixed points $\left\{\mathrm{a}_{0}, \mathrm{~b}_{0}\right\},\left\{\mathrm{a}_{1}, \mathrm{~b}_{1}\right\}, \ldots,\left\{\mathrm{a}_{\mathrm{g}}, \mathrm{b}_{\mathrm{g}}\right\}$ are all finite and are such that the smallest closed spheres $B_{0}^{+}, \ldots, B_{g}^{+}$in k containing $\left\{a_{0}, b_{0}\right\},\left\{a_{1}, b_{1}\right\}, \ldots,\left\{a_{g}, b_{g}\right\}$, are disjoint.

Choose points $c_{i} \in B_{i}^{+}$such that the open sphere B_{i} with center c_{i} and radius $=$ radius of B_{i}^{+}does not contain a_{i} and b_{i}.

According to Prop. 1 the group $\Gamma=\left\langle s_{0}, s_{1}, \ldots, s_{g}\right\rangle$ generated by $\left\{s_{0}, \ldots, s_{g}\right\}$ is discontinuous, has $F={\underset{\sim}{p}}^{\perp}-U_{i=0}^{g} B_{i}$ as fundamental domain and is equal to

$$
\left\langle s_{0}\right\rangle *\left\langle s_{1}\right\rangle * \cdots *\left\langle s_{g}\right\rangle \cong z / 2 * \ldots * Z / 2
$$

Let $\varphi: \Gamma \rightarrow \underset{Z}{Z} / 2$ be the group homomorphism given by $\varphi\left(s_{i}\right)=1$ for all i. The kernel W of φ is called a Whittaker group. The group W is generated by $\left\{s, s_{0}, s_{2} s_{0}, \ldots, s_{g} s_{0}\right\}$. An easy exercise shows that W is a free group on
$\left\{s_{1} s_{0}, s_{2} s_{0}, \ldots, s_{g} s_{0}\right\}$. So W is a Schottky group of rank g.
The groups W and Γ have the same set \mathcal{L} of limit points. Let $\Omega={\underset{\sim}{p}}^{1}-\mathcal{L}$. Then Ω / W and S / Γ have a canonical structure of an algebraic curve over k. The natural map $\Omega / \mathrm{W} \xrightarrow[\rightarrow]{f} \Omega / \Gamma$ is a norphisn of algebraic curves of degree 2 .
4. PROPOSITION. $\Omega / \Gamma \cong{\underset{\sim}{P}}^{1}$.

Proof. - Consider

$$
\Theta(a, b, z)=\prod_{\gamma \in \Gamma} \frac{z-\gamma(a)}{z-\gamma(b)},
$$

where $\mathrm{a}, \mathrm{b} \in \Omega$ and $\mathrm{a} \notin \Gamma \mathrm{b}$ and $\infty \notin \Gamma \mathrm{a} \cup \Gamma \mathrm{b}$.
This function converges uniformily on the affinold subsets of Ω since

$$
\lim |\gamma(a)-\gamma(b)|=0 .
$$

So $F(z)=\theta(a, b, z)$ is a meromorphic function on Ω. For any $\delta \in \Gamma$ we have $F(\delta z)=c(\delta) F(z)$ where $c(\delta) \in k^{*}$. Clearly $c: \Gamma \rightarrow k^{*}$ is a group homomorphism and hence $c(\delta)= \pm 1$.

For given a one can take b close to a such that $\left|F(\infty)-F\left(s_{0} \infty\right)\right|<\frac{1}{2}$. For this choice of a and b, we find that F is invariant under Γ. So F defines a morphism $\tilde{F}: \Omega / \Gamma \rightarrow \mathbb{P}^{1}$. This morphism has only one pole. Hence \tilde{F} is an isomorphism.

Second proof (G. Van STEEN). - If Γ is finitely generated then Ω / Γ is an algebraic curve of genus $=$ rank of $\Gamma_{a b}=\Gamma /[\Gamma, \Gamma]$.

In our case the rank is clearly zero.
5. THEOREM. Ω / W is an hyperelliptic curve of genus g . The affine equation of Ω / W is $y^{2}=\prod_{i=0}^{\infty}\left(x-F\left(a_{i}\right)\right)\left(x-F\left(b_{i}\right)\right)$.

Proof. - It follows from 3 and 4 that Ω / W is indeed hyperelliptic of genus g. Therefore Ω / W must have $2 g+2$ ramification points over Ω / Γ. A point $p \in \Omega / W$, inage of $e \in \Omega$, is a ranification if, and only if, $s_{0} \in$ We. The points $a_{0}, b_{0}, \ldots, a_{g}, b_{g}$ satisfy this condition, and their images in Ω / Γ are different. So the equation follows.
6. COROLLARY. - Let $s_{0}, \ldots, s_{g} \in \operatorname{PGI}(2, k)$ be elements of order 2 such that the group Γ generated by them satisfies : Γ is discontinuous and

$$
\Gamma=\left\langle s_{0}\right\rangle *\left\langle s_{1}\right\rangle * \ldots *\left\langle s_{g}\right\rangle \cdot
$$

Then there are elements $s_{0}^{*}, \ldots, s_{g}^{*}$ of order 2 in $\operatorname{PGI}(2, k) \frac{\text { with the }}{*}$ $(2 \mathrm{~g}+2)$ fixed points in the position required in 3 , and such that $\Gamma=\left\langle\mathrm{s}_{0}^{*}, \ldots, \mathrm{~s}_{g}^{*}\right\rangle$.

Proof. - In 3, 4 and 5, the position of the $(2 g+2)$ fixed points of $\left\{s_{0}, \ldots, s_{g}\right\}$ is only used to prove that Γ is discontinuous and equal to
$\left\langle s_{0}\right\rangle * \ldots *\left\langle s_{g}\right\rangle$. So we can also form $W=\left\langle s_{0} s_{1}, s_{0} s_{2}, \ldots, s_{0} s_{g}\right\rangle \subset \Gamma$ and conclude that $\Omega / W \xrightarrow{f} / \Sigma 2 / \Gamma=\underset{\sim}{P^{1}}$ has degree 2 and has $2 g+2$ radification points, called $A_{1}, \ldots, A_{2 g+2}$. Let $\sigma: \Omega / W \rightarrow \delta / W$ be the automorphism of order 2 defined by f. Then $A_{1}, \ldots, A_{2 g+2}$ are the fixcd points of σ.

Write $t_{1}=s_{0} s_{1}, \ldots, t_{g}=s_{0} s_{g}$. Every element in Γ of order 2 must have the form $\mathrm{as}_{i} \mathrm{a}^{-1}(a \in \stackrel{g}{\Gamma} ; i=0, \ldots, g)$ (see [5]). Further $a \in \Gamma$ has the form ${ }^{W S}{ }_{0}$ or w, with $w \in W$. Since $s_{0} s_{i} s_{0}=t_{i} s_{i} t_{i}^{-1}$, we find that every element in Γ of order 2 has the form $\mathrm{w}_{\mathrm{i}} \mathrm{w}^{-1}$, with $w \in W$ and $i \in\{0, \ldots, g\}$. It is easily verified that this presentation is unique.

Further $\Omega \rightarrow \Omega / W$ is a universal covering (see [4]). Hence for any e, $f \in \Omega$ with $\sigma(\pi(e))=\pi(f)$, there exists a unique lifting $s: \Omega-\Omega$ of σ with $s(e)=f$. Moreover $s \in \Gamma$.

Take now $e \in \pi^{-1}\left(A_{j}\right)$ and a lifting s of σ with $s(c)=e$. Then $s^{2}=1$. Hence $s=W_{i} w^{-1}$ for some $i \in\{0, \ldots, g\}$ and $w \in W$. The i does not depend on the choice of $e \in \pi^{-1}\left(A_{j}\right)$. Hence we have constructed a map

$$
\tau:\left\{A_{1}, \ldots, A_{2 g+2}\right\} \rightarrow\{0,1, \ldots, g\}
$$

Further any $\mathrm{ws}_{i} \mathrm{w}^{-1}$ has at most two fixed points in $\pi^{-1}\left(\left\{A_{1}, \ldots, A_{2 g+2}\right\}\right)$. It follows that $\tau^{-1}(i)$ consists of at most two points. Hence τ is surjective and every s_{i} has both fixed points in $\pi^{-1}\left(\left\{A_{1}, \ldots, A_{2 g+2}\right\}\right) \subset \Omega$. The generators for Γ can be changed into $s_{0}, t_{2}^{n} s_{1} t_{2,}^{-n}, s_{2}, \ldots, s_{g}$. With a sequence of changes of this type one finds generators $s_{0}^{\prime} \ldots s_{g}^{*}$ for Γ^{g} with their ($2 g+2$) fixed points in the required position.
7. THEOREM. - Suppose that X is a hyperelliptic curve of genus g over k which is totally split. Then there exists a Whittaker group W, unique up to conjugation in $\operatorname{PGI}(2, k)$, with $X \cong \Omega / W$.

Proof. - We will use freely the results of [3] and [4]. We know that

$$
\Omega \xrightarrow{\pi} \Omega / N \cong X
$$

exists where W is a Schottky group of rank g, unique up to conjugation. We have to show that W is in fact a Whittaker group.

Let σ be the automorphism of X with order two such that $\tau: X \rightarrow X / \sigma \cong{\underset{\sim}{P}}^{1}$. Then σ has $A_{1}, \ldots, A_{2 g+2} \in X$ as fixed points. Let Γ denote the set of all lifts s : $\Omega \rightarrow \Omega$ of $\sigma: X \rightarrow X$ and of id : $X \rightarrow X$. Then Γ is a group and W has index 2 in Γ. The set

$$
K=\overline{\pi^{-1}\left(\left\{A_{1}, \ldots, A_{2 g+2}\right\}\right)} \subset{\underset{\sim}{1}}^{1}
$$

is a compact set with limit points $=\mathcal{L}={\underset{\sim}{p}}^{1}-\Omega=$ the limit points of $W=$ the limit points of Γ. Let $\bar{\Omega}$ denote the reduction of Ω with respect to K. Then
$\bar{\Omega} / \Gamma$ is a reduction of \underline{P}^{1} and it is in fact the reduction of \underline{p}^{1} with respect to the finite set $\left\{T\left(A_{1}\right), \ldots, \tau\left(A_{2 g+2}\right)\right\}$.

Let \bar{X} denote the reduction induced by $\bar{\Omega}$, i.e. $\bar{\Omega}$ is given with respect to a pure covering U, and \bar{X} is the reduction with respect to $\pi(U)$ -

One easily sees that $\bar{X}=\bar{\Omega} / W$ and consists of projective lines over the residue field \bar{k} of k. The intersection graph $G(\bar{X})$ is defined by :
vertices $=$ the components of \bar{X} and edges $=$ the intersection points.
The map σ induces an automorphism of \bar{X} and $G(\bar{X})$, again denoted by σ. Further $\bar{X} \xrightarrow{\bar{\tau}} \bar{X} / \sigma \cong \bar{\Omega} / \Gamma$ and $G(\bar{X}) / \sigma \cong G(\bar{\Omega} / \Gamma)=$ a connected finite tree.

Through the image \bar{A}_{1} of A_{1} on \bar{X} goes only one component of \bar{X} since $\bar{\tau}\left(A_{1}\right)$ lies on only one component of $\bar{\Omega} / \Gamma$. Call this vertex of $G(\bar{X})$ the vertex g_{1}. Then $\sigma\left(g_{1}\right)=g_{1}$ and the homeomorphism σ of $G(\bar{X})$ induces an automorphism $\hat{\sigma}$ of $\pi_{1}\left(G(\bar{X}), g_{1}\right)=$ the fundamental group of $G(\bar{X})$.

We know further that $\pi_{1}\left(G(\bar{X}), g_{1}\right)$ is in a natural way isomorphic to W. Suppose that we can find a base for the fundamental group, t_{1}, \ldots, t_{g} such that $\hat{\sigma}\left(t_{i}\right)=t_{i}^{-1}$ for all i. Then we can lift this situation to Ω as follows : Choose an element $e \in \pi^{-1}\left(A_{1}\right)$; let s_{0} be the lift of 0 satisfying $s_{0}(e)=e$; let h_{0} be the component of $\bar{\Omega}$ on which e lies ; let the curve in $G(\bar{\Omega})$ with begin point h_{0} and lying above l_{i} have endpoint $h_{i} \in G(\bar{\Omega})$; let $T_{i} \in W$ be defined by $T_{i}(e)$ lies on h_{i}.

Then $W=\left\langle T_{1}, \ldots, T_{g}\right\rangle$ and $s_{0} T_{i} s_{0}=T_{i}^{-1}$ for all i. Put

$$
s_{1}=s_{0} T_{1}, \ldots s_{g}=s_{0} T_{g}
$$

Then $\Gamma=\left\langle s_{0}, s_{1}, \ldots, s_{g}\right\rangle$ and easy inspection yields

$$
\Gamma=\left\langle s_{0}\right\rangle *\left\langle s_{1}\right\rangle * \ldots *\left\langle s_{g}\right\rangle
$$

According to Corollary 6, we have shown that W is a Whittaker group.
Finally we have to show the following lemma :
8. LENMA. - Let G be a finite connected graph with Betti number g. Let σ be an homeomorphism of G such that :
(i) σ has order 2 ;
(ii) G / σ is a tree ;
(iii) σ fixes a vertex $p \in G$.

Then the fundamental group $\Pi_{1}(G, p)$ has generators t_{1}, \ldots, t such that the induced automorphism $\hat{\sigma}$ of $\pi_{1}(G, p)$ has the form $\hat{\sigma}\left(t_{i}\right)=t_{i}^{-1}$ for all i.

[^0](1) p is the only vertex of G. - Then G is a wedge of g circles. As generators for π_{1} we take the g circles together with an orientation. Call them t_{1}, \ldots, t_{g}. Since σ is an homeomorphism we must have
$$
\hat{\sigma}\left(t_{i}\right) \in\left\{t_{1}, \ldots, t_{g}, t_{1}^{-1} \ldots t_{g}^{-1}\right\}
$$
for all i. Since G / σ has a trivial fundamental group, one finds that $\hat{\sigma}\left(t_{i}\right)=t_{i}^{-1}$ for all i.
(2) Induction step. - Choose an edge λ of G with endpoints p and $q \neq p$. If $\sigma(\lambda)=\lambda$ then we make a new graph G^{*} by identifying p and q and deleting the edge λ.

If $\sigma(\lambda) \neq \lambda$, but $\sigma(\lambda)$ has also endpoints p and q, then we make G by identifying p and q and also identifying λ on $\sigma(\lambda)$.

If $\sigma(\lambda)$ has endpoints p, r with $r \neq q$, then we make G^{*} by identifying q and r with p and deleting λ and $\sigma(\lambda)$.

In all cases, G^{*} is homotopic to $G ; \sigma$ acts again on G^{*} and induces the same automorphism of the fundamental group.

9. Remarks.

1° An easy calculation gives that the number of moduli for Whittaker groups of rank g is $2 g-1$. This is the same as the number of moduli for hyperelliptic curves of genus g.
2° Is it possible to give an explicit calculation of the numbers $F\left(a_{i}\right), F\left(b_{i}\right)$ in theorem 5 ?
3° Hyperelliptic curves and Whittaker groups in characteristic 2 will be treated by G. Van STEERIV.

REFERENCES

[1] FORD (L. R.). - Automorphic functions, 2nd edition. - New York, Chelsea Publishing Company, 1951.
[2] GERRITZEN (L.). - Zur nichtarchimedischen Uniformigierung von Kurven, Math. Annalen, t. 196, 1972, p. 323-346.
[3] PUT (M. van der-). - Discontinuous groups. - Report ZW-7804, Mathematisch Institut, Groningen 1978.
[4] PUT (M. van der-). - k-holonorphic subspaces of ${\underset{\sim}{p}}^{1}$, Report $2=7806$, Mathematisch Institut, Groningen 1979•
[5] SERRE (J.-P.). - Arbres, amalgames, Sl_{2}, Astérisque, no 46, 1977.

[^0]: Proof. - Induction on the number of vertices of G.

