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p-ADIC WHITTAKER GROUPS

Marius van der PUT

Groupe d’4tude d’Analyse ultrametrique
(Y. AMICE, G. CHRISTOL, P. ROBBA)
6e année, 1978/79, n° 15, 6 p. 12 mars 1979

[Rijksuniversiteit, Utrecht]

An algebraic curve (non singular, irreducible and complete) over C which is hy-
perelliptic can be unif ormized by a Whittaker group p. 247-249). We will
treat the rigid analytic case for complete non-archimedean valued fields k with
characteristic 2 . In order to avoid rationality problems the field k is sup-
posed to be algebraically closed. A part of the results in this paper indepen-
dently proved by G. Van STEEN.

1. Combinations of discontinuous groups.

Let r c PGl(2 , k) be a discontinuous group. We will assume that 

is an ordinary point for r. A fundamental domain F for r , containing 0~ , is

a subset F of P1 satisfying : e .

( i P, - F is a finite union of open spheres ’B , ... , B in k such that

the corresponding closed spheres ... , B~ are dis joint,

(ii) The set (y E r ; yF n is finite,
n

(iii) 1 and yF n F ~ 03C6 then 03B3F n F ~ ~i=1 (B+i - B.) ,
(iv) Up yF = Q = the set of ordinary points of r .

Ve will write F for P - Ui=i B+i .

One can show that a fundamental domain for r exists if r is finitely genera-
ted (see [2] and [3]).

PROPOSITION. - Let f1’ be discontinuous groups with fundamental

domains containing the point W , F , .... F . Suppose that F. ~ P - F . for

all i ~ j . Then the group r generated by f1 ’ ... , r is discontinuous.

Moreover F = r 3; ... * r (the free product) and n F. is a fundamental domain

for r.

Proof. - Put F = F. and F = i . Let W = 6 s 6s-1 ... 61 be a redu-

ced word in rl * ... 1E- e. each 03B4i E U r J .-{1} and if 5. ~ 0393l then

~~~ ~ ~ " ~ ’ Hence r is equal to r 1 ,} ... ~ r~ . Further
W(F) n F ~ 03C6 implies that U IB . So we have shown that F satisfies the

conditions (i), (ii) and (iii). Let 6 &#x3E; 0 , then there are finite sets

W1 ~ 03931 , ... , W c r such that the complement of consists of

(*) Texte reçu le 12 mars 1979.
Marius van der PUT, Mathematisch Instituut der Rijksuniversiteit, IJTRECHT (Pays-

Bas).
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finitely many spheres of radii  0 .

Given e &#x3E; 0 then there is b &#x3E; 0 and some n » 0 such that the complement of

where W consists of all reduced words in ... , v of length
~ n , is a finite union of spheres of radii  E .

This shows that the set of limit points of r is equal to the conpact sot

2. Example. If each fi == fi is generated by an hyperbolic element, then

r is a free group on m generators. will call such a r a Schottky group of

rank L1 . It can be shown that any group r y which satisfies :

(i) r discontinuous ;

(ii) r is finitely generated ;

(iii) r has no elements of finite order (~ 1) ,

is a Schottky group of rank t1. Moreoever ilf turns out to be an algebraic curve

over k with genus m .

3. Definition of the p-adic Whittaker groups, (characteristic k ~ 2.)

Let s be an element of order two in PGl(2 y k) . Then s has two fixed points
a and b. Moreover s is determined by b) . Let B be an open sphere in

P~ maximal, w, r. t. the condition sB n B == ø and let c be a point of B.

There exists a cr e PG1(2 ,k) with a(a) = l y a(b) = - 1, c(c) = 0 . Then
t = 03C3s03C3-1 has the form z ~ 1/z ; t has 1 , - 1 as fixed points and

aCB) = (z ~ z)  1) . It follows that B is a fundamental domain for

the group {l, s) .

Let (g+ 1) elements ... , Sg of order two in k) be given.

Suppose that their fixed points bl) , ... , bg} are all

finite and are such that the smallest closed spheres .... ’ B g in k contai-

bO} , (a~ , bl} , ... , ’ bg) , are disjoint.

Choose points c. e B. such that the open sphere B. with center c. and

radius = radius of B+i does not contain a. and b..

According to Prop. 1 the group r == 

.g. , Sg&#x3E; generated by

... , s} is discontinuous, has F =:t - B. as fundamental domain

and is equal to

~~0 ~ " (s 1 &#x3E; * ’ ° * (s )~~/2 ~ ... * Z/2 .
Let 03C6 : r ~ Z/2 be the group homomorphism given by = 1 for all i .

The kernel W of cp is called a Whittaker group. The group 1i is generated by

(s , s2 ... , s g s..) . An easy exercise shows that W is a free group on
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s 2 ... , s g *0~ ° So W is a Schottky group of rank g .

The groups W and F have the same set E of limit points. Let 11 = 

Then and have a canonical structure of an algebraic curve over k . The

natural map is a morphism of algebraic curves of degree 2 .

4. PROPOSITION. 

Proof. - Consider

where a ~ and 

This function converges uniformly on the affinoid subsets of Q since

So F(z) = e(a , b , z) is a meromorphic function on o. For any Õ e F we

have P( 6z) = c(6) F(z) where c( 6) e k* . Clearly c : r ~ k* is a group homo-

morphism and hence c(6) == ± 1 .

For given a one can take b close to a such that JF(co) - 00)1 ( w . For
this choice of a and b , we find that F is invariant under r . So F defines

a morphism r: O/r ~ P1 . This morphism has only one pole. Hence F is an iso-

morphism. 
-

Second proof (G. Van STEEN). - If r is finitely generated then qVr is an al-

gebraic curve of genus = rank of = 

In our case the rank is clearly zero.

5. THEOREM. is an hyperelliptic curve of genus g. The affine equation of

Q/W is y2 = F(a~))(x - F(b~)) .
Proof* -’ It follows from 3 and 4 that 03A9/W is indeed hyperelliptic of genus g .

Therefore must have 2g + 2 ramification points over A point p~Q/W ,
image of e is a ramification if, and only if, So ~ We . The points

... , ag , bg satisfy this condition, and their images in O/r are dif-

ferent. So the equation follows.

6. COROLLARY. - Let ... , s e PGl(2 k) be elements of order 2 such that

the group F generated by them satisfies : r is discontinuous and

Then there are elements ... , s" of order 2 in PG1(2 , k) with the

(2g + 2) fixed points in the position required in 3, and such that 0393=s*0,...,s*g~.
Proof. - In 3, 4 and 5, the position of the (2g + 2) fixed points of

... , s ) is only used to prove that r is discontinuous and equal to
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(s ) (s ) . W = s0 s1 , s0 s2 , ... , s0 sg~ ~ 0393 
and

conclude that Q/W f 03A9/0393 == P1 has degree 2 and has 2g + 2 ramification

points, called A1 , ... , A2g+2 . Let 03C3 : 03A9/W ~ 03A9/W be of

order 2 defined by f . Then A , ... ~ ~ .? are the fixed points of o .

Write t = s ~ ... ~ t = s~ s . Every element in r of order 2 must

have the form as , a-1 (a e r ; i = 0 , ... , g) (see [5]). Further a ~ r has

the form ws0 or w , with w ~ W . since s0 si s0 = ti si t-1i , we find 
that

every element in F of order 2 has the form Ws, w" , with w e W and

i e {0 , ... , g) . It is easily verified that this presentation is unique.

Further Q 03A9/W is a universal covering (see M). Hence for any e y 

with o(n(e)) == there exists a unique lifting s : n 2014 Q ~-~

s(e) = f . Moreover s ~ r .

Take now e e and a lifting s of o- with s(c) == e . Then s = 1 .
Hence s = ws. w"~ for some i ~ (0 ~ ... y g~ and w ~ W . The i does not

depend on the choice of e = Tf (A.) . Hence we have constructed a map
J

Further any w-1 has at most two fixed points in TI-1«(A1’ ’ A2g+2)) .
It follows that consists of at most two points. Hence T is surjective

and every si has both fixed points in TI-1«(A1 ’ ... , The genera-

tors for r can be changed into t~ 81 t2n , 82 ’ ... , s . With a sequence

of changes of this type one finds generators s,.... s~ for r 
g 
with their (2g+2)

fixed points in the required position.

7. THEOREM. - Suppose that X is a hyperelliptic curve of genus g over k which

is totally split. Then there exists a Whittaker group W, unique up to conjugation

in PG1(2 , k) , with X === C/W .

Proof. - We will use freely the results of [3] and [4]. We know that

exists where "I is a Schottky group of rank g , unique up to conjugation. Iie have

to show that W is in fact a Whittaker group.

Let a be the automorphism of X with order two such that T : X -9 X/J &#x3E; P1 .
has ° ’ Å2g+2 E X as fixed points. denote the set of all

lifts s : Q ~ fi of J : X ~ X and of id: X ~ X . Then I is a group

and W has index 2 in r. The set

is a compact set with limit points = E = t1 - Q = the limit points of W = the

limit points of F . Let S~ denote the reduction of 0 with respect to K . Then
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Q/r is a reduction of P~ and it is in fact the reduction of P, with respect to

the finite set ~~~l ~ ’ ’ ’ ~ ~~2g+2~ ~ °
Let X denote the reduction induced by ’3 , i. is given with respect to a

pure covering and X is the reduction with respect to Tr(’U) .

One easily sees that X = 03A9/W and consists of projective lines over the residue

field k of k . The intersection graph G(X) is defined by :

vertices = the components of X and edges = the intersection points.

The map 0’ induces an automorphism of X and G(Q , again denoted by a .

Further X -1~ X/o == ~F and = a connected finite tree.

Through the image of Al on X goes only one component of X since 

lies on only one component of Call this vertex of the vertex g~ .
Then = gl and the homeomorphism o of G(Y) induces an automorphism c

of 111 (GG) , gi) = the fundamental group of G(x) .

We know further that 111(G(X) ,gl) is in a natural way isomorphic to W . Sup-

pose that we can find a base for the fundamental group, ... ,t such that

8(t. ) = t7~ for all i . Then we can lift this situation to Q as follows :

Choose an element e E 11-1(Al) ; let So be the lift of a satisfying 

let h be the component of T on which e lies ; let the curve in G(TI) with

begin point h and lying above ~ have endpoint h. ~ E let T. 1 E W be

defined by T.(e) lies on h.. 
~ 

Then W = (Tl ’ ... , T ) and So Ti for all i. Put

Then r = s , ... , s ~ and easy inspection yields

According to Corollary 6, we have shown that W is a Whittaker group.

Finally we have to show the following lemma :

8. LEMMA. - Let G be a finite connected graph with Betti number sc-

homeomorphism of G- such that :

(i) o has order 2 ~

(ii) Gla is a tree ;

(iii) 0 fixes a vertex p eG .

Then the fundamental group 03C01(G , p) has generators t1 , ... , tg such that

tye ,g_n_duced automorphism 8 of 03C01 (G , p) has the form 8(tj) = t-1i for aii I .

Proof. - Induction on the number of vertices of G .
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(1) p is the only vertex of G . -Then G is a wedge of g circles. As gene-

rators for TL we take the g circles together with an orientation. Call them

t y ... , t . Since 03C3 is an honeomorphism we must have

for all i . Since G/a has a trivial fundamental group, one finds that 

for all i.

(2) Induction step. - Choose an edge X of G with endpoints p and q ~ p .
If = À then we make a new graph f by identifying p and q and deleting

the edge B .

If o’(~) ~ ~ y but has also endpoints p and q , then we make G* by

identifying p and q and also identifying B on a(B) .

If has endpoints p , r with r # q , then we make G~ by identifying

q and r wi th p and de le ting ~. and o(X) .

In all cases , G’’ is homotopic to G ; o acts again on G" and induces the

same automorphism of the fundamental group.

9. Remarks.

1° An easy calculation gives that the number of moduli for Whittaker groups of

rank g is 2g - 1 . This is the s ame as the number of moduli f or hyperelliptic

curves of genus g .

2° Is it possible to give an explicit calculation of the numbers F(a.), F(b. )
in theorem 5 ?

3° Hyperelliptic curves and Whittaker groups in characteristic 2 will be treated

by G. Van STEM.
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