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p-ADIC WHITTAKER GROUPS

by Marius van der PUT (7)
[Rijksuniversiteit, Utrecht ]

An algebraic curve (non singuler, irreducible and complete) over C which is hy-
perelliptic can be uniformized by a Whittaker group (see [1], p. 247=249). We will
treat the rigid analytic case for complete non-archimedean valued fields k with
characteristic # 2 . In order to avoid rationality problems the field k is sup-
posed to be algebraically closed. A part of the results in this paper was indepen-
dently proved by G. Van STEEN,

1. Combinations of discontinuous groups.

Let T ¢ PGL(2 , k) be a discontinuous group. We will assume that meg}(k)zg}

is an ordinary point for I' . A fundamental domain F for I , containing o , is

a subset P of g} satisfying :

(1) P! = F is a finite wnion of open spheres B, «.., B in k such that

the corresponding closed spheres BI y soe o B; are disjoint,
(ii) The set {y eI ; YFP nF # @} is finite,

n
(iii) if v#1 and YvF nF#¢ then VP nF < Ui=l(B; - B;) ,
(iv) UYEF YF = Q = the set of ordinary points of T .

n
We will write F for pl - U . st.
~ i=1 1

One can show that a fundamental domain for I' exists if I is finitely genera-
ted (see [2] and [3]).

PROPOSITION. — Let Fl ) eee o Fm be discontinuous groups with fundamental

domains containing the point « , F1 y see o Fm . Suppose that ﬁi ) g} - Fj for

all i # j . Then the group I generated by Fl y sse Fm is discontinuous.

Moreover T = Fl 3 eee % Iﬁ (the free product) and N Ei is a fundamental domain

for r N
L [ m [~}
Proof. — Put F = ﬂi:l F, and F = rkzl Fi e let W= O 63_1 coe 61 be a redu~

ced word in I} % «.o % I, i. e. each 8, e U Fj—{l] and if &, €', then
6i+l £ Fz « Then W(ﬁ) = 2} - F . Hence I is equal to Fl ¥ ese 3 Fn « Further
WF) n P #¢ inplies that We U rj . So we have shown that F satisfies the
conditions (i), (ii) and (iii). Let & > 0 , then there are finite sets

Wl c Fl y cee o Wm c qn such that the complement of U yFi consists of

YEW

(*) Texte regu le 12 mars 1979,
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finitely many spheres of radii < & .

Given € >0 then there is & >0 and some n >> 0 such that the compleuent of
Uyew YF , where W consists of all reduced words in Wy sy eee y W of length

£n, is a finite union of spheres of radii < ¢ .
This shows that the set of limit points of ' is equal to the compact sot

1
P" - Uysf YF .

2+ Example. If each Fi =27, 80 Fi is generated by an hyperbolic element, then

' is a free group on n generators. We will call such a I' a Schottky group of

rank n . It can be shown that any group I , which satisfies :
(1) T aiscontinuous 3
(ii) T is finitely generated ;
(1ii) T has no elements of finite order (# 1) ,

is a Schottky group of rank n ., Morecever (YT +turns out to be an algebraic curve

over k with genus m .

3. Definition of the p-adic Whittaker groups. (characteristic k # 2.)

Let s be an element of order two in PG1(2 , k) . Then s has two fixed points
a and b , Horeover s is determined by f{a , b} . Let B be an open sphere in
E} maximal, w. re t. the condition sB nB=¢ and let ¢ be a point of B .

There exists a o € PGL(2 , k) with o(a) =1, o(b) =-1, o(c) =0 . Then

1 has the form 2 > 1/z s t has 1, -1 as fixed points and

t = gso
o(B) = {z e g} s 2| < 1} « It follows that E} - B is a fundamental domain for

the group {1, s} .

Let (g + 1) cleuents 80 3 e+ » 8, of order two in PG1(2 , k) be given.
Suppose that their fixed points {a, , by}, {a, , b}y ey {ag , bg} are all

+

finite and are such that the smallesat closed spheres Bg sy oee 4 B in k contai-

g
ning {ao » bol {al , bl} s see 4 {ag , bg} , are disjoint,

Choose points ¢y € B; such that the open sphere Bi with center cy and
radius = radius of B; does not contain a; and bi .

According to Prop. 1 the group I = (so , 51 y see sg) generated by

g
[so g eve sg; is discontinuous, has F =P - L&:O Bi as fundamental domain

and is equal to
<SO> +* <Sl> % eee 3t (Sg> E‘-Z’/Z # eee *E/Z .

Let ¢ T —¢‘§/2 be the group homomorphism given by w(si) =1 for all i .
The kernel W of ¢ 1is called a Whittaker group. The group W is generated by

{s , S0 9 S5 8 5 eee s S, 8o}  An easy exercise shows that W is a free group on
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{sl Sp 2 858y 1 eee s 8 4 so} « 30 W is a Schottky group of rank g .

The groups W and I’ have the same set £ of linit points. Let Q= El - £ .

Then /W and (YT have a canonical structure of an algebraic curve over k . The

natural map o/ —£-> /T is a norphise: of algebraic curves of degree 2 .

4. PROPOSITION. (/T = P! ,

Proof. - Consider

e(a, b, Z)::HYEFH%’

where a , b€ Q and agTb and «¢ la ulb .
This function converges uniformly on the afffnoid subsets of (Q since
lim|y(a) - v(p)| =0 .

So F(z) =06(a, b, z) is a meromorphic function on (. For any 8 e I we
have F(6z) = c(8) F(z) where c(8) € k", Clearly ¢ : I —ak is a group homo-
morphism and hence c¢(8) =+ 1 .

For given a one can take b close to a such that |F(«) - F(so ) | <-‘1§ . For
this choice of a and b, we find that F is invariant under I' . So F defines

a morphism F : /T -)13_1 o This morphism has only one pole. Hence F is an iso-
morphisnm.
Second proof (G. Van STEEN), — If I is finitely generated then /T is an al-

gebraic curve of genus = rank of [, = r/[r, r}.

In our case the rank is clearly zero.

5. THEOREM. (/W is an hyperelliptic curve of genus g . The affine equation of
. 2
Q/W }_s; y = '::0(X - F(ai))(x - F(bi)) L]

Proofe — It follows from 3 and 4 that Q/W is indeed hyperelliptic of genus g
Therefore Q/W nust have 2g + 2 ramification points over Q/l" « A point pEQ/W ,

inage of e € Q, is a ramification if, and only if, € We . The points

S0

2y 1 bo gy ses 4 4 bg satisfy this condition, and their images in Q/I" are dif-

g ?
ferent. So the equation follows.

6. COROLLARY, - Let Sy 1 ese ssg e Pe1(2 , k) be elements of order 2 such that

the group I' generated by them satisfies : I' is discontinuous and

I = (so) % (sl) ¥ eee 3 <Sg> .

Then there are elements sg g cse o sz of order 2 in PG1(2 , k) with the

(2g + 2) fixed points in the position required in 3, and such that 1"=(sg,...,s:) .

Proof. — In 3, 4 and 5, the position of the (2g + 2) fixed points of

{so y eee sg} is only used to prove that [' is discontinuous and equal to
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(so> % eee % (8.) o ;o we can ?lso form W = (sO 8, 3 85 S5 9 eee 4 8g sg) cl' and
conclude that /W —= YT = P" has degree 2 and has 2g + 2 ranification
points, called &) , ees y Ay, 5o Let 0 /W — /W be the automorphism of

order 2 defined by f . Then Al g cee A2g+2 arc the fixcd points of T .

write t, = Sg Sp 0 tec tg =8)8, ¢ Every element in I’ of order 2 must
have the form as; al (aerl s i=0, veo , g) (see [5]). Further a € ' has
the forn ws, or w, with w € W . Since 8o 85 8p = t, s, t;l , we find that
every element in [' of order 2 has the form tsi w~ , with weWVW and

ie {0, sves, g} . It is easily verified that this presentation is unique.

Further O -1 Q/W 1is a universal covering (see [4]). Hence for any e , £ € {
with o(m(e)) = n(f) , there exists a unique lifting s 3 ~n— Q of o With

s(e) =f . Mofeover se€Tl .
Teke now e € n—l(Aj) and & lifting s of o with s(o) =e . Then &5 =1 .

Hence 8 = ws; wl for some i€ {0, eee , g} and we W . The i does not

depend on the choice of e € ﬂ-l(Aj) . Hence we have constructed a map

T: {A, ... ,A2g+2}-—){0,l, cee 5 B} o

Further any ws; W' has at most two fixed points in ﬂ—l({hl, cee A2g+2}) .
It follows that T’l(i) consists of at most two points. Hence T is surjective

and every s; has both fixed points in ﬂ-l(ﬁAl y eoe A2g+2}) c O . The genera-

tors for I' can be changed into s, , tg Sy tEn » Sp g eee sg + With a sequence
of changes of this type one finds generators sg ves SZ for I' with their (2g+2)

fixed points in the required position.

7. THEOREM. - Supposc that X is a hyperelliptic curve of genus g over k which

is totally split. Then there exists a Whittaker group W , unique up to conjugation
in PG1(2 , k) , with X = W .

Proof. — We will use freely the results of [3] and [4]. We know that

a-0s 0w =x

exists where W is a Schottky group of rank g , unique up to conjugation. We have
to show that W is in fact a Whittaker group.

Let o be the automorphism of X with order two such that 7 : X -3 X/o = Pl .

Then © has Al ’ 2e+2

eoe o A € X as fixed points. Let I denote the set of all
lifts s ¢ Q-0 of o¢: X=X and of id : X -3 X . Then |

tal

is a group

and W has index 2 in I . The set

-1 L
K= ({& 4 «ov)y A2g+2}) cP

is a compact set with limit points = £ = B} - O = the limit points of W = the
limit points of I + Let T denote the reduction of Q with respect to K . Then
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_ﬁ/l“ is a reduction of Rl and it is in fact the reduction of E_l with respect to
the finite set {T(Al) y eee s T(A2g+2)} .

Let X denote the reduction induced by 0, i. e. (& is given with respect to a

pure covering U, and X is the reduction with respect to (Y .

One easily secs that X = ﬁ/w and consists of projective lines over the residue
field k of k . The intersection graph G(X) is defined by :

vertices = the components of X and edges = the intersection points.

The map O _ induces an automorphism of T and G(X) , again denoted by o .
Further X —= X/o =T/T and G(X)/o = G(T/T) = a connected finite tree.

Through the image A of A on X goes only one component of X since ?(Al)
lies on only one component of Q/F . Call this vertex of G(X) the vertex gy o
Then c(gl) =g and the homeomorphism ¢ of G(X) induces an automorphism G

of m (¢@) , gl) ~ the fundamental group of G(X) .

We know further that Trl(G(_) , gl) is in a natural way isomorphic to W . Sup-
pose that we can find a base for the fundamental group, tl g oo g tg such that
§(t,) = £
Choose an element e €T l(A ) 5 let 8o be the lift of ¢ satisfying so(e)=e H
let hy be the component of Ti on which e lies j let the curve in G(T) with
begin point h, and lying above '%i have endpoint hi e ¢(Q) ; let ‘1‘i € W be

0
defined by Ti(e) lies on h, .

for all i . Then we can 1lift this situation to (0 as follows :

-1 .
Then W= (T  , +oe, Tg) and sy T, sy =T, for all i. Put
Sl=so Tl g oo sg"—“-so Tgo

Then T

(SO y Sy s eee s sg) and easy inspection yields

= () * CIDE PP (sg> .

According to Corollary 6, we have shown that W is a Whittaker groupe.

Finally we have to show the following lemma :

8., LEMA, - Let G be a finite connected graph with Betti number g . Let o be an

homeomorphism of G such that :

(1) o has order 2 3
(ii) G/o is a tree ;

(iii) o fixes a vertex peEG.

Then the fundamental group ™, (¢, p) has generators t; , ..o , tg such that
the induced automorphism g of T (¢ ’ p) has the form cr(t ) = t"l for all i .

Proof. — Induction on the number of vertices of G .
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(1) p is the only vertex of G . = Then G 1s a wedge of g circles. As gene=-

rators for woowe take the g circles together with an orientation. Call them

t, 9 cee tg . Since o is an homeomorphism we must have

1
-1 -1
g0 B e T )

for all i . Since G/0 has a trivial fundamental group, one finds that 3(ti)=tzl

c(ti) € {t, 5 eee st

for all 1 .

(2) Induction step. — Choose an edge A of G with endpoints p and q #p .

If o(A) = A then we make a new graph o by identifying p and q and deleting
the edge A .

3

1f o(A) £ A, but o(\) has also endpoints p and q , then we make G by

identifying p and g and also identifying A on o(\) .

If o(\) has endpoints p, r with r # q , then we make G by identifying
q and r with p and deleting A and c(h) .

In all cases, ¥ is homotopic to G 3 © acts again on ¢" and induces the

same automorphism of the fundamental group.

9. Remarks.

1° An easy calculation gives that the number of moduli for Whittaker groups of
rank g is 2g - 1 . This is the same as the number of moduli for hyperelliptic

curves of genus g o

20 Is it possible to give an explicit calculation of the numbers F(ai) ’ F(bi)

in theorem 5 ?

30 Hyperelliptic curves and Whittaker groups in characteristic 2 will be treated
by G. Van STEEN.
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