GROUPE DE TRAVAIL D'ANALYSE ULTRAMÉTRIQUE

ROGER APÉRY

Sur certaines séries entières arithmétiques

Groupe de travail d'analyse ultramétrique, tome 9, nº 1 (1981-1982), exp. nº 16, p. 1-2 http://www.numdam.org/item?id=GAU_1981-1982_9_1_A9_0

© Groupe de travail d'analyse ultramétrique (Secrétariat mathématique, Paris), 1981-1982, tous droits réservés.

L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

15 février 1982

SUR CERTAINES SÉRILS ENTIÈRES ARITHMÉTIQUES

par Roger APÉRY (*)
[Université de Caen]

r étant un entier > 0 fixé, on considère le monoïde additif constitué par les r-uples (n_1, n_2, \ldots, n_r) ; en particulier, on pose $(n, n, \ldots, n) = \hat{n}$; on identifie $\hat{0}$ et $\hat{0}$.

Les r-uples sont munis de la relation d'ordre (partielle)

$$(n_1^{}$$
 , $n_2^{}$, ... , $n_r^{})$ \leqslant $(n_1^{}$, $n_2^{}$, ... , $n_r^{})$ \Longleftrightarrow V i , $n_i^{}$ \leqslant $n_i^{}$.

Si $n=(n_1,n_2,\ldots,n_r)$ et $x=(x_1,x_2,\ldots,x_r)$, on appelle monôme, et on note x^n , le produit x^n . Si x>1, x n'est pas un monôme et ne doit pas être confondu avec $x^n=x_1,x_2,\ldots,x_r$. Les monômes en x munis de la multiplication constituent un monoïde x . Les sommes formelles de monômes constituent l'anneau x des séries formelles à x indéterminées x, x, x, x, x, a coefficients entiers. Nous appelons fonction (en toute rigueur "germe" de fonction) tout élément de x qui converge dans une partie ouverte de x contenant l'origine.

Toute surjection φ de $\{x_1^-, x_2^-, \dots, x_n^-\}$ dans l'ensemble $\{y_1^-, \dots, y_s^-\}$ définit un morphisme injectif de M_y dans M_x qui associe à chaque y_j^- le produit des images réciproques de y_j^- par φ ; ce morphisme se prolonge en une application linéaire $\tilde{\varphi}$ injective de Z[[y]] dans Z[[x]]. On définit également la contraction φ qui est l'application linéaire surjective de Z[[x]] dans Z[[y]] qui associe x^n à chaque monôme $\tilde{\varphi}(x^n)$ et 0 à chaque monôme qui n'appartient pas à l'image de Z[[y]] par φ . En particulier, la contraction globale applique Z[[x]] dans l'anneau des séries formelles à une indéterminée. Le produit d'Hadamard F(t) * g(t) est le contracté du produit, f(x) • g(y) •

On appelle fonction de base toute fonction F(x) égale à 1 à l'origine telle que 1/F(x) soit un polynôme du premier degré par rapport à chaque indéterminée séparément.

Pour un nombre premier $\,p\,$ arbitraire, on appelle $\,p\text{-composantes}$ du $\,r\text{-uple}\,$ n les r-uples $\,n_{_{\! l }}\,<\,\stackrel{\frown}{p}\,-\,1\,$ tels que

$$n = n_0 + pn_1 + \cdots + p^k n_k + \cdots$$

^(*) Texte regu le 4 octobre 1982. Roger APÉRY, 552 rue d'Epron, LEBISEY, 14200 HÉROUVILLE SAINT CLAIR.

Nous dirons qu'une série à r indéterminées $\sum a_n x^n$ satisfait à la condition Γ si

$$a_0 = 1$$
,
$$a_n \equiv \prod_{k \geqslant 0} a_n \mod p$$
,

où les n_k sont les p-composantes de n .

La condition (Γ) exprime que

$$f(x) \equiv [P(x)]^{1/(1-p)} \mod p,$$

où P(x) est un polynôme égal à 1 à l'origine et de degré ≤ p - 1; en effet,

$$f(x^p) \equiv [f(x)]^p \mod p$$
,

et la condition Γ exprime que

$$f(x) \equiv P(x) f(x^p) \mod p$$
;

les deux facteurs du second membre ont respectivement tous les monômes de degré $<\widehat{p-1}$ et tous les termes de degré multiples de p .

La condition Γ est vérifiée pour les fonctions de base et se conserve par contraction.

Par la contraction $(x_1, x_2) \longrightarrow t$ de la fonction de base à deux indéterminées $1/(1-ax_1-bx_2+cx_1x_2)$, on obtient $1/\sqrt{(1+ct)^2-4}$ abt

On voit déjà dans ce cas que deux fonctions de base distinctes peuvent avoir même contractée.

La fonction $F_2 = 1 + 3t + 19t^2 + 147t^3 \dots$, liée à l'approximation de (2, 3) s'obtient par contration globale d'une fonction de base à trois indéterminées par exemple

$$\frac{1}{1-x_1-x_2-x_2x_3-x_3x_1+x_1x_2+x_1x_2x_3} \text{ on } \frac{1}{1-x_1-x_2-x_3+x_1x_3+x_2x_3-x_1x_2x_3}.$$

La fonction $1 + 5t + 73t^2 + 1445t^3 + \dots$, liée à l'approximation de $\zeta 3$, s'obtient par contraction globale d'une fonction de base à quatre indéterminées.

La contractée globale de $1/(1-x_1-x_2-x_3+4x_1x_2x_3)$ a comme coefficients la somme des cubes des coefficients binomiaux.