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ON p-ADIC UNIFORMIZATION
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Consider a complete non-singular algebraic curve C or an abelian variety A

over a p-adic field k (i. e., over a complete field containing .9p ). To give a

uniformization of C or A (in the category of rigid analytic spaces) means to

give a gnod description of the universal covering C of C or A of A and of

the group Aut(C/C) or That the situation is quite different from the

classical cnmplex case, can already be seen from Tate’s work on elliptic curves. In

particular, the definition of the universal covering presents problems. If the no-

tion of covering maps is too general, universal coverings ( satisfying the appro-
priate universal property) will not exist.

The uniformization problem was first solved by TATE for elliptic curves (see [10]).
Then MUMFORD considered curves of higher genus, and he was able to solve the pro-
blem completely for a special class, the so-called Mumford curves ([8J, see also

[5]). Furthermore, the existence of the universal covering C be derived, for

any curve C, from the "stable reduction theorem" of DELIGNE-MUMFORD [4]. Similar-

ly, RAYN.A.UD has shown ([9], see also [2]), how Grothendieck’s semi-abelian reduc-

tion implied the existence of the universal covering A f an abelian variety 11.

In the following, we will give a brief account on the known facts. Also we will

indicate, how Grothendieck’ s result can be obtained by an analytic argument. For

simplicity, the ground field k is supposed to be algebraically closed. (If k is

not algebraically closed, everything which follows can be done at least over a sui-

table finite extension of k . )

1. Analytic spaces and reductions.

Let X be an analytic space over k, and consider an admissible open affinoid

covering X = UiEI X.. Denote by 9 the sheaf of analytic functions on X, and

by  the subsheaf of functinns having supremum norm  1 . I.f X is affinoid

itself, the scheme X := Spec 0 o K is called the reduction of X (where &#x26;

and K denote the valuation ring and the residue field of k , respectively). The
reduction X is of finite type over k, and there is a canonical surj ection
n : X -&#x3E; X (between closed points) such that k) is the structure sheaf

A subset U is called a formal subdomain of X if U is the 03C0-inverse

(*) Text e regu le 14 juin 1982.
Siegfried BOSCH, Mathematisches Institut der University 64 Roxeler Strasse,

D-4400 MUNSTER (Allemagne f4dérale) .
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of Zariski-open subset in X. Equivalently, we can say that U is required to be

a finite union of sets of type [x EX; jf(x)) =1~ where f E o(X) .

In order to extend the notion of the reduction to arbitrary analytic spaces, it

is necessary to fix a formal covering of X ~ i. e. an admissible open affinoid co-

vering X such that Xl n X , is a formal subdo main in Xi for all

I . Then the reduction X of X is constructed by pasting the affine

schemes X. via the intersections X. n X. , i. e. via the images of X. n X ,

with respect to the maps n. : 
,.., 

X. 2014&#x3E; Xi X. --&#x3E; X.. The maps rr. de-

fine a projection rr : X --&#x3E; X such that, as in the affinoid case, 03C0*() k) is

the structure sheaf of X . For any (closed) point x we call 11 (x) the

formal fibre over x . Of course, the reduction X is not intrinsically given by
X . It depends on the formal covering which has been chosen. 

’

We give a basic example. Let C be a constant in k, Provide the

annulus (x E k ; 1~ with its canonical analytic structure. Then we

. 

get an affinoid space X , which satisfies

( is the algebra of strictly converging power series in the variables
and 11 over k.) In particular, the reduction X = Spec 1é[ ç , ~~/ ( ~’~) consists

of two lines A. intersecting each other at an ordinary double point. The formal

fibre over this singular point is the "open" annulus with radii , 101 and 1. For

any non-singular point x e X , the formal fibre TT -1 (x) equals an "o p en" disc

(either of radius jcj or of radius 1 ) .

The phenomenon encountered here is a general one. Namely,

PROPOSITION. - Let X be a non-singular purely 1-dimensional analytic space over

k . Consider a reduction X of X (with respect to a given formal covering of X ).
Let x be a (closed) point in X. Then x is non-singular ~ the formal fibre

is a disc. x is an ordinary double point = the formal fibre is

an annulus.

If in the above example one considers a formal covering of the annulus X by two

(non-degenerated) annuli X and X , the corresponding reduction of X is as

follows :
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It is obtained from the previous one by blowing up the intersection point (and
killing nilpotent functions) . Likewise, a formal covering of the affine space

A._ - (0~ by annuli leads to a reduction, which is a chain of projective spaces P~ ~ o

/" ,.

2. Analytic spaces of t e and covering 
In the following, let X be a connected 1-dimensional non-singular analytic

space. We are mainly interested in the case where X is the analytification of a

non-singular complete algebraic curve.

Definition. - A formal covering of X is called of standard type if the singular
points of the associated reduction X are ordinary double points and if all compo-
nents of X are complete. Considering such a covering on X , we simply say that
X is of standard type.

If X is of standard type, the components of genus &#x3E; 0 of the reduction X

are uniquely determined by X up to birational isomorphism. Any two reductions

(with respect to formal coverings of standard type) of X can be transformed into

each other by blowing up certain double points and blowing down certain components
isomorphic to !.i (similarly as in the case of an annulus X ; which has been con-
sidèred above). Thus, the reduction of X is essentially unique. Also it gives a

good geometric description of X itself. Namely, consider the projection
n : X 2014&#x3E; X, and denote by SeX) the set of singular points of the reduction X .
Then X - S(X) is a disjoint union of non-singular quasi-projective varieties. Like-

wise, its 03C0-inverse X - decomposes into disjoint open connected subspaces

U., j e J , which have non-singular reduction. Then X is derived from

X - n-l(S) = U. by adding all formal fibres (which have
the structure of "open" annuli). Hence X is constructed by connecting the compo-
nents U. by means of suitable annuli, according to the double points in X . It

J . 

"

is this fact which leads to the construction of the universal covering X of X.

Just resolve all loops which are generated when X is derived from X - 

This can be made more precise. Consider the intersection graph G of X . Its

vertices are the components of X, and its edges are the singularities of X . Two

vertices (corresponding to the components X’ and X" of X ) are joined by an

edge if the corresponding double point is an intersection point of XI and xn.
Furthermore, if a singular point belongs to just one component xt of X
(i. e. , if XI has selfintersection), a loop is attached to the corresponding ver-

tex. It is clear that G contains all data of X which were needed to give the geo-
metric description of X we have discussed above. Thus, in order to obtain the uni-

versal covering X of X , one looks at the universal covering G of G , and one
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~

constructs X by pasting suitable open subspaces of X according to the geometric
data furnished by G. II can be verified that X satisfies the usucl universal

property of a universal covering if the notion of covering maps is chosen as follows:

Definition. - A morphism 03C6 : Y 2014&#x3E; X of analytic spaces is called a covering

map if there exists an admissible open covering (X~) ~~ ~ of X such that, for

each i E I , the inverse image cp -1 (X. ) admits an admissible open covering

by disjoint subspaces Y.. which are isomorphic to X. via (p .

A covering map between analytic spaces of standard type induces always a covering

map between the associated graphs. This fact is used in showing that the space X
constructed above is indeed the universal covering of X. On the other hand, note

that the r ua 11 .. 0 x --&#x3E; 2 is not a covering map in thethat the map (0) --&#x3E; A1k-{0}, &#x3E; x t2014&#x3E; x2 , is not a covering map in the

sense of our definition (although it is a finite map without ramification points).

3. The universal covering of curves.

As an example, we consider an elliptic curve C over a field k satisfying
char R ~ 2 . Let C be defined in # by the equation

where Xe k, 1 . may assume jB) ~1 and = 1 . The formal

covering P, == U2 ’ where

induces a formal covering of C, and we claim that C is of standard type.

C as e 1 : 1 . - Then the reduction C is the curve in f which is given

by the equation

( X is the residue class of À in k ) . Since ~ ~ 0 , 1 , we see that C is non-

singular and that C is of standard type. Furthermore, the intersection graph G

of C consists of just one vertex. Therefore G is sinply connected, and the uni-

versal covering of C is trivial.

Case 2 : I  1. - The reduction C is given in lii by the equation

Thus, N C consists of two components isomorphic to P1 which a.ntersect each

other at two ordinary double poa.nts :
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In particular, C is of standard type. The non-singular locus of C consists of

two components isomorphic to .~ ~ - ~0) . The inverse image in C is a disjoint
union of two degenerated annuli, and one o,btains C if both are joined by two

"open" annuli. Thereby the picture of a torus occurs. Likewise, the universal cove-

ring C of C is constructed by- considering a collection of degenerated annuli

U , u E Z and by connecting U with U 1 for all u via an "npen" annulus.U ’‘’ 
c. 

U U+
The resulting space admits a formal covering by (closed) annuli and is seen to be

isormrphic to ~ - ~ . Thus C is a Ta.te curve in this case.

Similarly as in the case of elliptic curves, explicit calculations can be made
for hyperelliptic curves ([3]~ [5]). For general curves C ~ one uses the "stable
reduction theorem" of DELIGNE-MUMFORD [4], which has recently been generalized by
van der PUT to the case of arbitrary ground fields. We give an analytic version of
this result. 

THEOREM. - Each non-singular complete algebraic curve C is of standard type.

Thus, the universal covering C exists for each such curve C . If C can be

embedded into P1 one calls C a Mumford curve. The Mumford curves are charact e -
rized by the fact that all components of C have genus 0 0r, equivalently, by the
fact that rg = rg H~(G) equals the genus of C .

4. The universal covering of abelian varieties.

The construction of the universal covering is nore cnmplicated in dimensions &#x3E; 1

than in dimension 1. However, when dealing with abelian varieties, there is sub-
stantial simplification due to the fact that these varieties are group varieties.
We start with a result on multiplicative subgrnups of abelian varieties which may
be viewed as a key-lemma for the construction of the universal covering. Denote by

G the 1-dimensional multiplicative group over k , snd by G its open affinoid" " 

----m 
-’-

subgroup of elements of value 1.

THEOREM ([2]~ [9]). - Let A be an abelian variety over k. Consider an analy-
tic homomorphism 5 : G c:2014,&#x3E; A defining as a locally closed subgroup of A .

Then 5 extends to an analytic homomorphism a : Gr 2014&#x3E; A .
2014201420142014~-*201420142014 - - ~ 

- - N, - ---m

In particular, if r = n s= dim A 9 it follows that 03C3: Gn --&#x3E; A is the univer-

sal covering of A, and that A is a quotient of Gnm by a discrete subgroup of
rank n . Hence A is an analytic torus in this case, Although A will not in ge-

neral contain a subgroup isomorphic to there is precise information on the mul-

tiplicative subgroups of A by the "semi-abelian reduction theorem" of GROTHENDIECK



21-06

[6J. Let N be the identity-component of the formal completion of the Néron model

of A . Then N is an open analytic subgroup of A having a canonical reduction

N . (Since the Néron model exists on]ly for abelian varieties over fields k’ .

carrying a discrete valuation, we have to assume at this point that A is derived

from an abelian variety *E’ over such a field k’ by extending the group field.

Likewise N has to be interpreted as the extension of the corresponding open sub-

group of A’ .) Writing G for the i-dimensional multiplicative group over K ,
the result of Grothendieck reads as follows :

TIIEOREM. - The group N is an extension of an abelian variety B over K by
an affine torus Grm, i. e., there is an exact sequence

The above exact sequence lifts to an exact sequence

where B is an abelian variety over k having B as reduction. Furthermore, there

is a commutative diagram with exact rows

The group Â is defined as the quotient of G x N by the diagonal in G x G
and the map (p : A -2014&#x3E; A is constructed by extending the homomorphism
är --&#x3E; N to a homomorphism of the full multiplicative group G into A .

It follows that A --&#x3E; A is the universal covering of I. , and that A is a
-

quotient of A by a discrete subgroup of rank r.

The crucial step in the above considerations is, of course~ the construction of

the group N . One would like to avoid the use of the Néron model and also to re-
move the assumption that A can be defined over a field k’ carrying a discrete

valuation. Therefore we give a simple analytic characterization 0f N which, as

is expected, can lead to a direct construction of this group.

By the Theorem of MATTUCK ([7], see also [1]), the group A is locally isoicor-

phic to the additive group Gna . Thus A contains an open subgroup A.. which is

isomorphic to the unit ball centered at 0 denote by [p]  A 2014&#x3E; A

the multiplication by p = char R, and by A the identity component of 

Then A := A is an open subgroup of A . In fact, it is the formal fibre

over the identity element 0 E N with respect to the projection
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TT: NO --&#x3E; ÑO . In order to derive NO from It + , one considers a group chunk in

A having A 
+ 

as formal fibre. The associated group is NO. That NO has semi-

abelian reduction, can then be seen by using standard arguments involving the rela-

tionship between NO and ÑO.
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