Groupe de travail D'ANALYSE ULTRAMÉTRIQUE

Lothar Gerritzen p-adic Teichmüller space and Siegel halfspace

Groupe de travail d'analyse ultramétrique, tome 9 , $\mathrm{n}^{\circ} 2$ (1981-1982), exp. no 26, p. 1-15
http://www.numdam.org/item?id=GAU_1981-1982__9_2_A8_0

[^0]
p-ADIC TEICHMUZLER SPACE AND SIEGEL HALFSPACE
 by Lothar GRRRITZEN (")
 [Ruhe-Universität Bochum]

In order to study the space J_{n} of Miumford curves of genus n and the space a_{n} of principally polarized abelian varieties which can be represented as analytic tori we introduce the p-adic Teichmiiller space σ_{n} and the Teichmiiller modular group Ψ_{n} as well the p-adic Siegel halfspace \mathscr{H}_{n} and the Siegel modular group $\Gamma_{n} \equiv \operatorname{PGL} L_{n}(\underset{\sim}{z})$. One will arrive at the result that the orbit space $\vec{r}_{n} \bmod \Psi_{n}$ is the space μ_{n} of Mumford curves and that the orbit space $\mathcal{H}_{n} \bmod \Gamma_{n}$ is the space a_{n} of polarized abelian varieties.

In this paper, we will only describe the main points of the construction of the analytic space ϵ_{n} and the transformation group Ψ_{n} as well as the construction of the analytic space \mathscr{H}_{n} and the transformation group Γ_{n}. A great deal of questions remain open.

1. Conjugacy classes of homomorphisms.
(1.1) Homomorphism classes. - Let X, Y be groups, let A be a subgroup of the group Aut X of automorphisms of X and B a subgroup of Aut Y.

Denote by (X, Y) the set of all group homomorphisms $\zeta: X \rightarrow Y$. A acts on (X , Y) by composition of mappings from right :

$$
X \xrightarrow{\alpha} X X \xrightarrow{S} Y \text {. }
$$

If $\alpha \in \mathbb{A}, \zeta \in(X, Y)$, then $\zeta \circ \alpha \in(X, Y)$. The set of equivalence classes ऽA will be denoted by ${ }_{A}[Y, X)$.

The group B acts on (X, Y by composition of mappings from left :

$$
X \xrightarrow{5} Y \xrightarrow{\beta} Y \text {. }
$$

If $\beta \in B, \zeta \in(X, Y)$, then $\beta \circ \zeta \in(X, Y)$. The set of equivalence classes $\beta!$ will be denoted by $(X, Y]_{B}$.

For $\alpha \in A, \beta \in B, \zeta \in(X, Y)$, we have

$$
(\beta \circ \zeta) \circ \alpha=\beta \circ(\zeta \circ \alpha)
$$

because composition of mappings is associative. Therefore A (resp. B) acts canonically on (X,Y] ${ }_{B}$ (resp. $[X, Y)_{B}$).

Obviously, $(X, Y]_{B} \bmod A={ }_{A}[X, Y) \bmod B$.
We denote this set by $\left.{ }_{A}^{[X, Y}\right]_{B}$. Its elements are the double cosets $\mathrm{B} \zeta \mathrm{A}$. One gets a canonical commutative diagram

where each arrow denotes the canonical equivalence class mapping.
(1.2) Isotropy groups. - We consider the following isotropy groups :

$$
\begin{aligned}
& \mathcal{J}_{A}(\zeta):=\{\alpha \in A ; \zeta \circ \alpha=\zeta\} \\
& \mathcal{J}_{B}(\zeta):=\{\beta \in B ; \beta \circ \zeta=\zeta\} \\
& \mathcal{J}_{A}(B C):=\{\alpha \in \Lambda ; B \zeta \circ \alpha=B \zeta\} \\
& \mathcal{J}_{B}(\zeta \Lambda):=\{\beta \in B ; \beta \circ \zeta \Lambda=\zeta \Lambda\} \cdot
\end{aligned}
$$

PROPOSITION 1. - J $A_{\Lambda}(\zeta)$ is a normal subgroup of $\mathfrak{J}_{\Lambda}(B \zeta)$ - $\mathfrak{J}_{B}(\zeta)$ is a normal subgroup of $\boldsymbol{J}_{B}(\zeta \Lambda)$ and

$$
J_{A}(B \zeta) / J_{A}(\zeta) \cong J_{B}(\zeta \Lambda) / J_{B}(\zeta)
$$

Proof.

10 Let $\alpha_{0} \in J_{\Lambda}(\zeta), \alpha \in \mathcal{J}{ }_{\Lambda}(B C)$. Then there is a $\beta \in B$ such that $\zeta \circ \alpha=\beta \circ \zeta$. Now $\zeta \circ \alpha_{0}=\zeta$ and

$$
\zeta \circ \alpha \circ \alpha_{0} \circ \alpha^{-1}=\beta \circ \zeta \circ \alpha_{0} \circ \alpha^{-1}=\beta \circ \zeta \circ \alpha^{-1}=\zeta \circ \alpha \circ \alpha^{-1}=\zeta
$$

which shows that $\alpha \alpha_{0} \alpha^{-1} \in \mathfrak{J} \Lambda_{\Lambda}(\zeta)$. Thus $\mathfrak{J}{ }_{\Lambda}(\zeta)$ is a normal subgroup of $\mathfrak{J} \Lambda_{\Lambda}(B \zeta)$. 2° Let $\beta_{0} \in \mathcal{J}{ }_{B}(\zeta)$, $\beta \in \mathcal{J}{ }_{B}(\zeta \Lambda)$. Then there is a $\alpha \in A$ such that $\beta \circ \zeta=\zeta^{\circ} \alpha$ • Now $\beta_{O} \circ \zeta=\zeta$ and

$$
\beta^{-1} \beta_{0} \beta \zeta=\beta^{-1} \beta_{0} \zeta \alpha=\beta^{-1} \zeta \alpha=\beta^{-1} \beta \zeta=\zeta
$$

which shows that $\beta^{-1} \beta_{O} \beta \in \mathcal{J}{ }_{B}(\zeta)$. Thus $\mathcal{J}_{B}(\zeta)$ is a normal subgroup of $\mathcal{J}_{B}(\zeta A)$. 3° It is an easy exercice to show that the mapping which associates to $\left.\alpha \in A_{A}^{(}{ }_{3}^{(}\right)$ the residue class $\bar{\beta}$ in $J{ }_{B}\left(\zeta_{(i)} / J{ }_{B}(\zeta)\right.$ of a $\beta \in B$ which satisfies $\zeta \alpha=\beta \circ \zeta$ induces an isomorphism J $\Lambda_{\Lambda}(B \zeta) / \mathcal{J} \Lambda_{\Lambda}(\zeta)$ on to $\mathcal{J}{ }_{B}(\zeta A) / \mathcal{J}{ }_{B}(\zeta)$.
(1.3) Schottky groups. - Let now K be an algebraically closed field together with a non-trivial complete ultrametric valuation. Let E_{n} be a non-abelian free group of rank $n \geqslant 2$ together with a fixed basis e_{1}, \ldots, e_{n}.

We consider $\operatorname{PSL}_{2}(K)=\left\{ \pm\left(\begin{array}{ll}a & b \\ c_{2} d\end{array}\right) ; a, b, c, d \in K ; a d-b c=1\right\}$ as a K algebraic group. Denote by tr^{2} the regular function on $\mathrm{PSL}_{2}(\mathrm{~K})$ which has the value $(a+d)^{2}$ at the point $\pm\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. An element $\pm\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of PSL $_{2}(K)$ is called hyperbolic if $\left\lvert\, \operatorname{tr}^{2}\left(\begin{array}{ll}a & b \\ c & d\end{array}\left|=|a+d|^{2}>1\right.\right.$. The set $\left(E_{n}, P_{2}(K)\right)$ of all group \right. homomorphisms $\zeta: \mathrm{E}_{\mathrm{n}} \rightarrow$ PSL $_{2}(\mathrm{~K})$ will be identified with the n -fold product $\mathrm{PSL}_{2}^{\mathrm{n}}(\mathrm{K})=\mathrm{PSL}_{2}(\mathrm{~K}) \times \ldots \times \mathrm{PSL}_{2}(\mathrm{~K})$ of $\mathrm{PSL}_{2}(\mathrm{~K})$: any $\mathrm{w}=\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\right) \in \mathrm{PSL}_{2}^{\mathrm{n}}(\mathrm{K})$ determines a unique homomorphism $\zeta_{\mathrm{W}}: \mathrm{E}_{\mathrm{n}} \longrightarrow \mathrm{PSL}_{2}(\mathrm{~K})$ which satisfies $\zeta_{\mathrm{w}}\left(\mathrm{e}_{\mathrm{i}}\right)=\mathrm{w}_{\mathrm{i}}$ for all i.
The action of hut E_{n} on $\left(E_{n}, \operatorname{PSL}_{2}(K)\right)$ when it is identified with $\operatorname{PSL}_{2}^{n}(K)$ can be described as follows : let $\alpha \in$ Aut $E_{n}, \alpha\left(e_{i}\right)$ is a reduced word in the letter e_{1}, \ldots, e_{n} : we substitute w_{j} for e_{j} and obtain an element w_{i}^{\prime} for each i. Then

$$
\left(w_{1}, \ldots, w_{n}\right) \times \alpha=\left(w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right)
$$

This explicit description shows that α is a biregular transformation of the K -algebraic space $\mathrm{PSL}_{2}^{\mathrm{n}}(\mathrm{K})$ •

Definition. - A homomorphism $\zeta: E_{n} \rightarrow$ PSL $_{2}(K)$ is called Schottky homomorphism, if $\zeta(e)$ is hyperbolic for any $e \in E_{n}, \quad e \neq 1$.

Denote by ρ_{n} the set of Schottky homomorphisms. \therefore s a subset of $\mathrm{PSI}_{2}^{n}(K)$ it is given by infinitely many inequalities. More precisely : we fix $e \in E_{n}$, and consider the mepping $\zeta \rightarrow \zeta(e)$. It is a regular mapping $\Phi_{e}: \operatorname{PSL}_{2}^{n}(K) \rightarrow \operatorname{PSL}_{2}^{n}(K)$ and $f_{e}=\operatorname{tr}^{2} \Phi_{e}$ is a regular function on $\operatorname{PSL}_{2}^{n}(K)$. Then

$$
s_{n}=\left\{w \in \operatorname{PSL}_{2}^{n}(K) ;\left|f_{e}(w)\right|>1 \text { for all } e \in E_{n}, \quad e \neq 1\right\}
$$

One can give explicit expressions for the mapping Φ_{e} and the function $f_{e} \cdot e$ is determined by the finite sequence $\epsilon(1), \ldots, \varepsilon(r)$ with $\varepsilon(i) \in\{ \pm 1, \ldots, \pm n\}$ and $\epsilon(i+1) \neq-\epsilon(i)$ such that

$$
e=\prod_{i=1}^{r} e_{\epsilon(i)} \text { with } e_{-i}=e_{i}^{-1}
$$

Let

$$
\Phi_{e}\left(\pm\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right), \ldots, \pm\left(\begin{array}{ll}
a_{n} b_{n} \\
c_{n} & d_{n}
\end{array}\right)= \pm\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)\right.
$$

we will give expression for $x_{k \ell}$ as polynomials in a_{1}, \ldots, d_{n}.

$$
N_{k l}:=\text { set of all sequences } s=\left(\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{r}, j_{r}\right)\right) \text { such }
$$ that $i_{\nu+1}=j_{\nu}$ for all ν and $i_{\nu}, j_{\nu} \in\{1,2\}$. For any such s, we consider the product

$$
x(s):=x_{i_{1} j_{1}}^{(1)} \ldots x_{i_{r} j_{r}}^{(r)}
$$

with

$$
x_{i_{\nu}}^{(\nu)}:= \begin{cases}a_{\epsilon}(i) ; & \left(i_{\nu}, j_{\nu}\right)=(1,1) \\ b_{\epsilon}(i) ; & \left(i_{\nu}, j_{\nu}\right)=(1,2) \\ c_{\epsilon(i)} ; & \left(i_{\nu}, j_{\nu}\right)=(2,1) \\ d_{\epsilon(i)} ; & \left(i_{\nu}, j_{\nu}\right)=(2,2)\end{cases}
$$

with

$$
a_{-i}=+d_{i}, \quad b_{-i}=-b_{i}, \quad c_{-i}=-c_{i}, d_{-i}=a_{i} \text {. Then }
$$

$$
\begin{aligned}
& x_{11}=\sum_{s \in N_{11}} x(s) \\
& x_{12}=\sum_{s \in N_{12}} x(s) \\
& x_{21}=\sum_{s \in N_{21}} x(s) \\
& x_{22}=\sum_{s \in N_{12}} x(s) .
\end{aligned}
$$

The proof readily follows by induction on r •
We consider homomorphism classes as in §(1.1) for $A=$ hut $E_{n}, B=$ group of inner automorphisms of $\mathrm{PSL}_{2}(\mathrm{~K}) \cong \mathrm{PSL}_{2}(\mathrm{~K})$. The set $\bar{S}_{\mathrm{n}}=\operatorname{AutE}\left[\mathrm{S}_{\mathrm{n}}\right)$ of classes ζ 。 Aut E_{n} with $\zeta \in S_{n}$ is just simply the set of Schottky subgroups of $\mathrm{PSL}_{2}(K)$ of rank n (see [1], chap.tєr I, (1.6)). Because if $\zeta \in S_{n}, \alpha \in$ Aut E_{n}, then the image $\operatorname{Im}(\zeta \circ \alpha)$ does not depend on α.

If, on the other hand, Γ is a Schottky subgroup of $\mathrm{PSL}_{2}(K)$ of rank n, then by definition there is a $\zeta \in \delta_{n}$ such that $\operatorname{Im} \zeta=\Gamma$. If $\zeta^{\prime} \in \delta_{n}$ also satisfies $\operatorname{Im} \zeta^{\prime}=\Gamma$, then we note that $(\zeta \mid \Gamma)^{-1}: \Gamma \rightarrow E_{n}$ is a group homomorphism and $\alpha=\left(\zeta \mid I^{\prime}\right)^{-1} \circ \zeta^{\prime} \in \operatorname{lut} E_{\mathrm{n}}$ and $\zeta \circ \alpha=\zeta^{\prime}$.

2. Hyperbolic fractional linear transformations.

(2.1). Let $\underset{\sim}{P}=K \cup\{\infty\}$ be the projective line over K and $\underset{\sim}{P} \times \underset{\sim}{P}-\underset{\sim}{P}=\{(x, y) \in \underset{\sim}{P} \times \underset{\sim}{P}: x \neq y\}$ be the complement of the diagonal in the product $\underset{\sim}{P} \times \underset{\sim}{P}$.

In order to determine the regular functions on $\underset{\sim}{P} \times \underset{\sim}{P}-\underset{\sim}{P}$, we introduce the following affine charts :

$$
\begin{array}{ll}
U_{11}=\{(x, y) \in \underset{\sim}{P} \times \underset{\sim}{P}-\underset{\sim}{P} ; & x \neq \infty, \\
U_{12}=\{(x, y) \in \underset{\sim}{P} \times \underset{\sim}{P}-\underset{\sim}{P} ; & x \neq \infty, \\
U_{21}=\{(x, y) \in \underset{\sim}{P} \times \underset{\sim}{P}-\underset{\sim}{P} ; & x \neq 0, \\
\left.U_{2} \neq \infty\right\} \\
U_{22}=\{(x, y) \in \underset{\sim}{P} \times \underset{\sim}{P}-\underset{\sim}{P} ; & x \neq 0, \\
y \neq 0\}
\end{array}
$$

The algebras $O\left(U_{i j}\right)$ of regular functions on $U_{i j}$ are the following

$$
\begin{aligned}
& O\left(U_{11}\right)=K\left[x, y, \frac{1}{x-y}\right] \\
& O\left(U_{12}\right)=K\left[x, \frac{1}{y}, \frac{1}{1-\frac{x}{y}}\right] \\
& O\left(U_{21}\right)=K\left[\frac{1}{x}, y, \frac{1}{1-\frac{y}{x}}\right] \\
& O\left(U_{22}\right)=K\left[\frac{1}{x}, \frac{1}{y}, \frac{1}{\frac{1}{x}-\frac{1}{y}}\right] .
\end{aligned}
$$

PROPOSITION 2. $-O(\underset{\sim}{P} \times \underset{\sim}{P}-\underset{\sim}{P})=K\left[\frac{1}{x-y}, \frac{x}{x-y}, \frac{x y}{x-y}\right]$.
Proof. - The functions

$$
\begin{aligned}
& \frac{1}{x-y}=\frac{\frac{1}{y}}{\frac{x}{y}-1}=\frac{\frac{1}{x}}{1-\frac{y}{x}}=\frac{\frac{1}{x} \times \frac{1}{y}}{\frac{1}{y}-\frac{1}{x}} \\
& \frac{x}{x-y}=\frac{\frac{x}{y}}{\frac{x}{y}-1}=\frac{1}{1-\frac{y}{x}}=\frac{\frac{1}{y}}{\frac{1}{y}-\frac{1}{x}} \\
& \frac{x y}{x-y}=\frac{x}{\frac{x}{y}-1}=\frac{y}{1-\frac{y}{x}}=\frac{1}{\frac{1}{y}-\frac{1}{x}}
\end{aligned}
$$

are clearly regular on each $U_{i j}$ and are thus regular on $\underset{\sim}{P} \times \underset{\sim}{P} \underset{X}{P}$. Therefore the K-algebra $K\left[\frac{1}{x-y}, \frac{x}{x-y}, \frac{x y}{x-y}\right]$ generated by $\frac{1^{2}}{x-y}, \frac{x^{2}}{x-y}, \frac{x y}{x-y}$ is a subalgebra of $O(\underset{\sim}{P} \times \underset{\sim}{P}-\underset{\sim}{P})$. Let now f be a regular function on $\underset{\sim}{P} \times \underset{\sim}{P}-\underset{\sim}{P}$.

Let f here a representation $f=g(x, y) /(x-y)^{n}$ with a polynomial $\mathrm{g}(\mathrm{x}, \mathrm{y}) \in \mathbb{K}[\mathrm{x}, \mathrm{y}]$ in the variables x, y. Let

$$
g(x, y)=\Sigma_{\nu, \mu} g_{\nu \mu} x^{\nu} y^{\mu}
$$

Then

$$
f=\Sigma g_{\nu \mu} \frac{x^{\nu} y^{\mu}}{(x-y)^{n}}=\Sigma g_{\nu \mu} \frac{x^{\nu} y^{\mu-n}}{\left(\frac{x}{y}-1\right)^{n}}
$$

which shows that $f \in O\left(U_{12}\right)=K[x, 1 / y, 1 /(1-x / y)]$ if, and only if, $g_{\nu \mu}=0$ whenever $\mu>n$.

In the same way, one proves that $f \in O\left(U_{21}\right)$ if, and only if, $g_{\nu \mu}=0$ whenever $\nu>n$. But if $n \geqslant \nu \geqslant \mu$, then

$$
\frac{x^{\nu} y^{\mu}}{(x-y)^{n}}=\left(\frac{x y}{x-y}\right)^{\mu} \times x\left(\frac{x}{x-y}\right)^{\nu-\mu} \times\left(\frac{1}{x-y}\right)^{n-\nu}
$$

which shows that $\frac{x^{\nu} y^{\mu}}{(x-y)^{n}} \in K\left[-\frac{1}{x-y}, \frac{x}{x-y}, \frac{x y}{x-y}\right]$.
If $n \geqslant \mu \geqslant \nu$, then

$$
\frac{x^{\nu} y^{\mu}}{(x-y)^{n}}=\left(\frac{x y}{x-y}\right)^{\nu} \times\left(\frac{y}{x-y}\right)^{\mu-\nu} \times\left(\frac{1}{x-y}\right)^{n-\mu}
$$

Ls $\frac{y}{x-y}=\frac{x}{x-y}-1$, we obtain also

$$
\frac{x^{\nu} y^{\mu}}{(x-y)^{n}} \in K\left[\frac{1}{x-y^{2}}, \frac{x}{x-y^{\prime}}, \frac{x y}{x-y}\right] .
$$

As g is a linear combination of functions in $K\left[\frac{1}{x-y}, \frac{x}{x-y}, \frac{x y}{x-y}\right]$, it is also in this algebra, which proves

$$
O(\underset{\sim}{P} \times \underset{\sim}{P}-\underset{\sim}{P}) \subseteq K\left[\frac{1}{x-y}, \frac{x}{x-y}, \frac{x y}{x-y}\right] .
$$

(2.2). Let $S_{2}(K)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) ; a, b, c, d \in K ; a d-b c=1\right\}$ and $K_{*}=K-\{0\}$. We consider the mapping

$$
\pi: K_{*} \times(\underset{\sim}{P} \times \underset{\sim}{P}-\underset{\sim}{P}) \rightarrow S L_{2}(K)
$$

given by

$$
\begin{aligned}
& \pi(\tau, x, y)=\left\{\begin{array}{l}
a(\tau, x, y), b(\tau, x, y) \\
c(\tau, x, y), d(\tau, x, y)
\end{array}\right\} \\
& a(\tau, x, y)=\frac{\tau^{-1} \frac{x-\tau y}{x-y}}{b(\tau, x, y)=\frac{\left(\tau-\tau^{-1}\right) x y}{x-y}} \\
& c(\tau, x, y)=\frac{\tau^{-1}-\tau}{x-y} \\
& d(\tau, x, y)=\frac{\tau x-\tau^{-1} y}{x-y}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{a}(\tau, \mathrm{x}, \mathrm{y}) \mathrm{d}(\tau, \mathrm{x}, \mathrm{y}) & =\frac{\mathrm{x}^{2}+\mathrm{y}^{2}-\left(\tau^{-2}+\tau^{2}\right) \mathrm{xy}}{(\mathrm{x}-\mathrm{y})^{2}} \\
& =\frac{(\mathrm{x}-\mathrm{y})^{2}-\left(\tau^{-2}-\bar{z}+\tau^{2}\right) \mathrm{xy}}{(\mathrm{x}-\mathrm{y})^{2}} \\
& =1-\frac{\left(\tau^{-1}-\tau\right)^{2} \mathrm{xy}}{(\mathrm{x}-\mathrm{y})^{2}} \\
& =1+\mathrm{b}(\tau, \mathrm{x}, \mathrm{y}) \mathrm{c}(\tau, \mathrm{x}, \mathrm{y})
\end{aligned}
$$

which shows that indeed $\pi(\tau, x, y) \in \mathrm{SL}_{2}(\mathrm{~K}) \cdot$
Properties of π :

$$
\begin{aligned}
& \pi(-\tau, \mathrm{x}, \mathrm{y})=-\pi(\tau, \mathrm{x}, \mathrm{y}) \\
& \pi\left(\tau^{-1}, \mathrm{y}, \mathrm{x}\right)=+\pi(\tau, \mathrm{x}, \mathrm{y}) \\
& \pi(\tau, \mathrm{x}, \mathrm{y}) \times \pi\left(\tau^{-1}, \mathrm{x}, \mathrm{y}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \pi\left(\tau_{1}, \mathrm{x}, \mathrm{y}\right) \times \pi\left(\tau_{2}, \mathrm{x}, \mathrm{y}\right)=\pi\left(\tau_{1} \tau_{2}, \mathrm{x}, \mathrm{y}\right) \\
& \pi(1, \mathrm{x}, \mathrm{y})=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \pi(-1, \mathrm{x}, \mathrm{y})=\left(\begin{array}{lll}
-1 & 0 \\
0 & -1
\end{array}\right) .
\end{aligned}
$$

If $\tau, \tau^{\prime} \neq \pm 1$, then $\pi(\tau, x, y)=\pi\left(\tau^{\prime}, x^{\prime}, y^{\prime}\right)$ if, and only if, either $\tau=\tau^{\prime}, x^{\prime}=x, y^{\prime}=y$ or if $\tau^{\prime}=+\tau^{-1}, y^{\prime}=x, x^{\prime}=y$.

Let $\sigma=\left(\begin{array}{ll}a_{0} & b_{0} \\ c_{0} & d_{0}\end{array}\right) \in S L_{2}(K) \cdot \sigma$ acts on $\underset{\sim}{P}$ by $\sigma(x)=\frac{-a_{0} x+b_{0}}{c_{0} x+d_{0}}$.
Then

$$
\begin{aligned}
& \pi(\tau, \sigma(x), \sigma(y))=\sigma \pi(\tau, x, y) \sigma^{-1} \\
& \pi(\tau, x, y)(x)=x, \pi(\tau, x, y)(y)=y \\
& \pi\left(K_{;} \times(\underset{\sim}{P} \times \underset{\sim}{P}-\underset{\sim}{P})\right)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(K) ; a+d \neq \pm 2\right\} \cup\left\{ \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\}
\end{aligned}
$$

The trace $\operatorname{tr} \pi(\tau, x, y)=\tau+\tau^{-1}$.
π is a merphism of K -algebraic spaces, π induce a 2-sheeted unramified covering,
from $(K-\{0,1,-1\}) \times(\underset{\sim}{E} \times \underset{\sim}{P}-\underset{\sim}{P})$ onto the affine subdomain $S L_{2}^{\prime}(K)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(K) ;(a+3)^{2} \neq 4\right\}$ of non-parabolic matrices.

Let
$\theta_{1}=0(K \cdots\{0,1,-1\} \times(\underset{\sim}{P} \times \underset{\sim}{P}-\underset{\sim}{P}))=K\left[\tau, \tau^{-1}, \frac{1}{\tau-1}, \frac{1}{\tau+1}, \frac{1}{x-y}, \frac{x}{x-y}, \frac{x y}{x-y}\right]$ and

$$
\left.o_{2}=d S L_{2}^{p}(K)\right)=K\left[a, b, c, d, \frac{1}{a+d-2}, \frac{1}{a+d+2}\right] /(a d-b c-1) .
$$

The mapping π induces a K-algebra homomorphism

$$
\pi_{*}: \theta_{2} \rightarrow \theta_{1}
$$

which is injective.
PROPOSITION 3. - θ_{1} is a free θ_{2}-module, generated by 1 and τ.
Proof. - Let M be the O_{2}-module, generated by 1 and τ. One has $\tau \notin O_{2}$, as for any polynomial $f(\tau, x, y) \in \theta_{2}$, we have the condition $f(\tau, x, y)=f\left(\tau^{-1}, y, x\right)$.

Now $\tau+\tau^{-1}=a+d$ and $\tau^{2}-(a+d) \tau+1=0$ which shows that τ is quadratic over θ_{2}. Thus $\tau^{2} \in M$ and more generally all powers τ^{i} of $\tau, i \in \underset{\sim}{Z}$, are in M.

Thus M is a $O_{2}^{-a l g e b r a . ~}$

$$
\begin{aligned}
& \frac{\left(\tau-\tau^{-1}\right)}{(a+d-2)(a+d+2)}=\frac{\tau-\tau^{-1}}{\left(\tau+\tau^{-1}\right)-4}=\frac{1}{\tau-\tau^{-1}} \in M \\
& \frac{\tau\left(1-\tau^{-1}\right)}{\tau-\tau^{-1}}=\frac{1}{1+\tau^{-1}} \in M \\
& \frac{\tau\left(1+\tau^{-1}\right)}{\tau-\tau^{-1}}=\frac{1}{1-\tau^{-1}} \in M \\
& \frac{1}{x-y}=\frac{c}{\tau^{-1}-\tau} \in M \\
& \frac{x y}{x-y}=\frac{b}{\tau^{-1}-\tau} \in M \\
& \frac{x}{x-y}=\frac{a-\tau}{\tau^{-1}-\tau} \in M .
\end{aligned}
$$

Th: s shows that $M=\theta_{1}$.
(2.3). Let $\operatorname{SL}_{2}^{h b}(K)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(K) ;|a+d|>1\right\}$ be the subdomain of $S L_{2}(K)$ of hyperbolic matrices and

$$
\operatorname{Hb}(K):=\left\{(\tau, x, y) \in K_{*} \times(\underset{\sim}{P} \times \underset{\sim}{P})-\underset{\sim}{P} * 0<|\tau|<1\right\} .
$$

Then π induces an analytic mapping

$$
\pi^{\prime}: H b(K) \rightarrow S L_{2}^{h b}(K)
$$

PROPCSITION 4. - π^{\prime} is bianalytic.
LEMMA. - There exists a puwer series $\tau(s) \in \mathbb{Z}[[s]]$ stch that $\tau(s)+\frac{1}{\tau(s)}=\frac{1}{s}$.
Proofo- Define $\tau_{0}=0, \tau_{1}=1$ and, for $k \geqslant 1$,

$$
\tau_{k+1}:=-\sum_{i=1}^{k-1}(-1)^{i} \tau_{i} \tau_{k-i} \in \underset{\sim}{Z} .
$$

Then $\tau(s):=\sum_{i=1}^{\infty} \tau_{i} s^{i}$ satisfies the equation $\tau(s)+\frac{1}{\tau(s)}=s^{-1}$. One gets $\tau_{i}=0$ if i is even and $\tau_{i}>0$ if i is add and

$$
\tau(s)=s+s^{3}+2 s^{5}+5 s^{7}+14 s^{9}+42 s^{11}+132 s^{13}+429 s^{15}+\cdots
$$

Another way to prove this lemma : you remark that $\tau(\mathrm{s})$ satisfies a quadratic equation :

$$
\tau(s)^{2}-\frac{1}{s} \tau(s)+1=0
$$

Thus if char $K \neq 2:$

$$
\begin{aligned}
& \left(\tau(s)-\frac{1}{2 s}\right)^{2}=\frac{1}{4 s^{2}}-1 \\
& \tau(s)=\frac{1}{2 s} \pm \frac{1}{2 s} \sqrt{1-4 s^{2}} \\
& \tau(s)=\frac{1}{2 s} \pm \frac{1}{2 s} \sum_{i=0}^{\infty}\binom{\frac{1}{2}}{i}(-1)^{i}\left(4 s^{2}\right)^{i} .
\end{aligned}
$$

If you choose the right sign for the square root, you get

$$
\tau(s)=\frac{1}{2} \sum_{i=1}^{\infty}\binom{\frac{1}{2}}{i}(-1)^{i+1} \times 4^{i} s^{2 i-1}
$$

now

$$
\binom{\frac{1}{2}}{\underset{i}{2}}=\frac{1}{2 i}\left(\stackrel{1}{2}(\underset{i}{2}-1) \text { and }\left({ }_{j}^{-\frac{1}{2}}\right)=\frac{\frac{1}{2^{j}}(-1)^{j}(2 j-1)!}{j!\times 2^{j-1}(j-1)!}\right.
$$

Thus

$$
\begin{aligned}
& \tau_{2 i-1}=\frac{1}{2}(-1)^{i+1} 4^{i} \frac{1}{2^{i}} \frac{2^{i-1}(-1)^{i-1}(2 i-3)!}{(i-1)!2^{i-2}(i-2)!} \\
& \tau_{2 i-1}=2 \frac{(2 i-3)!}{i!(i-2)!}=2\binom{2 i-2}{i-2} \times \frac{1}{2 i-2}=\frac{1}{i-1}\binom{2 i-2}{i-2}=\frac{1}{i}\binom{2 i-2}{i-1} .
\end{aligned}
$$

The proof of proposition 4 is immediate with the help of the lemma and of proposition 3. The inverse of π^{\prime} can be given explicitly, namely :

$$
\begin{aligned}
& \tau\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\tau\left(\frac{1}{a+d}\right)=\tau . \\
& \frac{1}{x-y}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\frac{c}{\tau^{-1}-\tau} \\
& \frac{x y}{x-y}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\frac{b}{\tau^{-1}-\tau} \\
& \frac{x}{x-y}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\frac{a-\tau}{\tau^{-1}-\tau} .
\end{aligned}
$$

(2.4). Let $\mathrm{PSL}_{2}(K)=\left\{\begin{array}{l} \pm \\ \left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) ;\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(K)\right\} \text { be the projective special linear }, ~\end{array}\right.$ group and

$$
\operatorname{PSL}_{2}^{\mathrm{hb}}(K)=\left\{ \pm\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) ;\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}^{\mathrm{hb}}(K)\right\} .
$$

Now

$$
\tau\left(\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right)=\tau\left(-\frac{1}{a+d}\right)=-\tau\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and

$$
\pi(-\tau, x, y)=-\pi(\tau, x, y) \cdot
$$

COROLLARY. - The mapping

$$
\pm\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \rightarrow\left(\tau^{2}\left(\frac{1}{a+d}\right), \frac{a-\tau}{c}, \frac{b}{a-\tau}\right)
$$

gives a bianalytic mapping

$$
\mathrm{PSL}_{2}^{\mathrm{hb}}(\mathrm{~K}) \rightarrow \mathrm{Hb}(\mathrm{~K})
$$

3. Teichmiiller space.

(3.1) The set S_{n} of Schottky homomorphisms $\zeta: E_{n} \rightarrow$ PSL $_{2}(K)$ will be identified with a subset of $\mathrm{Hb}^{\mathrm{n}}(\mathrm{K})=\left\{\mathrm{w}=\left(\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}\right) ; \mathrm{w}_{\mathrm{i}} \in \mathrm{Hb}(\mathrm{K})\right\}$. We identify $\mathrm{Hb}(\mathrm{K})$ through the inverse of mapping $\pm \pi$ with $\operatorname{PSI}_{2}^{\mathrm{hb}}(\mathrm{K})$. As $\zeta\left(\mathrm{e}_{\mathrm{i}}\right)$ is hyperbolic, we get $\left(\zeta\left(e_{1}\right), \ldots, \zeta\left(e_{n}\right)\right) \in H b^{n}(K)$.

We study the actions of Aut E_{n} and of $A u t^{i} \operatorname{PSL}_{2}(\mathrm{~K})$ on S_{n}. Let

$$
\begin{aligned}
& \bar{s}_{n}=\operatorname{AutE}_{\mathrm{n}}\left[\Phi_{\mathrm{n}}\right) \\
& \tau_{\mathrm{n}}=\left(S_{\mathrm{n}}\right]_{\mathrm{PSL}_{2}}(\mathrm{~K}) \\
& \operatorname{din}_{\mathrm{n}}=\operatorname{AutE}_{\mathrm{n}}\left[\mathrm{~s}_{\mathrm{n}}\right]_{\mathrm{PSL}_{8}(\mathrm{~K})}
\end{aligned}
$$

and group actions of $\mathrm{PSL}_{2}(K)$ on \bar{S}_{n} and of Aut E_{n} on ζ_{n}.
While \bar{S}_{n} corresponds biuniquely with the set of Schottky subgroups of $\mathrm{PSL}_{2}(\mathrm{~K})$ of rank n (see (1.3)), the set ζ_{n} consists of normed Schottky homomorphisms.

PROPOSITION 5. - τ_{n} can be identified with

$$
\begin{aligned}
& \left\{w=\left(w_{1}, \ldots, w_{n}\right) \in H b^{n}(K) ; w \in s_{n} ;\right. \\
& \left.\qquad w_{i}=\left(t_{i}, x_{i}, y_{i}\right) \in H b(K) ; x_{1}=0 ; y_{1}=\infty ; y_{2}=1\right\} .
\end{aligned}
$$

Precf. - Let $\sigma(z)=\left(y_{L}-y_{1}\right) /\left(y_{2}-x_{1}\right) \times\left(z-x_{1}\right) /\left(z-y_{1}\right)$ be the fractionallinear transformation which maps x_{1} to $0, y_{1}$ to ∞ and y_{2} to 1 .

Now

$$
\begin{aligned}
& \pi\left(t_{1}, x_{1}, y_{1}\right) \sigma^{-1}=\pi\left(t_{1}, 0, \infty\right) \\
& \sigma \pi\left(t_{2}, x_{2}, y_{2}\right) \sigma^{-1}=\pi\left(t_{2}, \sigma\left(x_{2}\right), 1\right)
\end{aligned}
$$

(see properties of π in (2.2)).
If $w \in S_{n}$ with $x_{1}=0, y_{1}=\infty, y_{2}=1$ and $\sigma \in \operatorname{PSL}_{2}(K)$ such that $\sigma \circ w \circ \sigma^{-1}=\left(w_{1}^{\prime}, \ldots, w_{n}^{\prime}\right), w_{i}^{\prime}=\left(t_{i}^{\prime}, x_{i}^{\prime}, y_{i}^{\prime}\right), x_{1}^{\prime}=0, y_{1}^{\prime}=\infty, y_{2}^{\prime}=1$, then $\sigma(0)=0, \sigma(\infty)=\infty, \sigma(1)=1$ for which $n \theta$ concludes $\sigma=$ id.

We consider ζ_{n} now as a subset of $K^{3 n-3}$: a point $w \in \zeta_{n}$ is given by the coordinates $\left(t_{1}, \ldots, t_{n}, x_{2}, x_{3}, y_{3}, \ldots, x_{n}, y_{n}\right) \in K^{3 n-3}$. The kernel of ineffectivity of the action of Aut E_{n} on G_{n} contains the inner automorphisms.

Let $\Psi_{n}:=$ Aut $E_{n} /$ Aut ${ }^{i} E_{n}$ be the group of outer automorphisms.
Then the action of Aut E_{n} induces on action of Ψ_{n} on ζ_{n}.
(3.2), Let $w=\left(w_{1}, \ldots, w_{n}\right), w_{i}=\left(t_{i}, x_{i}, y_{i}\right)$, be a variable point of $\mathrm{Hb}^{\mathrm{n}}(\mathrm{K})$. In order to get shorter formulas we also write x_{-i} for y_{i}. Let

$$
u_{i j k}=\frac{\left(\frac{x_{j}-x_{i}}{x_{j}-y_{i}}\right)}{\left(\frac{x_{k}-x_{i}}{x_{k}-y_{i}}\right)}=\frac{\left(x_{j}-x_{i}\right)\left(x_{k}-y_{i}\right)}{\left(x_{j}-y_{i}\right)\left(x_{k}-x_{i}\right)}
$$

for $i \in\{1, \ldots, n\}, j, k \in\{ \pm 1, \ldots, \pm n\}$ and $\pm j \neq i, \pm k \neq i$.

We can consider $u_{i j k}$ to be a meromorphic function on $\mathrm{Hb}^{\mathrm{n}}(\mathrm{K})$. It is an anolytic function without zeroes on the subdomain $\operatorname{Hb}_{\hat{6}}^{N}(K):=\left\{w \in \operatorname{Hb}^{n}(K) ; x_{i} \neq x_{j}\right.$ for all $i \neq j ; i, j \in\{ \pm 1, \ldots, \pm n\}\}$ as

$$
\frac{x_{j}}{x_{j}-x_{k}}, \frac{y_{j}}{x_{j}-x_{k}}, \frac{1}{x_{i}-x_{k}}
$$

are analytic on $\mathrm{Hb}_{0}^{\mathrm{n}}(\mathrm{K})$. This can be seen as in the proof of proposition 2.

Now

$u_{i j k}=\frac{x_{j} x_{k}}{\left(x_{j}-y_{i}\right)\left(x_{k}-x_{i}\right)}+\frac{x_{i} y_{i}}{\left(x_{j}-y_{i}\right)\left(x_{k}-x_{i}\right)}-\frac{x_{j} y_{i}}{\left(x_{j}-y_{i}\right)\left(x_{k}-x_{i}\right)}-\frac{x_{i} x_{k}}{\left(x_{j}-y_{i}\right)\left(x_{k}-x_{i}\right)}$ and each term is clearly analytic on $\mathrm{Hb}_{0}^{n}(\mathrm{~K})$. As $\frac{1}{u_{i j k}}=u_{i j k}$ it has no zeroes on $\mathrm{Hb}_{0}^{\mathrm{n}}(\mathrm{K})$ 。

Let $\mathbb{B}_{n}:=\left\{\mathrm{w} \in \mathrm{Hb}_{0}^{n}(\mathrm{~K}) ; \quad\left|\mathrm{t}_{\mathrm{i}}\right|<\left|u_{i j k}(\mathrm{w})\right|<\left|t_{i}\right|^{-1}\right.$ for all i; $k \in\{-1, \ldots, \pm n\}$; $i \in\{1, \ldots, n\} ; i \neq \pm j ; i \neq \pm k\}$.

PROPOSITION 6. - $\mathbb{B}_{n} \subseteq \mathscr{S}_{\mathrm{n}}$.
Proof. - Let $\gamma_{i}= \pm \pi\left(t_{i}, x_{i}, y_{i}\right)$ and $\nu_{i}(z)=\left(z-x_{i}\right) /\left(z-y_{i}\right)$. Then $\left.\nu_{i} \overline{\left(\gamma_{i} z\right.}\right)=t_{i} \nu_{i}(z)$. If now $\rho_{i}=\sup _{j \neq i}\left|\nu_{i}\left(x_{j}\right)\right|$ and $\rho_{i}^{\prime}=\inf _{j \neq i}\left|\nu_{i}\left(x_{j}\right)\right|$, then $\left|t_{i}\right|<\rho_{i}^{\prime} / \rho_{i} \leqslant 1$.

Let $\rho_{i}^{\prime \prime}>\rho_{i}$ such that $\left|t_{i}\right| \rho_{i}^{\prime \prime}<\rho_{i}^{\prime}$. Fix x_{j} wịth $\rho_{i}=\left|\nu_{i}\left(x_{j}\right)\right|$, and let

$$
F_{i}=\left\{z \in \underset{\sim}{P} ; \quad \rho_{i}^{\prime \prime}\left|t_{i}\right| \leqslant\left|\nu_{i}(z)\right| \leqslant \rho_{i}^{\prime \prime}\right\}
$$

and

$$
F=\bigcap_{i=1}^{n} F_{i}
$$

It is easy to see now that $\gamma_{1}, \ldots, \gamma_{n}$ generates a Schottky group of rank n, and that F is a fundamental domain for this group (see [1], chafter I, (4.1.3)).

PROPOSITION 7. - The action of Aut E_{n} on \mathbb{B}_{n} satisfies :
(i) $\mathbb{B}_{n} \circ \alpha=\mathbb{B}_{n}$ if α is an inner automorphism of E_{n}.
(ii) There $1: 8$ only a finite number of classes $\in A u t E_{n} / A u t^{i} E_{n}$ of automorphisms $\alpha \in$ Aut E_{n} such that

$$
\left(\mathbb{B}_{n} \circ \alpha\right) \cap \mathbb{B}_{n} \neq \varnothing \text {. }
$$

$$
\begin{equation*}
U_{\alpha \in A u t E_{n}}^{B_{n}} \circ \alpha=S_{n} \tag{iii}
\end{equation*}
$$

Proof. - The proof of (i) relies on the fact that the cross ratios $u_{i j k}$ are invariant with respect to fractional linear transformations. The proof of (iii) is a corollary to [1] (chapter I, (4.3)).

In order to prove (ii) one has to introduce the canonical tree T for a Schottky group Γ. One has to use the fact that the geometric base systems and the fundamental domains $\subset T$ (see [2], p. 263, bottom), for this action correspond to the systems in B_{n}.

If F is a fundamental domain (= maximal subtree) $\subseteq T$ for the action of T, there are only a finite number of other fundamental domains F^{\prime} such that $F F^{\prime} \neq \emptyset$. From this one can conclude (ii).
(3.3). Let now $\bar{B}_{n}=\mathbb{B}_{n} \cap \tau_{n}$. Because \bar{B}_{n} is an analytic polyhedron $\subseteq K^{3 n-3}$, it has a canonical analytic structure as subdomain of $K^{3 n-3}$. For any $\in \psi_{n}$, also $\psi\left(\bar{\beta}_{n}\right)$ is an analytic polyhedron $\subseteq K^{3 n-3}$.

We consider the covering $\left\{\dot{\psi}\left(\overline{\mathbb{B}}_{n}\right) ; \psi \in \Psi_{n}\right\}$ and put on G_{n} the analytio structure which is isomorphic on $\psi\left(\bar{B}_{n}\right)$ to the canonical one given there.

We call τ_{n} Teichmiller space and Ψ_{n} Teichmiller modular group.
THEOREM 1. - Ψ_{n} acts discontinuously on G_{n} •
One has to prove that the covering $\left\{\psi\left(\overline{\mathbb{B}}_{n}\right) ; \psi \in \Psi\right\}$ is admissible (see [4], F. 194, botton), which means the following holds : if $\Phi ; X \rightarrow K^{3 n-3}$ is an analytic mapping of an affinoid space X into $K^{3 n-3}$ is given with $\bar{\Phi}(X) \subseteq \zeta_{n}$, then there is a finite set $\left\{\psi_{1}, \ldots, \psi_{r}\right\}$ of elements of Ψ_{n} such that $\Phi(X) \subset \cup_{i=1}^{r} \psi\left(\bar{B}_{n}\right)$. It follows from the method given in [2], [3] and in the proof of the proposition in [1] (chapter I, (4.1.3)).

That the action of Ψ_{n} is discontinuous follows from proposition 2, (ii).
I will not work out the details as it seems to make more sense to prove the stronger statement that ζ_{n} is a Stein manifold.

Remark. - One should construct analytic structures on \bar{S}_{n} and on η_{n} such that the mappings of the diagram

are analytic quotient maps. It seems likely that the spaces $\delta_{n}, \zeta_{n}, \bar{\varsigma}_{n}$ may be even \prod_{n} are Stein spaces.

4. Siegel halfspace

(4.1). Let H_{h} be the set of all symmetric $n \times n$ matrices $x=\left(x_{i j}\right)$ with $x_{i j}=x_{j i} \in K_{F}=K-\{0\}$ for which the real matrix $\left(-\log \left|x_{i j}\right|\right)$ is positiv definite. \mathscr{H}_{n} is a subset of the space $S_{n}\left(K_{*}\right)$ of all symmetric $n \times n$ matrices
$x=\left(x_{1}\right)$ with entries $x_{i j} \in K_{*}$ 。 We identify $S_{n}\left(K_{*}\right)$ with the algehraic torus $K_{*}^{n}\left(n+1 ; 1,2\right.$ by identifying the matrix $x=\left(x_{i j}\right)$ with the $(n(n+1) / 2)$ metupel $\left(x_{11}, x_{12}, \ldots, x_{21}, x_{22}, \ldots, x_{n n}\right)$ 。

Let $a=\left(a_{i j}\right)$ be a $n \times r$ matrix ${\underset{a}{k j}}^{x}$ with entries $a_{i j} \in \underset{\sim}{Z}$. For $x \in S_{n}\left(K_{*}\right)$, we define $x^{a}=\left(y_{i j}\right), y_{i j}:=\prod_{k=1}^{n} x_{i k}$.

Then x^{a} is $n \times r$ matrix with entries in K_{*}. Similarly, one defines $a_{a_{i k}=\left(z_{i j}\right)}$ if a is a $r \times n$ matrix with entries $\in \underset{\sim}{Z}$ by $z_{i j}:=\prod_{k=1}^{m} x_{k j, i}^{i j}$.

This matrix operations satisfy the usual rules of matrix calculations.
If a is a $n \times n$ matrix and if a^{t} denotes the transpose of a, then $a^{t} x^{a}$ is a symmetrix $n \times n$ matrix $\in S_{n}\left(K_{*}\right)$ whenever $x \in S_{n}\left(K_{*}\right)$.
Moreover if $x \in \mathscr{H}_{n}$, then $a^{t} x^{a} \in \mathscr{H}_{n}$ if det $a \neq 0$. The mapping Φ_{a} which sends

$$
x \rightarrow a^{t} x^{a} \text { of } \varsigma_{n}\left(K_{*}\right) \rightarrow s_{n}\left(K_{*}\right)
$$

is a morphism of algebraic spaces as the entries of ${ }^{a^{t}} x^{a}$ are monomials in the variables $x_{i j}$. Because of $\Phi_{a}{ }^{\circ} \Phi_{b}=\Phi_{b a}$ one gets that $\Gamma_{n}:=\left\{\Phi_{a} ; a \in G L_{n}(Z)\right\}$ is a group of automorphisms of the K-algebraic space $S_{n}\left(K_{*}\right)$. It is easy to see that $\Gamma_{n} \cong P G L_{n}(Z)$.
(4.2). If $k=\left(\sum_{k_{n}}^{k}\right)$ is a column vector with $k_{i} \in \underset{\sim}{Z}$ and $x \in S_{n}\left(K_{*}\right)$, then $k^{t} x^{k}$ is an element of ${ }^{n} K^{*}$. It is the value of the multiplicative quadratic form associated to x at the point k. We write $x[k]={ }^{t}{ }_{x} k$. Lenote by M_{n} the set of all matrices $x \in S_{n}\left(K_{*}\right)$ which satisfy the following conditions :
For each i and all $k=\binom{k_{1}}{k_{n}} \in{\underset{\sim}{2}}^{\frac{n}{n}}$ for which the greatest common divisor of the numbers $k_{i}, k_{i+1}, \ldots, k_{n}$ is i, we have

$$
1>\left|x_{i j}\right| \geqslant|x[k]|
$$

We call M_{n} Minkowski domain. It consists of those matrice x for which the associated real matrices ($-\log \left|x_{i j}\right|$) are half-reduced in the sense of Minkowski.

For any $x \in M_{n}$, we have $|x[k]| \leqslant\left|x_{11}\right|<1$. This allows to conclude that $x \in \mathscr{H} \mathbb{H}_{n}$. Thus $M_{n} \subseteq \mathscr{H}_{n}$. It is a simple consequence of the definition that $U_{\Phi \in \Gamma_{n}} \Phi\left(M_{n}\right)=\mathscr{H}_{n}$ (see for example [6], chapter II, § 3).

An important thenrem of classical reduction theory says, that M_{n} is actually defined by a finite number of inequalities (see [6], chapter II, \& 5, theorem 10). This means, there are finite sets $F_{1}, \ldots, F_{n} \subset \underset{\sim}{\underset{Z}{Z}}$ such that

$$
\begin{aligned}
& \quad M_{n}=\left\{x \in S_{n}\left(K_{*}\right) ; 1>\left|x_{11}\right| ;\left|x_{1 i}\right| \geqslant|x[k]| \text { for all } k \in F_{i} \text {, all } i\right\} \\
& \text { Example. }-M_{2}=\left\{x \in S_{2}\left(K_{*}\right) ; 1>\left|x_{11}\right| \geqslant\left|x_{22}\right| ;\left|x_{22}\right| \leqslant\left|x_{12}\right|^{2} \leqslant\left|x_{22}\right|^{-1}\right\} .
\end{aligned}
$$

(4.3). The Minkowski domains are analytic polyhedra in $S_{n}\left(K_{*}\right)$.

They are therefore quasi-Stein subdomains of $K_{*}^{n}(n+1) / 2$ in the sense of [5],,§ 2. Thus there is a canonical analytic structure on M_{n}.

Each $\Phi \in \Gamma_{n}$ is an automorphism of the K-algebraic space $S_{n}\left(K_{*}\right)$ and thus also an analytic automorphism of $S_{n}\left(K_{*}\right)$. Thus $\Phi\left(M_{n}\right)$ is also a quasi-Stein subdomain of $S_{n}\left(K_{*}\right)$ and we have a canonical analytic structure on $\Phi\left(M_{n}\right)$. Thus we have defined an analytic atlas $\left\{\Phi\left(M_{n}\right) ; \Phi \in \Gamma_{n}\right\}$ on H_{n}. We put on H_{n} the analytic structure given by this atlas. We call rl_{n} together with this analytic structure the Siegel halfspace and Γ_{n} the Siegel modular group.

THEOREM 2. - \mathscr{H}_{n} is an analytic manifold on which Γ_{n} acts discontinunusly.
The pronf of the fact that Γ_{n} acts discontinunusly is left to the reader. It can be deduced from results in [6] (chapter II, 8 5, especially statement 4 on page 67).

It means that for any affinnid polyhedron P of $S_{n}\left(K_{*}\right)$ which lies in the the set $\left\{\Phi \in \Gamma_{n} ; \Phi(P) \cap P \neq \varnothing\right\}$ is finite.

Remark. - It is very likely that the set $\mathcal{H}_{\mathrm{n}} / \Gamma_{\mathrm{n}}$ of Γ_{n}-orbits in \mathcal{H}_{n} can be given a cannnical analytic structure such that the quotient mapping is locally bianalytic outside the ramification set. One can prove that H_{h} is a Stein manifold. It seems possible that even $\mathcal{H}_{\mathrm{n}} / \Gamma_{\mathrm{n}}$ is a Stein space.
(4.4) One of the more interesting points in the study of these tnpics is the period mapping q which is an analytic mapping $\sigma_{n} \rightarrow \mathcal{H}_{n}$ compatible with the actions of the Teichmiiller and of the Siegel modular group (see [3], 8). Thus q induces a mapping $\overline{\mathrm{q}}: \bar{\zeta}_{\mathrm{n}} / \psi_{\mathrm{n}} \rightarrow \mathcal{H}_{\mathrm{n}} / \Gamma_{\mathrm{n}}$. Incal properties of $\overline{\mathrm{q}}$ have been studied in [3] (see for example Satz 7).

REFERENCES

[1] GERRITZEN (L.) and VAN DER PUT (M.). - Schnttky groups and Mumford curves. Berlin, Heidelberg, New Ynrk, Springer-Verlag, 1980 (Lecture Notes in Mathematics, 817).
[2] GERRITZEN (L.). - Zur analytischen Beschreibung des Raumes der Schnttky-MumfordKurven, Math. Annalen, t. 225, 1981, p. 259-271.
[3] GERRITZEN (L.). - Die Jacnbi-Abbildung über dem Raum der Mumfordkurven, Math. Annalen, 1982 (to appear).
[4] KIEHL (R.). - Der Endlichkeitssatz ffir eigentliche abbildungen in der nichtarchimedischen Funktionentheorie, Invent. Math., Berlin, t. 2, 1967, p. 191214.
[5] KIEHL (R.). - Thenrem A und Thenrem B in der nichtarchimedischen Funktionentheorie, Invent. Math., Berlin, t. 2, 1967, p. 256-273.
[6] SIEGEL (C. L.). - Lectures nn quadratic forms. - Bombay, Tata institute of fundamental research, 1955-1956 (Tata Institute of fundamental Research. Lecture on Mathematics and Physics. Mathematics, 7).

[^0]: © Groupe de travail d'analyse ultramétrique
 (Secrétariat mathématique, Paris), 1981-1982, tous droits réservés.
 L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

