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p-ADIC TEICHMULLER SPACE AND SIEGEL HALFSPACE

by Lothar GERRITZEN

Groupe d’ etude d’ Analyse ultramétrique
(Y. AMICE, G. CHRISTOL, P. ROBBA)
9 e année, 1981/82, no 26, 15 p. 24 mai 1982

[Ruhe-Universität Bochum]

In order to study the space mn of Mumford curves of genus n and the space 03B1n
of principally polarized abelian varieties which can be represented as analytic
tori we introduce the p-adic Teichmuller space and the Teichmuller modular

group as well the p-adic Siegel halfspace Xn and the Siegel modular group

0393~ PGL (Z) . One will arrive at the result that the orbit space T. mod Y is
n n - n n

the space mn of Mumford curves and that the orbit space ? mod r is the space

Ot. of polarized abelian varieties.

In this paper, we will only describe the main points of the construction of the

analytic space and the transformation group 03C8n as well as the construction

of the analytic space K and the transformation group r . A great deal of ques-
tions remain open.

1. Conjugacy classes of homomorphisms.

(l.l) Homomorphism classes. - Let X, Y be groups, let A be a subgroup of the

group Aut X of automorphisms of X and B a subgroup of Aut Y .

Denote by (X, Y) the set of all group homomorphisms ~ : X --&#x3E; Y . A acts on

(X , Y) by composition of mappings from right :

If a E C E (X , Y) , then ç 0 a E (X , Y) . The set of equivalence classes

CA will be denoted by X) .

The group B acts on (~ , Y) by conposition of mappings from left :

If f3 E B, ç E (X , Y) , then 03B2 ° ~ e (X , Y) . The set of equivalence classes

13(. will be denoted by (x , 

For a E 11, (3 E B, ~e(X~ Y), we have

because composition of mappings is associative. Therefore A (resp. B ) acts ca-

nonically on (x , Y]B (resp. 

( ) Texte regu le 18 octobre 1982.
Lothar GEHRITZEN, Postfach 2148, 150 Universitätsstrasse D-463 BOCHUM (Allemagne

fédérale).
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Obviously, (X, Y]~ mod A= ~[X~ Y) mod B .

We denote this set by ;~x , Its elements are the double cosets 

One gets a canonical commuative diagram

where each arrow denotes the canonical equivalence class mapping.

(1.2) Isotropy groups. - We consider the following isotropy groups :

PROPOSITION 1. - S II. (ç) is a normal subgroup of 3 A(BÇ). ;t ~(ç) ie a normal
subgroup of 3 and

Proof.

10 Let a E 1J ll(Ç), QI E llJ A(BÇ) . Then there is a 03B2 E B such that 1;;OQ’=SoÇ.

N°"I ç 0 Of 0 = ( 8nd

which shows that 3 ~) . Thus @ ./l(ç) is a normal subgroup of S ~(B~).
2° Let Po e 3 n(~) ~ 13 E 3 ~~~ ’ Then there is a a e A such that 

Now 1:3 o o ~== ~ and

which shows that 13-1 Po f3 e 3 B(~). Thus 3 B(Ç) is a normal subgroup of J B(A)~.
3° It is an easy exercice to show that the mapping which associates to 

the residue class 03B2 in 3 B(~A.)/J B(Ç) of a 13 e B which satisfies = 03B2°~

induces an isomorphism J A(~) on B(Ç) .
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(1. 3) Schottky groups. - Let nov K be an algebraically closed field together

with a non-trivial conplete ultrawetric valuation. Let E be a non-abelian free
n

groUP of rank n a 2 together with a fixed basis e1, ... , en.

We consider = lt () §) J a , b , c , d E K J ad - bc = 11 as a K-

algebraic group. Denote by tr2 the regular function on which has the

value (a + d)2 at the point ± (a bd) . An eiement t (a bd) oi is called

hyperbolic I tr 2 (~ b d I = I a + c dl 2 &#x3E; 1 . set .... of all group
homomorphisms q : E --&#x3E; will be identified with the n-fold product

n 
n n

° ° ° ~ of w = ° ° ’ 

determines a unique homomorphism ~w: En -&#x3E; which satisfies 

fo r all i. 
,

The action of L.ut En on (En’ when it is identified with

can be described as follows : let Of E Aut E , a (e. ) is a reduced word in the
n ~

letter 61’ ... , e : n we substitute w. J for e. J md obtain an element for

each i. Then 
°

This explicit description shows that a is a biregular transformation of the

K-algebraic space 

Definition. - A homomorphism 03B6: E --&#x3E; is called Schottky homomorphism,
if ,(e) is hyperbolic for any e ~ En, e:/: 1 .

Denote by Sn the set of Schottky homomorphisms. s a subset of it is

given by infinitely many inequalities. More precisely : we fix e ~ E~ , and consi-

der the mapping ç 2014&#x3E; c(e) . It is a regular mapping ~ : 2014&#x3E; 

and f = tr2 § regular function on Then

Sn = E PSLn2(K); |fe(w) I &#x3E; 1 for all e E 1) .

One can give explicit expressions for the mapping 03A6e and the function f . e

is determined by the finite sequence e(1), ... , e(r) with c ( I) e (1 1 , ... , ln) .d. -

and e (i + 1) ~-e(i) such that

Let

we will give expression for x. as polynomials in ... , d.
N := set of all sequences s = «i1 ’ j 1) , (i2’ j 2) , ... , such

that i 1 = j for all 03BD and i ,j E (1 , 2} . For any such s , we consider

the product
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with

with a . = + d. , b . = - b. , c . = - c. , d . = a.. Then
-1 1 ....~ 1 -i 1 -1 1

The proof readily follows by induction on r .

We consider homomorphism classes as in § ( 1.1) for A = E , B = group ofn

inner automorphisms 
. 

of The == 
AutE [$) n of classes

, o E 
n 

with C E S n is just simply the set caf Schottky subgroups of PSL2(K)
of rank n chap.ter t, (1.6). Because if 03B6 E S , a E Aut E , thenn n

the image Im( ç 0 QI) does not depend an x .

If, on the other r i s a Schottky subgroup o f PSL2(K) .f ramk n, then

by definition there is a t F n such that Im 03B6 = T . If çt E n also satisfies

Im C’ = r, 
1 
then we note that (clr)-l: r.....&#x3E; E 

n 
i s a homomorphism end

( ç "1 I ’) "" 
Z 

0 ç 
, E E 

n 
o cx - ~ . _ ç . ’

2. Hyperbolic fractional linear transformations.

(2.1).Let be the projective line over K and

P x P - P = [(x, y) E P x P: x  yJ be the complement of the diagnnal in the

product P x !..
In order to determine the regular functions on P x P - P, we introduce the

following affine charts:
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The algebras ð(U..) of regular functions on U.. are the following
lJ lJ

PROPOSITION

Proof. - The functions

are clearly regular on each U.. and are thus regular on P x P-P. Therefore
the K-algebra K[1x-y, xx -y y . xyx-y] generated by 1x-y, xx-y is a

subalgebra of o(P x P - P) . Let now f be a regular function on P x p-p.

Let f representation f = g(x ~ y)/(x - y) with a polynomial

g(x ~ y) e y] in the variables x ~ y . Let

, , ~2014 B)  

Then
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which shows E 0(U 12) = ~~ ’ i/y ~ 1/ (1 - if, and only if, g = 0
whenever ~ &#x3E; n .

In the same one proves that f E 0(U2l) if, and only if, g. =0 whenever

03BD &#x3E; n. But if n03BD  , then

which shows that

If then

As yx-y=xx-y- 1 we obrain alsol:.S - = -- - , we 0 aJ.n 8-1.80

As g is a linear combination of functions in Kf201420142014 . 201420142014 . 2014S-20141  it is
" x - y x - y x - y

also in this algebra, which proves

(2.2). Let SL(K) = {.(~) ; a, b , c, ad-bc= I} and K{~ =K- (0).
We consider the mapping

given by
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which shows that indeed ~(r ~ x , y) e 

Properties of n :

If ,-,,-’ 1:: 1, then x, y) =TT(TI, x’, yl) if, and only if, either

,- = ,- f , x’ = x , yl = Y or if T’ =+ ’T -1 , y’= Xy x’ =y .
" aO x + b

Let (J = ( d) E SL2(K) . o acts on P by o(x) =-L----~ .Co 0"" 
-- 

0

Then

The trace x 9 y) = T + T .

03C0 is a morphism of K-algebraic spaces,

rr induce a 2-sheeted unramified covering,

from (K - ~0 , 1 , - 1)) x (F x P - P) onto the affine subdomain

SL2(K) = {(~~) E ( a + ;) 2 ; 4~ of non-parabolic matrices.
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. Let

and

The mapping 03C0 induces a K-algebra homomrphism

which is injective.

PROPOSITION 3. - 0. is a free 2-module, generated by 1 and 1".

Proof. - Let M be the generated by 1 and T . One has T ~ ()2 ’
as for any polynomial f(,-, x , y) E ()2 ’ we have the condition 

Now = a+ d and r - (a+ d) T+ 1=0 which shows that r is qua-

draticover Thus T 2 e M and more generally all powers r i of T , 

are in :

Thus M is a ’0~-algebra* 
’

This shows that M= a *

(2.3). Let = t(~ ~) e a + d) &#x3E; 1} be the subdomain of 

of hyperbolic matrices and

Then n induces an analytic mapping
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PROPOSITION 4. - 11 t is bianalytic.

LEMMA. - There exists a power series T(S) E such that 03C4(s) + 103C4(S) = 0160 .

Proofo - Define ’f 0 = 0 , ’r 
1 
= 1 and, for k 1 ,

Then r(s) := 03A3~i=1 r. si satisfies the equation r(s) + 20147-B = s" .
One gets T. =0 if i is even and r.&#x3E;0 if i is odd and

r(s) = s + s~ + 2s~ + 5s~ + + 42s~ + 132s~ + 429s~ + ...

Another way to prove this lemma : you remark that r(s) satisfies a quadratic

equation :

Thus if char K ~ 2 :

If you choose the right sign for the square root, you get
1

now

Thus

The proof of proposition 4 is immediate with the help of the lemma and of propo-

sition 3. The inverse of TI’ can be given explicitly, namely:
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(2.4). Let (i ( ~’ ~ 9 ( 
a ~ ~ SL (K)) be the protective special linear

~ c c. cd 

group and

Ncw

and

COROLLARY. - The mapping

gives a bianalytic mapping

3. Teichmüller space.

(3.1) The set Sn of Schottky homomorphisms ç: i En --&#x3E; will be iden-

. tified with a subset of Hbn(K) = (w = ... , w); n g w. J.. E Hb(K)} . We identify

Hb(K) through the inverse of mapping ± TI with PSLbb2(K). As ç( e.) is hyperbo-

lie, we get (ç(e1)’ ... , E Hb n (K) . 
J..

We study the actions of Aut E and of Auti PSL2(K) on $ . Let

Then we have a commutative diagram
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and group actions of PSL2(K) on n and of Aut En on Sn.

While  Sn corresponds biuniquely with the set of Schottky subgroups of 

of rank n ( see (1.3)), the set 5 consists of normed Schottky homomorphisms.

PROPOSITION 5. - S can be identified with

Let = (Y¿ - y1)/(y2- xl) x (z - x1)/(z - y1,) be the fractional-

linear transformation which maps xl to O, y to co and y2 to 1 .

Now
1

(see properties of n in (2.2)).

If w with x, =0 . y, =~, y2= 1 and ere such that
n i -L 2

a o w . 03C3-1 (w’1, ... , w’1), w’1 = (t’1, x’1, yp , 0, 1 ,

then a(0) = 0 ~ = ~ ~ = 1 for which ~oe concludes j = id .

We consider E now as a subset of K3n-3: a point w e S is given by the

coordinates (t1, ... , tn, x2, x3, y3, ... , xn’ yn) ~ K3n-5 kernel of

ineffectivity of the action of Aut E on 5 contains the inner automorphisms

Let V s= Aut E /Auti E be the group of outer automorphisms.
n n n

Then the action of Aut E induces an action of Y on S .
n n n

(3.2)~ Let w = (w~ ~ ... , w~) ~ w~ = (t~ ~ x~ , y~) , be a variable point of

Hbn(K) . In order to get shorter formulas we also write x-i. for y . Let
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we can consider u~ 
-k 

to be a meramorphic functinn on It is an analytic
N n

function without zeroes en the subdomain := xi:/= Xj for all

are analytic on Hb~(K) . This can be seen as in the proof of proposition 2.
Now

and each term is clearly analytic on As -20142014’ss Uo Ok it has no zeroes on

PROPOSITION 6. - ? ç $ .
. 

n n

and

It is easy to see now that ... , Yn generates a Schottky group of rank n ,

and that F is a fundamental domain for this group (see [1], r I, (4. 1 . 3) ) .

PROPOSITION 7. - The action of Aut E on Rn satisfies :

13 0 a = G if 03B1 is 811 inner auto03BForphism of E .
n n - n

There only  a finite number of classes E Aut E Autl E of automorphistms

ar E Aut n such that

- Proof. - The proof of (i) relies on the fact that the cross ratios u. are

invariant with respect to fractional linear transformations. The proof of (iii) is

a corollary ( chapter I, (4. 3) ) .
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In order to prove (ii) one has to introduce the canonical tree T for a Schottky

group r. One has to use the fact that the geometric base systems and the fundamen-

tal domains C T (see [2]~ p. 263, bottom) , for this action correspond to the sys-

tems in (8 .
n

If F is a fundamental domain ( = maximal subtree) ç; T for the action of T ,
there are only a finite number of other fundamental domains F’ such that 

From this one can conclude (ii).

(3~3)~ Let now B ===&#x26;.. n f;n . Because s_ is an analytic polyhedron ç;; 

it has a canonical analytic structure as subdomain of For E 

also ~(~) is an analytic polyhedron ç;; K .

We consider the covering {03C8(Bn) ; 1Br e Bf} and put on r; the analytic struc-

ture which is isomorphic to the canonical one given there.

We call S Teichmüller space and Teichmüller modular group.
n n

THEOREM 1. - Y 
n 

acts dis continuously 

One has to prove that the covering ~(sJ ; t ~ f) is admissible (see [4], p.

194, botton), which means the following holds : if X 2014&#x3E; is an analytic

mapping of an affinoid space X into is given with 9(X) ç;; S ~ then there
is a finite set {*1’ ... , i ) of elements such that Uri=1 W(0152h).
It follows from the method given in [2]~ [3J and in the proof of the proposition in

[1] (chapter I, (4.1.3)).

That the action of Y 
n 

is discontinuous follows from proposition 2, (ii).

I will not work out the details as it seems to make more sense to prove the

stronger statement that is a Stein manifold.

Remark. - One should construct analytic structures on § and on mn such that

the mappings of the diagram

are analytic quotient maps. It seems likely that the spaces may be

even ate Stein spaces. 
,

4. Siegel halfspaces

(4.1)- Let A£ be the set of all symmetric n x n matrices x = (x.. ~ with
Vh J.J

x.. E Ii °&#x3E; = {0} for which the real matrix (- log Ix..1) is positiv de-

finite. Xn is a subset of the space S of all symmetric n x n matrices
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x = (xi) with entries x.. e K* ’ We identify Sn (K*) with the algebraic torus

Kn*(n+1"2 by identifying the matrix x = (xij) with the (n(n + 

(x11, x12, ..., x21, x22,...,xnm) "

Let a = (a..) be a n x r matrix with entries a.. ~ Z. For x ~ Sn (K*), we
define x~ = (y~~) , y~~ := f~~ x~ .

Then xa is n x r matrix with entries in K*. Similarly, one defines 

if a is a r x n matrix with entries ~ Z by zij := 03C0nk=1 xkj
This matrix operations satisfy the usual rules of matrix calculations.

If a is a n x n matrix and if a t denotes the transpose of a ~ then a x a

is a symmetrix n x n matrix e S (K*) whenever x e S (K*) .
t 

" ~ "

Moreover if x ~ K  then a xa e ? if det a  0 . The mapping which
n n 

. ~

sends

is a morphism of algebraic spaces as the entries of x are monomials in the va-

x... Because of $ o 03A6b=03A6ba one gets that r :={03A6a;
is a group of automorphisms of the K-algebraic space S (K*). It is easy to see

that r - PGL ( Z) .

(4.2). If k = () is a coluimn vector with k. e Z and x e Sn(K*), then x
is an element ef nK*. It is the value of the multiplicative quadratic form asso-

k k
ciated to x at the point k . Me write x[k] == x . Denote by 14 n the set of

all matrices x e which satisfy the following conditions :
For each i and all k = (, ) e Zn for which the greatest common divisor of the

n
numbers ... ~ k is 1 ~ we have

We call M Minkowski domain. It consists of these matrice x for which the
n

associated real matrices (- log | xij|) are half-reduced in the sense nf Minknwski.
,

For any x E Mn, We have ,  | x11|  1. This allows to conclude that 
n ’ 11 n

Thus M ~ ~ . It is a simple c~f the that U ~ (~Z ) = ~
(see for example [6], chapter II, § 3) . 

An important thenrem of classical reduction theory says, that n is actually

defined ’by a finite number of inequal.ities (see [6], chapter II, § 5p theorem 10).

This means, there are finite sets .. ~ ~ Zn such that
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(4.3). The Minkowski domains are analytic polyhedra in S (K*).
n "

They are therefore quasi-Stein subdomains of the sense of [5],, § 2.

Thus there is a canonical analytic structure can M .
Each 03A6 ~ r is an automrphism of the K-algebraic space S (K#) and thus also

n n

an analytic automorphism of S (K*). Thus 03A6(Mn) is also a quasi-Stein subdomain

of S Sn (K*) and we have a canonical analytic structure nn w01.J, ) . Thus we have de-

fined an .analytic E on . put the analytic
structure given by this atlas. We call I together with this analytic structure

the Siegel halfspace and rn the Siegel modular group.

TXEORXM 2. - X 
n 

is an analytic manifold nn which r 
n 

acts discontinuously.

The proof of the fact that rn acts discontinuously is left to the reader. It can

be deduced from results in [6J (chapter 1T, ~ 5, especially statement 4 on page 67) .

It means that any affinnid polyhedron P of S (K*) which lies in Xn the

set [q? E n finite.

Remark. - It is very likely that the set X /r n of r n-orbits in n 
can be gi-

ven a cannnical analytic structure such that the quotient mapping is locally biana-

lytic outside the ramification set. One can prove that gy is a Stein manifold. It

seems possible that even ~ is a Stein space.
n n

(4.4) One of the more interesting points in the study ~f these tnpics is the pe-
riod mapping q which is an analytic mapping n --&#x3E; Z n conpatible with the ac-

tions of the Teichmller and of the Siegel mdular grnup 8) . Thus q in-

duces a mapping q e 0 -4&#x3E; Z Local properties of q have been studied

in [3J ( see for example Satz 7).
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