## GROUPE DE TRAVAIL D'ANALYSE ULTRAMÉTRIQUE

## LOTHAR GERRITZEN *p*-adic Siegel halfspace

*Groupe de travail d'analyse ultramétrique*, tome 9, nº 3 (1981-1982), exp. nº J9, p. J1-J7 <a href="http://www.numdam.org/item?id=GAU\_1981-1982\_9\_3\_A10\_0">http://www.numdam.org/item?id=GAU\_1981-1982\_9\_3\_A10\_0</a>

© Groupe de travail d'analyse ultramétrique (Secrétariat mathématique, Paris), 1981-1982, tous droits réservés.

L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.



Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Groupe d'étude d'Analyse ultramétrique (Y. AMICE, G. CHRISTOL, P. ROBBA) 9e année, 1981/82, fasc. 3, nº J9, 7 p. Journée d'Analyse p-adique [1982. Marseille-Luminy]

J9-01 septembre 1982

p-ADIC SIEGEL HALFSPACE

by Lothar GERRITZEN (\*) [Universität Bochum]

Results about function theory on the Siegel halfspace  $H_n$  over an ultrametric field are given. It is proved that  $H_n$  is a Stein domain. Expansions for the analytic functions on  $H_n$  are obtained.

(1) Let K be field together with a multiplicative valuation ||. Denote by  $H_n(K)$  the set of all symmetric  $n \times n$  matrices  $x = (x_{ij})$  whose entries  $x_{ij} \in K_* := K - \{0\}$  and for which the associated real symmetric matrix  $(-\log |x_{ij}|)$  is positive definite.

Example. - K = C = field of complex numbers together with the usual absolute $value. Let <math>\sigma_n$  be the classical Siegel halfspace of all symmetric  $n \times n$  matrices  $z = (z_{ij})$  whose entries  $z_{ij} \in C$  and for which the associated matrix Im  $z := (Im z_{ij})$  is positive definite where  $Im z_{ij}$  is the imaginary part of  $z_{ij}$ , (see for instance [5], chapter I, § 6, p. 24).

Consider the mapping e:  $\sigma_n \longrightarrow H_n$  given by  $e(z_{ij}) := (\exp 2\pi \sqrt{-1} z_{ij})$ . As

$$|\exp 2\pi \sqrt{-1} (\operatorname{Re} z_{ij} + \sqrt{-1} \operatorname{Im} z_{ij})| = \exp(-2\pi \operatorname{Im} z_{ij})$$

and

- 
$$\log |\exp 2\pi \sqrt{-1} z_{ij}| = -\log \exp(-2\pi \operatorname{Im} z_{ij}) = 2\pi \operatorname{Im} z_{ij}$$

we get that a symmetric matrix  $z = z_{ij}$  is in  $\sigma_n$  if, and only if,  $e(z) \in H_n(\underline{C})$ . Moreover e(z) = e(z') if, and only if, z - z' has entries  $\in \underline{Z}$ .

Thus we see that  $H_n(\underline{C}) = c_n \mod T_n$ , where  $T_n$  is the group of all integral translations  $z \longrightarrow t + z$  where  $t = (t_{ij})$  is symmetrix, and all entries  $t_{ij} \in \underline{Z}$ .

<u>Remark.</u> - Assume that K is complete. Let  $x \in H_n(K)$ . The multiplicative subgroup of  $K_x^n = n$ -fold product of the multiplicative group  $K_x$  generated by the columns of x is denoted by  $\Lambda_x$ .

<sup>(\*)</sup> Lothar GERRITZEN, Institut für Mathematik, Universität Bochum, Postfach 102143, D-4630 BOCHUM 1 (Allemagne fédérale).

J9-02

 $\Lambda_x$  is a lattice in  $K_*^n$ , and the quotient  $K_*^n/\Lambda_n$  is an analytic torus and an abelian variety over K (see i. e. [2], (VI 1.3) and (VI 6.1)).

x also determines a polarization given by the zeroes of the principal theta function

$$\theta(\mathbf{z}_1, \ldots, \mathbf{z}_n) = \theta(\mathbf{z}) := \sum_{\substack{(\mathbf{k}_1, \ldots, \mathbf{k}_n) \in \mathbb{Z}^n \\ \sim}} \mathbf{x}[\mathbf{k}] \mathbf{z}_1^{2\mathbf{k}_1} \cdots \mathbf{z}_n^{2\mathbf{k}_n}$$

where

$$x[k] := \prod_{ij=1}^{k} x_{ij}^{kj}$$
.

Thus x determines a polarized abelian variety  $A_{\mathbf{x}}$  over K.

The canonical projection  $H_n(K) \times (K_x^n/\Lambda_x) \longrightarrow H_n(K)$  gives an analytic family of polarized abelian varieties.

(2) Let  $x = (x_{ij})$  be a  $m \times n$  matrix with entries  $x_{ij} \in K_{*}$ , and  $a = (a_{ij})$  be  $n \times r$  matrix with entries  $a_{ij} \in \mathbb{Z}$ .

We define

$$\mathbf{x}^{a} := (\mathbf{y}_{ij})$$
 by  $\mathbf{y}_{ij} := \prod_{k=1}^{n} \mathbf{x}_{ik}^{a_{kj}}$ 

 $\mathbf{x}^{\mathbf{a}}$  is a m x r matrix with entries  $\in K_{\mathbf{x}}$ .

If  $x = (x_{ij})$  is a  $n \times r$  matrix with entries  $x_{ij} \in K_*$ , and  $a = (a_{ij})$  is a  $m \times n$  matrix with  $a_{ij} \in \mathbb{Z}$ , we define

$$\mathbf{a}_{\mathbf{x}} := (\mathbf{z}_{\mathbf{i}\mathbf{j}})$$
 by  $\mathbf{z}_{\mathbf{i}\mathbf{j}} := \prod_{k=1}^{n} \mathbf{x}_{k\mathbf{j}}^{a_{\mathbf{i}k}}$ .

 $\overset{\mathbf{a}}{\mathbf{x}}$  is a m imes r matrix with entries  $\epsilon$  K<sub>\*</sub> .

All formal rules of matrix manipulations hold also for these products. Especially the set  $K_*^{n \times n}$  of all  $n \times n$  matrices with entries in  $K_*$  is a left and a right module over the ring  $Z_{n \times n}^{n \times n}$  of all integral  $n \times n$  matrices, and these two actions are compatible which means  $\binom{a}{x}^{b} = \overset{a}{=}(x^{b})$ .

Denote by  $S_n(K)$  the set of all symmetric  $n \times n$  matrices  $n = (x_{ij})$  with  $x_{ij} \in K_*$ . We consider  $S_n(K)$  as a K-algebraic torus by identifying as usual  $S_n(K)$  with  $K_*^{n(n+1)/2}$ . For any  $a \in \mathbb{Z}^{n \times n}$  denote by  $\xi_a$  the mapping  $S_n(K) \longrightarrow n(K)$  given by  $\xi_a(x) := a^t x^a$  where  $a^t$  is the transposed matrix of a. We obtain that  $\xi_a(H_n) \subseteq H_n$ .

As  $\Phi_a \circ \Phi_b = \Phi_{ab}$  and  $\Phi_a = \Phi_b$  if, and only if,  $a = \pm b$ , we get that  $\Gamma_n := \{\Phi_a; a \in GL_n(\mathbb{Z})\}$  is a transformation group on  $S_n(K)$  isomorphic to  $PGL_n(\mathbb{Z})$ . <u>Remark.</u> - Let  $x, x' \in H_n(K)$  and K be ultrametric. Then  $A_x$  is isomorphic to  $A_{x'}$  as polarized abelian varieties if, and only if, there exists  $\varphi\in\Gamma_n$  such that  $\xi(x)=x'$  .

This results is not true for the complex field C (see [5], chapter III, § 6). It can be proved with the help of the lifting theorem in [3].

Thus we see that the orbit space  $H_n(K)/\Gamma_n$  is a subset of the moduli space of all polarized abelian varieties. This motivates the following definitions.

<u>Definition</u>. - Let K be ultrametric and complete.  $H_n(K)$  is called the <u>Siegel</u> <u>halfspace over K</u>, and the transformation group  $\Gamma_n$  on  $H_n(K)$  is called the <u>Siegel</u> <u>modular group</u>.

(3) A K-valued function f(x) on  $H_n(K)$  is called K-analytic if the restriction of f onto any K-affinoid polyhedron P of  $K_*^{n(n+1)/2}$  which is contained in  $H_n(K)$  is analytic.

It means for K algebraically closed that f can uniformly on P be approximated by rational functions on  $K_{\#}^{n(n+1)/2}$  without poles on P.

In order to determine the analytic functions on  $H_n(K)$ , we introduce

 $M := \{k = (k_{ij}); k \text{ is } n \times n \text{ matrix}; k_{ij} = k_{ji} = k_{ji} \in \frac{1}{2} \mathbb{Z}; k_{ii} \in \mathbb{Z}\}$ 

$$\langle \mathbf{x}, \mathbf{k} \rangle := \prod_{i,j=1}^{n} \mathbf{x}_{ij}^{k_{ij}} = \prod_{i=1}^{n} \mathbf{x}_{ii}^{k_{ii}}$$

 $\prod_{\substack{x=1\\i\leq j}}^{2k} ij \text{ is a monomial in the variables } x_{11}, \dots, x_{1n}, x_{22}, \dots, x_{nn}$ 

PROPOSITION 1. - The algebra of K-analytic functions on  $H_n(K)$  coincides with the algebra of Laurent series

 $f(x) = \sum_{k \in M} c_k \langle x, k \rangle$ ,  $c_k \in K$ ,

which converge on all of H<sub>n</sub>(K) .

<u>Proof.</u> -  $H_n$  is a connected Reinhardt domain (see [4], def. 1.8). For any  $x^0 \in H_n$  one finds  $\rho_{ii} < \rho'_{ii}$  ( $\in |K_n|$ ) such that the polyhedron

$$P := \{ \mathbf{x} \in H_n(K) ; \rho_{ij} \leq |\mathbf{x}_{ij}| \leq \sigma'_{ij} \}$$

is contained in  $H_n(K)$  and such that  $x^0 \in P$ .

Now P is the product of ring domains. One knows that any analytic function f(x) on P has a Laurent expansion  $\sum_{k \in M} c_k \langle x, k \rangle$ . The coefficients  $c_k$  can not depend on P which gives the result.

COROLLARY. - 
$$f(x) = \sum_{k \in \mathbb{N}} c_k \langle x, k \rangle$$
 is  $\Gamma_n$ -invariant if, and only if,  $c_k = c'_k$ 

whenever 
$$k' = a^{t} ka$$
 with  $a \in GL_{n}(Z)$ .  
Proof. -  $f(a^{t}x^{a}) = \sum_{k \in M} c_{k} \langle a^{t}x^{a}, k \rangle$ . Now  
 $\langle x, k \rangle = tr(x^{k^{t}}) = tr(^{k^{t}}x)$  where  $tr x := \prod_{i=1}^{n} x_{ii}$ .

Thus

$$\langle a^{t}x^{a}, k \rangle = tr(a^{t}x^{ak^{t}}) = \langle a^{t}x, ka^{t} \rangle = tr(ak^{t}a^{t}x) = \langle x, aka^{t} \rangle$$
.

Thus

$$\sum c_k \langle a^t x^a, k \rangle = \sum c_k \langle x, aka^t \rangle$$

which proves the corollary.

For  $m \in M$ , we denote by  $\mathcal{O}_{m}$  the integral orthogonal group with respect to the quadratic form m. This means

$$\mathcal{O}_{\mathbf{m}} = \{ \mathbf{a} \in \Gamma ; \mathbf{a}^{\mathsf{T}} \mathbf{m} \mathbf{a} = \mathbf{m} \}$$

Let

$$\theta_{m}(x) := \sum_{a \in O_{m}} \langle x, a^{t} m a \rangle$$
.

It is a formal Laurent series in the variables  $x_{j}$ . Remark that for any representative  $a' \in \mathcal{O}_m$  s one gets  $a^t ma = (a')^t ma'$  because if  $a' = b \cdot a$ ,  $b \in \mathcal{O}_m$ , then

$$(ba)^t$$
 mba =  $a^t$   $b^t$  ma =  $a^t$  ma

Also if  $a^{t} ma = (a')^{t} ma'$ , then  $a' \in \mathfrak{S}_{a}$  because

$$(a' a^{-1})^{t} ma' a^{-1} = (a^{t})^{-1} (a')^{t} ma' a^{-1} = (a^{t})^{-1} a^{t} maa^{-1} = m$$

This shows that each coefficient of the Laurent series has either the value 1 or the value 0. In the complex case, one part of the following proposition is known as the theorem of Koecker (see [1], théorème 1).

PROPOSITION 2. -  $\theta_m(x)$  is an analytic function on  $H_n(K)$  if, and only if, m is positiv semi-definite.

**Proof.** - Let  $s = \{s \in M ; s \text{ positive semi-definite}\}$ .

Let  $x \in H_n(K)$  and  $v := (-\log |x_{ij}|) =: (v_{ij})$ . We will show that, for any given  $\rho > 0$ , one gets  $\langle v, s \rangle \ge \rho$  for almost all s.

There is a real orthogonal matrix b such that  $b^{t} vb = \lambda = \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{n} \end{pmatrix}$  is a diagonal matrix. As v is positive definite all  $\lambda_{i} > 0$ .

Let  $\lambda_1 \leq \lambda_i$  for all i.

Now

 $\langle \mathbf{v}, \mathbf{s} \rangle = \operatorname{tr}(\mathbf{v}^{t} \cdot \mathbf{s}) = \operatorname{tr}(\mathbf{b}^{-1} \ \mathbf{v}\mathbf{b}\mathbf{b}^{-1} \ \mathbf{s}\mathbf{b}) = \operatorname{tr}(\mathbf{b}^{t} \ \mathbf{v}\mathbf{b} \cdot \mathbf{b}^{-1} \ \mathbf{s}\mathbf{b}) = \langle \lambda \ , \ \mathbf{b}^{-1} \ \mathbf{s}\mathbf{b} \rangle \ , \ \mathbf{as} \ \ \mathbf{b}^{t} = \mathbf{b}^{-1}.$ Let S' = {b<sup>-1</sup> sb; s  $\in$  S}, and S' all matrices from S' whose entries have absolute value  $\leq \mathbf{r}$ .

Then S' is finite, and if  $t = (t_{ij}) \in S'$ ,  $\notin S'_r$  then there is an i with  $t_{ii} > r$ . Because if  $|t_{12}| > r$ ,  $t_{11} \leq r$ ,  $t_{22} \leq r$ , then t is not positive semi-definite as

$$(1, \pm 1, 0, \dots, 0) \times t \times \begin{pmatrix} 1 \\ \pm 1 \\ 0 \\ 0 \end{pmatrix} = \overline{t}_{11} + t_{22} \pm 2t_{12} < 0$$

for + or - . This means that

$$\langle \lambda \ , \ t \rangle \geqslant r {\bf \cdot} \lambda_1$$
 , for any  $t \in S'$  ,  $t \in S'_r$  .

From this one gets that  $\sum_{a \in S} \langle x , a \rangle$  is convergent on  $H_n(K)$  as well as that any  $\theta_s(x)$ ,  $s \in S$ , is analytic on  $H_n(K)$ .

The convers can be proved as in the complex case (see [1], p. 4-04).

Let  $\overline{S} := S/\Gamma_n$ . One gets  $\theta_s(x) = \theta_s(x)$  if s' is in the  $\Gamma_n$ -orbit of s which means that we can write  $\theta_{\overline{s}}(x)$  instead of  $\theta_s(x)$ .

COROLLARY. - Let f(x) be an analytic modular ( =  $\Gamma_n$ -invariant) function on  $H_n(K)$ . Then f(x) has an expansion

$$f(x) = \sum_{\sigma \in \overline{S}} c_{\sigma} \theta_{\sigma}(x) \quad \underline{with} \quad c_{\sigma} \in K.$$

Example. - Let  $s = (s_{ij})$  be given by  $s_{ij} = 0$  for all  $(i, j) \neq (1, 1)$ , and  $s_{ij} = 1$ . Then

$$\theta_{s}(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{Z}^{n}} \mathbf{x}[\mathbf{k}] \text{ where } \mathbf{x}[\mathbf{k}] = \prod_{i,j=1}^{n} \mathbf{x}_{ij}^{kikj}.$$

<u>Problem.</u> - Determine the coefficients of the powers of the modular function  $\sum_{\sigma \in S} \theta_{\sigma}(x) = \sum_{s \in S} \langle x, a \rangle .$ 

(4) For any  $\rho > 0$ , define

$$\begin{split} & H_n(\rho) := \{ x \in \mathbb{S}_n ; |x[k]| \leq \rho^{||k||^2} \text{ for all } k \in \mathbb{Z}^n \} \\ \text{where } ||k|| = (\sum_{i=1}^n k_i^2)^{1/2} \text{ is the euclidean norm of } k. \\ & \text{Then } H_n = \bigcup_{\rho > 0} H_n(\rho) . \end{split}$$

<u>Proof.</u> - Let  $x \in H_n$  and  $v := (-\log |x_{ij}|)$ . The function  $f(y) := y^t vy$  for  $y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathbb{R}^n$  is positive for  $y \neq 0$ .

As  $S_{n-1} = \{y \in \mathbb{R}^n ; \|y\| = 1\}$  is compact, there is a constant  $\rho > 0$  such that  $f(y) \ge \rho$  for all  $y \in S_{n-1}$ . But  $f(y) = \|y\|^2 f(y/\|y\|)$  which shows that  $s \in H_n(\rho)$ . LEMMA. - <u>Given</u>  $0 < \epsilon < 1$ ,  $0 < \rho < \rho' < 1$ . <u>There exists an</u> r <u>which depends on</u>  $\epsilon$ ,  $\rho$ ,  $\rho'$ , such that

$$X_r(\rho, \varepsilon) := \{x \in S_h; \varepsilon \leq |x_{ij}| \leq \varepsilon^{-1} \text{ for all } i, j \}$$

and

$$[k] \leq \rho^{||k||^2} \quad \underline{\text{for all}} \quad k = (k_1, \dots, k_n) \in \mathbb{Z}^n \quad \underline{\text{with}} \quad |k_1| \leq r\}$$

is contained in  $H_n(\rho') \subseteq H_n$ .

Proof. - Assume the lemma is not true. Then we find for any r a matrix  $x^{(r)} \in x_r(\rho, \varepsilon)$  such that  $X^{(r)} \notin H_n(\rho')$ . Let  $v_r := (-\log |x_{ij}^{(r)}|)$ . The entries of  $v_r$  are bounded by  $\log \varepsilon^{-1}$ . We thus get a point of accumulation  $v^*$  of the sequence  $(v_r)$  which is again a symmetric  $n \times n$  matrix which satisfies

$$k^{t} v^{*} k \ge C \cdot ||k||^{2}$$
,

where  $C = -\log \rho$ , for all  $k \in \mathbb{Z}^n$  because  $k^t v^* k$  is a point of accumulation of the sequence  $(k^t v_r k)$ ,  $r \ge 1$ , and for large r we have  $k^t v_r k \ge C_{\bullet} ||k||^2$ .

Let now  $\rho < \rho'' < \rho'$ , and let D be the set of all symmetric real  $n \times n$  matrices  $v = (v_{ij})$  which satisfy  $k^t v k > C'' ||k||^2$  with  $0 < C'' = -\log \rho'' < C$  for all  $k \in R^n$ .

We claim that D is open in the space  $\underline{\mathbb{R}}^{n(n+1)/2}$  of all symmetric real  $n \times n$  matrices. Let  $v \in D$  and  $\varepsilon < 0$  be small such that

$$h^{2} \epsilon < (\inf_{\substack{0 \leq k \in \mathbb{R}^{n} \\ \sim}} \frac{\mathbf{k}^{T} \mathbf{v} \mathbf{k}}{\|\mathbf{k}\|^{2}} - C'')$$

and, if  $w = (w_{ij})$  is a symmetric real matrix with  $|w_{ij}| < \varepsilon$  for all ij, we obtain

$$\mathbf{k}^{\mathsf{t}} \mathbf{w} \mathbf{k} = \sum_{\mathbf{i}, \mathbf{j}=1}^{n} \mathbf{w}_{\mathbf{i}\mathbf{j}} \mathbf{k}_{\mathbf{i}} \mathbf{k}_{\mathbf{j}} \leq \sum |\mathbf{w}_{\mathbf{i}\mathbf{j}}| |\mathbf{k}_{\mathbf{i}} \mathbf{k}_{\mathbf{j}}| \leq \varepsilon \sum_{\mathbf{i}, \mathbf{j}=1}^{n^{2}} |\mathbf{k}_{\mathbf{i}}| |\mathbf{k}_{\mathbf{j}}| < n^{2} \varepsilon ||\mathbf{k}||^{2}$$

Thus

$$\mathbf{k}^{t}(\mathbf{v} + \mathbf{w}) \mathbf{k} = \mathbf{k}^{t} \mathbf{v}\mathbf{k} + \mathbf{k}^{t} \mathbf{w}\mathbf{k} > C^{n} ||\mathbf{k}||^{2}$$

which means that  $v + w \in D$ . This proves D open.

As now  $v \in D$ , we get that infinitely many  $v_r$  are also in D as D is open. If  $v_r \in D$  then  $x^{(r)} \in H_n(\rho')$  which is a contradiction.

Remark. - One can choose

 $r = [n^2 \log \frac{p}{\epsilon}] + 1$  for  $\rho' = 1$  where  $H_n(1) := H_n$ .

J9-07

THEOREM. -  $H_n(K)$  is a Stein domain on which  $\Gamma_n$  acts discontinuously. <u>Proof.</u> - Let 0 < < 1,  $\rho_m = \sqrt[m]{\delta}$ ,  $\rho'_m = (m+1)/\delta$ ,  $\varepsilon_m = \delta^m$ . By the lemma, we find  $r_m$  such that

$$P_m := X_{r_m}(\rho_m, \epsilon_m) \subseteq H_n(\rho_m) \subseteq H_n$$

 $P_{m}$  is analytic polyhedron in  $S_{n}(K)$  and  $H_{n} = \bigcup_{m=2}^{\infty} P_{m}$ .

Also  $P_m$  is in the interior of  $P_{m+1}$ . This proves that  $H_n$  is a Stein domain (see [6], § 2).

Let  $\Gamma_n(m) := \{ \phi \in \Gamma_n ; \phi(P_m) \cap P_m \neq \emptyset \}$ . We claim the  $\Gamma_n(m)$  is finite. It can be deduced from the fact that for any given C > 0, there are only finitely many  $\phi \in \Gamma$  such that each column vector of  $\phi$  has euclidean norm  $\leq C$ . This proves that  $\Gamma_n$  acts discontinuously.

Let me mention a few open questions :

1° Define the analytic quotient  $H_m/\Gamma_n$ , and prove that it is a Stein space.

2° Find the algebraic relations between the  $\theta_{\sigma}(\mathbf{x})$  and its connection with the Satake compactification.

3° Are the Chow coordinates in the sense of Shimura (see [7]), analytic functions on  $H_n$ ?

## REFERENCES

- [1] CARTAN (H.). Formes modulaires, Séminaire Henri Carten, année 1957/58 : Fenotions automorphes, vol. 1, nº 4, 12 p.
- [2] FRESNEL (J.) et VAN DER PUT (M.). Géométrie analytique rigide et applications,
   Boston, Basel, Stuttgart, Birkhäuser, 1981 (Progress in Mathematics, 18).
- [3] GERRITZEN (L.). Über Endomorphismen nichtarchimedischer holomorpher Tori, Invent. Math., Berlin, t. 11, 1970, p. 27-36.
- [4] GRAUERT (H.) und FRITZSCHE (K.). Einführung in die Funktionentheorie mehrerer Veränderlicher. - Berlin, Heidelberg, New York, Springer-Verlag, 1974.
- [5] IGUSA (J.). Theta functions. Berlin, Heidelberg, New York, Springer-Verlag, 1972 (Die Grundlehren des mathematischen Wissenschaften, 194).
- [6] KIEHL (R.). Theorem A und Theorem B in der nichtarchimedischen Functionentheorie, Invent. Math., Berlin, t. 2, 1967, p. 256-273.
- [7] SHIMURA (G.). Modules des variétés abéliennes polarisées et fonctions modulaires, I-III, Séminaire Henri Cartan, année 1957/53 : Fonctions automorphes, vol. 2, nº 18, 3 p., nº 19, 11 p., nº 20, 13 p.