Groupe de travail D'ANALYSE ULTRAMÉTRIQUE

Lothar Gerritzen p-adic Siegel halfspace

Groupe de travail d'analyse ultramétrique, tome 9, no 3 (1981-1982), exp. no J9, p. J1-J7
http://www.numdam.org/item?id=GAU_1981-1982__9_3_A10_0

[^0]
p-ADIC SIEGEL HALFSPACE by Lothar GEiRITZEN (*) [Universität Bochum]

Results about function theory on the Siegel halfspace H_{n} over an ultrametric field are given. It is proved that H_{n} is a Stein domain. Expansions for the analytic functions on H_{n} are obtained.
(1) Let K be field together with a multiplicative valuation \mid | Denote by $H_{n}(K)$ the set of all symmetric $n \times n$ matrices $x=\left(x_{i j}\right)$ whose entries $x_{i j} \in K_{i}:=K-\{0\}$ and for which the associated real symmetric matrix $\left(-\log \left|x_{i j}\right|\right)$ is positive definite.

Example. - $K=\underline{C}=$ field of complex numbers together with the usual absolute value. Let σ_{n} be the classical Siegel halfspace of all symmetric $n \times n$ matrices $z=\left(z_{i j}\right)$ whose entries $z_{i j} \in \underset{\sim}{C}$ and for which the associated matrix
$\operatorname{Im} z:=\left(\operatorname{Im} z_{i j}\right)$ is positive definite where $\operatorname{Im} z_{i j}$ is the imaginary part of $z_{i j}$, (see for instance [5], chapter I, § 6, p. 24).

Consider the mapping $e: \sigma_{n} \rightarrow H_{n}$ given by $e\left(z_{i j}\right):=\left(\exp 2 \pi v^{\prime-1} z_{i j}\right)$. As

$$
\left|\exp 2 \pi \sqrt{-1}\left(\operatorname{Re} z_{i j}+\sqrt{-1} \operatorname{Im} z_{i j}\right)\right|=\exp \left(-2 \pi \operatorname{Im} z_{i j}\right)
$$

and

$$
-\log \left|\exp 2 \pi \sqrt{-1} z_{i j}\right|=-\operatorname{lng} \exp \left(-2 \pi \operatorname{Im} z_{i j}\right)=2 \pi \operatorname{Im} z_{i j},
$$

we get that a symmetric matrix $z=z_{i j}$ is in σ_{n} if, and only if, $e(z) \in H_{n}(C)$. Moreover $e(z)=e\left(z^{\prime}\right)$ if, and only if, $z-z^{\prime}$ has entries $E \underline{Z}$.
Thus we see that $H_{n}(C)=c_{n} \bmod T_{n}$, where T_{n} is the group of all integral translations $z \rightarrow t+z$ where $t=\left(t_{i j}\right)$ is symmetrix, and all entries $t_{i j} \in \underset{\sim}{Z}$.

Remark. - Assume that K is complete. Let $x \in H_{n}(K)$. The multiplicative subgroup of $K_{k}^{n}=n$-fold product of the multiplicative group $K_{;}$generated by the columns of x is denoted by Λ_{x}.

[^1]Λ_{x} is a lattice in K_{z}^{n}, and the quntient K_{*}^{n} / Λ_{n} is an analytic torus and an abelian variety over K (see i. e. [2], (VI 1.3) and (VI 6.1)).
x also determines a polarization given by the zeroes of the principal theta function
$$
\theta\left(z_{1}, \ldots, z_{n}\right)=\theta(z):=\left(k_{1}, \ldots, k_{n}\right) \in \underline{Z}^{n} x[k] z_{1}^{2 k_{1}} \ldots z_{n}^{2 k_{n}}
$$
where
$$
x[k]:=\prod_{i}^{n}{ }_{i j}=1 x_{i j}^{k_{i} k_{j}}
$$

Thus x determines a polarized abelian variety A_{x} over K.
The canonical projection $H_{n}(K) \times\left(K_{y}^{n} / \Lambda_{x}\right) \rightarrow H_{n}(K)$ gives an analytic family of polarized abelian varieties.
(2) Let $x=\left(x_{i j}\right)$ be a $m \times n$ matrix with entries $x_{i j} \in K_{*}$, and $a=\left(a_{i j}\right)$ be $n \times r$ matrix with entries $a_{i j} \in \underline{Z}$.

We define

$$
x^{a}:=\left(y_{i j}\right) \text { by } y_{i j}:=\Pi_{k=1}^{n} x_{1 k}^{a_{k j}}
$$

x^{a} is a $\mathrm{m} \times \mathrm{r}$ matrix with entries $\epsilon \mathrm{K}_{*}$.
If $x=\left(x_{i j}\right)$ is a $n \times r$ matrix with entries $x_{i j} \in K_{*}$, and $a=\left(a_{i j}\right)$ is a $m \times n$ matrix with $a_{i j} \in \underline{Z}$, we define

$$
a_{x}:=\left(z_{i j}\right) \text { by } z_{i j}:=\prod_{k=1}^{n} x_{k j}^{a_{i k}}
$$

a_{x} is a $m \times r$ matrix with entries $\in K_{*}$.
All formal rules of matrix manipulations hold also for these products. Especially the set $K_{*}^{n \times n}$ of all $n \times n$ matrices with entries in K_{*} is a left and a right module over the ring ${\underset{\sim}{z}}^{n \times n}$ of all integral $n \times n$ matrices, and these two actions are compatible which means $\left({ }^{a} x\right)^{b}={ }^{a}\left(x^{b}\right)$.

Denote by $\mathscr{S}_{n}(K)$ the set of all symmetric $n \times n$ matrices $n=\left(x_{i j}\right)$ with $\mathbf{x}_{\mathbf{i j}} \in K_{*}$. Ne consider $\mathscr{S}_{n}(K)$ as a K-algebraic torus by identifying as usual $\mathbb{S}_{n}(K)$
 ven by $\bar{q}_{a}(x):=a^{t} x^{a}$ where $a^{\frac{t}{t}}$ is the transposed matrix of a . We obtain that ${ }^{\circ}$ a is an algebraic finite onvering $\cap f$ degree $|\operatorname{det} a|^{n+1}$ if $\operatorname{det} a \neq 0$ and that $\bar{q}_{a}\left(H_{n}\right) \subseteq H_{n}$.

As $\Phi_{\mathrm{a}}{ }^{\circ}{ }^{\delta_{b}}=\oint_{\mathrm{ab}}$ and $\oint_{\mathrm{a}}=\Phi_{\mathrm{b}}$ if, and only if, $\mathrm{a}= \pm \mathrm{b}$, we get that $\Gamma_{n}:=\left\{\bar{q}_{a} ; a \in G L_{n}(Z)\right\}$ is a transformation group on $S_{n}(K)$ isomorphic to $P G L_{n}(Z)$.

Remark. - Let $x, x^{\prime} \in H_{n}(K)$ and K be ultrametric. Then A_{x} is isomorphic to
A_{x}, as polarized abelian varieties if, and only if, there exists $\Psi_{\Phi} \in \Gamma_{n}$ such that $\Phi(x)=x^{\prime}$.

This results is not true for the complex field $\underset{\sim}{C}$ (see [5], chapter III, $\}$ 6). It can be proved with the help or the lifting thenrem in [3].

Thus we see that the orbit space $H_{n}(K) / \Gamma_{n}$ is a subset of the moduli space of all polarized abelian varieties. This motivates the follnwing definitions.

Definition. - Let K be ultrametric and complete. $H_{n}(K)$ is called the Siegel halfspace over K, and the transformation group Γ_{n} on $H_{n}(K)$ is called the Siegel modular group.
(3) A K-valued function $f(x)$ on $H_{n}(K)$ is called K-analytic if the restriction of f onto any K-affinoid polyhedrnn P of $K_{*}^{n(n+1) / 2}$ which is contained in $H_{n}(K)$ is analytic.

It means for K algebraically closed that f can unifnrmly on P be approximated by rational functinns on $K_{*}^{n}(n+1) / 2$ without poles on P.

In order to determine the analytic functions on $H_{n}(K)$, we introduce

$$
\begin{gathered}
M:=\left\{k=\left(k_{i j}\right) ; k \text { is } n \times n \operatorname{matrix} ; k_{i j}=k_{j i}=k_{j i} \in \frac{1}{2} \underset{\sim}{Z} ; k_{i j} \in \underset{Z}{Z}\right\} \\
\langle x, k\rangle:=\prod_{i, j=1}^{n} x_{i j}=\prod_{i=1}^{n} x_{i i} .
\end{gathered}
$$

$\Pi_{i<j} x_{i j}^{2 k_{i j}}$ is a mnnmial in the variables $x_{11}, \ldots, x_{1 n}, x_{22}, \ldots, x_{n n}$.

PROPOSITION 1. - The algebra of K-analytic functions on $H_{n}(K)$ coincides with the algebra of Laurent series.

$$
f(x)=\Sigma_{k \in M} c_{k}\langle x, k\rangle, \quad c_{k} \in K,
$$

which ennverge on all of $H_{n}(K) \cdot$
Pronf. - H_{n} is a connected Reinhardt domain (see [4], def. 1.8). Fnr any $x^{0} \in H_{n}$ one finds $\rho_{i j}<\rho_{i j}^{\prime}\left(\epsilon\left|K_{i:}\right|\right)$ such that the pnlyhedrnn

$$
P:=\left\{x \in H_{n}(K) ; \rho_{i j} \leqslant\left|x_{i j}\right| \leqslant \sigma_{i j}^{\prime}\right\}
$$

is contrined in $H_{n}(K)$ and such that $x^{0} \in F$.
Now P is the product of ring domains. One knows that any analytic function $f(x)$ on P has a Laurent expansion $\sum_{k \in M} c_{k}(x, k)$. The onefficients c_{k} can not de pend on P which gives the result.

$$
\text { COROLLARY. - } f(x)=\sum_{k \in M} c_{k}\langle x, k\rangle \text { is } \Gamma_{n} \text {-invariant if, end only if, } c_{k}=c_{k}^{\prime}
$$

whenever $k^{\prime}=a^{t} k a$ with $a \in G L_{n}(Z)$.
Proof. - $f\left({ }^{a^{t}} x^{a}\right)=\sum_{k \in M} c_{k}\left\langle^{a^{t}} x^{a}, k\right\rangle$. Now

$$
\langle x, k\rangle=\operatorname{tr}\left(x^{k^{t}}\right)=\operatorname{tr}\left(k^{k^{t}} x\right) \text { where } \operatorname{tr} x:=\prod_{i=1}^{n} x_{i i}
$$

Thus

$$
\left\langle a^{t} x^{a}, k\right\rangle=\operatorname{tr}\left(a^{t} x^{a k^{t}}\right)=\left\langle a^{a^{t}} x, k a^{t}\right\rangle=\operatorname{tr}\left({ }^{\left.a k^{t} a^{t} x\right)=\left\langle x, a k a^{t}\right\rangle ~ . ~}\right.
$$

Thus

$$
\sum c_{k}\left\langle a^{t} x^{a}, k\right\rangle=\sum c_{k}\langle x, \operatorname{aka}\rangle
$$

which proves the corollary.
For $m \in M$, we denote by θ_{m} the integral orthogonal group with respect to the quadratic form m. This means

$$
Q_{m}=\left\{a \in \Gamma ; \quad a^{t} m a=m\right\}
$$

Let

$$
\theta_{m}(x):=\sum_{a \in 0_{m}} \sum_{r}\left\langle x, a^{t} m a\right\rangle .
$$

It is a formal Laurent series in the variables $x_{i j}$. Remark that for any representative $a^{\prime} \in O_{m}$ a one gets $a^{t} m a=\left(a^{\prime}\right)^{t} m a^{\prime}$ because if $a^{\prime}=b \cdot a, b \in O_{m}$, then

$$
(\mathrm{ba})^{t} \mathrm{mba}=a^{t} b^{t} \mathrm{ma}=a^{t} \mathrm{ma} .
$$

Also if $a^{t} m a=\left(a^{\prime}\right)^{t} m a^{\prime}$, then $a^{\prime} \in O_{a}$ because

$$
\left(a^{\prime} a^{-1}\right)^{t} \mathrm{ma}^{\prime} a^{-1}=\left(a^{t}\right)^{-1}\left(a^{\prime}\right)^{t} \mathrm{ma}^{\prime} a^{-1}=\left(a^{t}\right)^{-1} a^{t} \operatorname{maa}^{-1}=m
$$

This shows that each coefficient of the Laurent series has either the value 1 or the value 0 . In the complex case, one part of the following proposition is known as the theorem of Koecker (see [1], théorème 1).

PROPOSITION 2. - $\theta_{m}(x)$ is an analytic function on $H_{n}(K)$ if, and only if, m is positiv semi-definite.

Proof. - Let $s=\{s \in M ; s$ positive semi-definite $\}$.
Let $x \in H_{n}(K)$ and $v:=\left(-\log \left|x_{i j}\right|\right)=:\left(v_{i j}\right)$. 'Je will show that, for any given $\rho>0$, one gets $\langle v, s\rangle \geqslant \rho$ for almost all s.
There is a real orthogonal matrix b such that $b^{t} v b=\lambda=\left({ }_{0}^{\lambda_{1}} \cdot{ }_{0}^{0} \lambda_{n}\right)$ is a diagonal matrix. As v is positive definite all $\lambda_{i}>0$.

Let $\lambda_{1} \leqslant \lambda_{i}$ for all i.

Now
$\langle v, s\rangle=\operatorname{tr}\left(v^{t} \cdot s\right)=\operatorname{tr}\left(b^{-1} v b b^{-1} s b\right)=\operatorname{tr}\left(b^{t} v b \cdot b^{-1} s b\right)=\left\langle\lambda, b^{-1} s b\right\rangle$, as $b^{t}=b^{-1}$.
Let $S^{\prime}=\left\{b^{-1} \mathrm{sb} ; \mathrm{s} \in \mathrm{S}\right\}$, and S_{r}^{\prime} all matrices from S^{\prime} whose entries have absolute value \leqslant r.

Then S_{r}^{\prime} is finite, and if $t=\left(t_{i j}\right) \in S^{\prime}, \notin S_{r}^{\prime}$ then there is an i with $t_{\text {ii }}>r$. Because if $\left|t_{12}\right|>r, t_{11} \leqslant r, t_{22} \leqslant r$, then t is not positive semi-definite as

$$
(1, \pm 1,0, \ldots, 0) \times t \times\left(\begin{array}{c}
1 \\
\pm \\
0 \\
\vdots \\
0
\end{array}\right)=\bar{t}_{11}+t_{22} \pm 2 t_{12}<0
$$

for + or - . This means that

$$
\langle\lambda, t\rangle \geqslant r \cdot \lambda_{1}, \text { for any } t \in S^{\prime}, \quad t \in S_{r}^{\prime} .
$$

From this one gets that $\sum_{æ \in S}\langle x, a\rangle$ is convergent on $H_{n}(K)$ as well as that any $\theta_{s}(x), s \in S$, is analytic on $H_{n}(K)$.

The convers can be proved as in the complex case (see [1], p. 4-04).
Let $\bar{S}:=S / \Gamma_{n}$. One gets $\theta_{s}(x)=\theta_{s^{\prime}}(x)$ if s^{\prime} is in the Γ_{n}-orbit of s which means that we can write $\theta_{\bar{s}}(x)$ instead of $\theta_{s}(x)$.

COROLLARY. - Let $f(x)$ be an analytic modular ($=\Gamma_{n}$-invariant) function on $H_{n}(K)$. Then $f(x)$ has an expansion

$$
f(x)=\sum_{\sigma \in \bar{S}} c_{\sigma} \theta_{\sigma}(x) \text { with } c_{\sigma} \in K
$$

Example. - Let $s=\left(s_{i j}\right)$ be given by $s_{i j}=0$ for all (i,j) $\neq(1,1)$, and $s_{11}=1$. Then

$$
\theta_{s}(x)=\sum_{k \in Z^{n}} x[k] \text { where } x[k]=\prod_{i, j=1}^{n} x_{i j}^{k} i^{k} j
$$

Problem $_{*}$ - Determine the coefficients of the powers of the modular function $\sum_{\sigma \in S} \theta_{\sigma}(x)=\sum_{S \in S}\langle x, a\rangle$.
(4) For any $\rho>0$, define

$$
H_{n}(0):=\left\{x \in \mathcal{S}_{n} ;|x[k]| \leqslant\left. 0!k\right|^{2} \text { for all } k \in \underline{z}^{n}\right\}
$$

where $\|k\|=\left(\sum_{i=1}^{n} k_{i}^{2}\right)^{1 / 2}$ is the euclidean norm of k.
Then $H_{n}=U_{\rho>0} H_{n}(0)$.
Proof. - Let $x \in H_{n}$ and $v:=\left(-\log \left|x_{i j}\right|\right)$. The function $f(y):=y^{t}$ vy for $y=\binom{\overline{Y_{1}}}{\frac{1}{\dot{y}_{n}}} \in \underline{R}^{n}$ is positive for $y \neq 0$.

As $S_{n-1}=\left\{y \in{\underset{\sim}{R}}^{n} ;\|y\|=1\right\}$ is compact, there is a constant $\rho>0$ such that $f(y) \geqslant \rho$ for all $y \in S_{n-1}$. Sut $f(y)=\|y\|^{2} f(y / \| y)$ which shows that $s \in H_{n}(\rho)$.

LEMMA. - Given $0<\varepsilon<1,0<\rho<\rho^{\prime}<1$. There exists en r which depends on $\varepsilon, \rho, \rho^{\prime}$, such that

$$
X_{r}(\rho, \epsilon):=\left\{x \in \delta_{h} ; \epsilon \leqslant\left|x_{i j}\right| \leqslant \epsilon^{-1} \text { for all } i, j\right.
$$

and

$$
\left.x[k] \leqslant \rho^{!k} \|^{2} \text { for all } k=\left(k_{1}, \ldots, k_{n}\right) \in \underline{Z}^{n} \quad \underline{\text { with }}\left|k_{i}\right| \leqslant r\right\}
$$

is contained in $H_{n}\left(\rho^{\prime}\right) \subseteq H_{n}$.
Proof. - Assume the lemma is not true. Then we find for any \mathbf{r} a matrix
$x^{(r)} \in x_{r}(\rho, \epsilon)$ such that $X^{(r)} \notin H_{n}\left(\rho^{\prime}\right)$. Let $v_{r}:=\left(-\log \left|x_{i j}^{(r)}\right|\right)$. The entries of v_{r} are bounded by $\log \varepsilon^{-1}$. We thus get a point $\cap f$ accumulation v^{*} of the sequence $\left(v_{r}\right)$ which is again a symmetric $n \times n$ matrix which satisfies

$$
k^{t} v^{*} k \geqslant C \cdot\|k\|^{2}
$$

where $C=-\log \rho$, for all $k \in{\underset{\sim}{Z}}^{n}$ because $k^{t} v^{*} k$ is a point of accumulation of the sequence $\left(k^{t} v_{r} k\right), r \geqslant 1$, and for large r we have $k^{t} v_{r} k \geqslant C .\|k\|^{2}$.

Let now $\rho<\rho^{\prime \prime}<\rho^{\prime}$, and let D be the set of all symmetric real $n \times n$ matrices $v=\left(v_{i j}\right)$ which satisfy $k^{t} v k>C^{\prime \prime}\|k\|^{2}$ with $0<C^{\prime \prime}=-\log \rho^{\prime \prime}<C$ for all $k \in{\underset{\sim}{R}}^{n}$.

We claim that D is open in the space $\underline{R}^{n(n+1) / 2}$ of all symmetric real $n \times n$ matrices. Let $v \in D$ and $\epsilon<0$ be small such that

$$
\mathrm{n}^{2} \varepsilon<\left(\inf _{0 \leq \leqslant k \in \mathbb{R}^{n}} \frac{\mathrm{k}^{\mathrm{t}} \mathrm{vk}}{\|\mathrm{k}\|^{2}}-C^{\prime \prime}\right)
$$

and, if $w=\left(w_{i j}\right)$ is a symmetric real matrix with $\left|w_{i j}\right|<\epsilon$ for all $i j$, we obtain

$$
k^{t} w k=\sum_{i_{i j}=1}^{n} w_{i j} k_{i} k_{j} \leqslant \sum\left|w_{i j}\right|\left|k_{i} k_{j}\right| \leqslant \epsilon \sum_{i, j=1}^{n^{2}}\left|k_{i}\right|\left|k_{j}\right|<n^{2} \epsilon \| k_{i}^{2}
$$

Thus

$$
k^{t}(v+w) k=k^{t} v k+k^{t} w k>C G^{\prime \prime}
$$

which means that $\nabla+w \in D$. This proves D open.
As now $v^{*} \in D$, we get that infinitely many V_{r} are also in D as D is open. If $v_{r} \in D$ then $x^{(r)} \in H_{n}\left(\rho^{\prime}\right)$ which is a contradiction.

Remark. - One can choose

$$
r=\left[n^{2} \log \frac{\rho}{\epsilon}\right]+1 \text { for } \rho^{\prime}=1 \text { where } H_{n}(1):=H_{n} \text {. }
$$

THEOREN: - $H_{n}(K)$ is a Stein domain on which Γ_{n} acts discontinuously.
Proof. - Let $0 \ll 1, \quad \rho_{m}=\sqrt[m]{\delta}, \quad \rho_{m}^{\prime}=(m+1) \sqrt{\delta}, \quad \epsilon_{m}=\delta^{m}$.
By the lemma, we find r_{m} such that

$$
P_{m}:=X_{r_{m}}\left(\rho_{m}, \epsilon_{m}\right) \subseteq H_{n}\left(\rho_{m}^{\prime}\right) \varsigma H_{n}
$$

P_{m} is analytic polyhedron in $S_{n}(K)$ and $H_{n}=\cup_{m=2}^{\infty} P_{m}$.
Also P_{m} is in the interior of P_{m+1}. This proves that H_{n} is a Stein domain (see [6], § 2).

Let $\Gamma_{n}(m):=\left\{\Phi \in \Gamma_{n} ; \Phi\left(P_{m}\right) \cap P_{m} \neq \varnothing\right\}$. We clain the $\Gamma_{n}(m)$ is finite. It can be deduced from the fact that for any given $C>0$, there are only finitely many $\Phi \in \Gamma$ such that each column vector of Φ has euclidean norm $\leqslant C$. This proves that Γ_{n} acts discontinuously.

Let me mention a few open questions :
10 Define the anolytic quotient H_{n} / Γ_{n}, and prove that it is a Stein space.
2° Find the algebraic relations between the $\theta_{\sigma}(x)$ and its connection with the Satake compactification.

30 Are the Chow coordinates in the sense of Shimura (see [7]), analytic functions on H_{n} ?

REFEREINCES

[1] CARTAN (H.). - Formes modulaires, Séminaire Henri Carten, année 1957/58: Fenotions automorphes, vol. 1, no 4, 12 p .
[2] FRESNEL (J.) et VAN DER PUT (M.). - Géométrie analytique rigide et applications, - Boston, Basel, Stuttgart, Birkhäuser, 1981 (Progress in Mathematics, 18).
[3] GERRITZEN (L.). - Über Endomorphismen nichtarchimedischer holomorpher Tori, Invent. Nath., Berlin, t. 11, 1970, p. 27-36.
[4] GRAUERT (H.) und FRITZSCHE (K.). - Einffihrung in die Funktionentheorie mehrerer Veränderlicher. - Berlin, Heidelberg, Hew York, Springer-Verlag, 1974.
[5] IGUSA (J.). - Theta functions. - Berlin, Heidelberg, Hew York, Jpringer-Verlag, 1972 (Die Grundlehren des mathematischen lissenschaften, 194).
[6] KIEHL (R.). - Theorem A und Theorem B in der nichtarchimedischen Functionentheorie, Invent. liath., Serlin, t. 2, 1967, p. 256-273.
[7] SHTMURA (G.). - Modules des variétés abéliennes polarisées et fonctions modulaires, I-III, Séminaire Henri Cartan, année 1957/53: Fozctions automorpbes, vol. 2, $\mathrm{n}^{\circ} 18$, $3 \mathrm{p} ., \mathrm{n}^{\circ} 19$, $11 \mathrm{p} ., \mathrm{n}^{\circ} 20$, 18 p .

[^0]: © Groupe de travail d'analyse ultramétrique
 (Secrétariat mathématique, Paris), 1981-1982, tous droits réservés.
 L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

[^1]: (*) Lothar GERRITZEN, Institut flir Mathematik, Universität Bochum, Postfach 102143, D-4630 BOCHUY 1 (Allemagne fédérale).

