Groupe de travail D'ANALYSE ULTRAMÉTRIQUE

Frank Herrlich
 p-adic Teichmuller space for genus 2

Groupe de travail d'analyse ultramétrique, tome 9, no 3 (1981-1982), exp. no J11, p. J1-J9
http://www.numdam.org/item?id=GAU_1981-1982__9_3_A12_0

[^0]
P-ADIC TEICHULIER SPACE FOR GENUS 2

by Frank HERRLICH (*)
[Universität Bochum]

Over an algebraically closed complete nonarchimedean field k, like over the complex numbers, one has, for every integer $g \geqslant 2$, an analytic manifold τ_{g} and a group Ψ_{g} of analytic automorphisms of ${ }^{\tau_{g}}$ acting discontinuously on T_{g} such that the quotient space is isomorphic to the space $J_{\mathrm{g}} \mathrm{g}$ of Mumford curves of genus g - G_{g} is called the p-adic Teichmiller space, i the p-adic Teichmiller modular group (see [2]).

In this paper, we shall mainly consider the case $g=2$. Here we have the result that ζ_{2} is a Stein domain. The proof relies on an effective algorithm to decide whether or not a given pair of hyperbolic tremeformations generates a Schottky group. It seems not very likely that a similar algorithm can be found for higher genus, although σ_{g} is probably a Stein domain for arbitrary g.
'Ne begin with the study of treelike metric spaces, a generalization of the trees used in graph theory which possibly has some interest in itself.

In the second part of the paper, we construct for any uitrametric field a treelike metric space which for discrete fields coincides with the Bruhat-Tits-tree. Investigation of the action of hyperbolic linear transformations on this space is the main tool in proving that G_{2} is a Stein domain.

1. Treelike metric spaces •

Let (X, d) be a metric space. For $x, y \in X$ define the section $S(x, y)$ to be

$$
S(x, y):=\{z \in X ; d(x, y)=d(x, z)+d(y, z)\}
$$

Definition. - A metric space (X, d) is called treelike if, for any $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$,
(T1) $S(x, y) \cap S(x, z) \cap S(y, z) \neq \varnothing$.
(T2) If $z \in S(x, y)$, then $S(x, z) \cup S(z, y)=S(x, y)$.

This definition is justified by the following property :

[^1]Let G be a connected graph without lonps and multiple edges, G_{0} the set of vertices of G, and d the metric on G_{0} defined by the minimal number of edges between two vertices. Then we have :

PROPOSITION 1. - ($\left.G_{O}, d\right)$ is trealike if, and only if, G is a tree.
Proof. - If G is a tree, for any $x, y \in G_{O}$, the section $S(x, y)$ consists of the unique simple path in G joining x and y, whence (T2). The first property results from the fact that the subtree of G spanned by x, y and z is isomorphic to

Conversely suppose (G_{O}, d) is treelike, and assume there is a circle C of minimal length $n \geqslant 3$ in G.

If $n=2 m$ is even, let $x, y \in C$, such that $d(x, y)=m$ (this is possible due to the minimality of C). Since $m \geqslant 2$ there are $z_{1} \neq z_{2} \in C$, such that $d\left(z_{1}, x\right)=d\left(z_{2}, x\right)$ and $z_{1} \neq y \neq z_{2}$. Obviously, $z_{2} \notin S\left(x, z_{1}\right) \cup S\left(z_{1}, y\right)$.

If $n=2 m+1$ is odd, chonse $x, y \in C$ with $d(x, y)=1$, and let $z \in C$ be the unique vertex such that $d(x, z)=d(y, z)=m$. Then $S(x, y) \cap S(x, z) \cap S(y, z)=\varnothing$ and the proposition is proved. A trivial example for a non discrete treelike metric space are the real numbers with the usual metric; further, any subset of a treelike metric space is itself treelike.

Next we list some fnrmal properties of the sections in a treelike metric space :
LEMMA 1. - Let (X, d) be a treelike metric space and $x, y, z \in X$. Then
(i) if $z \in S(x, y)$, then

$$
S(x, y)=\{v \in S(x, y) ; d(x, y) \leqslant d(x, z)\}
$$

and

$$
S(x, z) \cap S(z, y)=\{z\}
$$

(ii) there is $u \in X$ such that

$$
S(x, y) \cap S(x, z) \cap S(y, z)=\{u\}
$$

and

$$
S(x, y) \cap S(x, z)=S(x, u)
$$

Proof.

(i) is a straight forward application of (m2).
(ii) Let $S:=S(x, y) \cap S(x, z)$. For $v \in S$, we heve

$$
d(y, z) \leqslant d(v, y)+d(v, z)=d(x, y)+d(x, z)-2 d(x, v) .
$$

Because of (T1) and (i) of this lemme, there exists a unique $u \in S$ such that $d(x, u)=\sup _{v \in S} d(x, v)$. This u is the only element of S such that $\mathrm{d}(\mathrm{y}, \mathrm{z})=\mathrm{d}(\mathrm{u}, \mathrm{y})+\mathrm{d}(\mathrm{u}, \mathrm{z})$, i. e. the only element of $\mathrm{S} \cap \mathrm{S}(\mathrm{z}, \mathrm{y})$. The last identity follows fmm (i).

A subset Y of a treelike metri.c space (X, d) is called connected if $\mathbb{J}_{1}, \mathbb{X}_{2} \in Y$ implies $S\left(y_{1}, y_{2}\right) \subset Y$. Note that the intersection of connected subsets of X is again connected.

For a connected subset $Y \subset X$, let

$$
\operatorname{diam}(Y):=\sup \left\{d\left(y_{1}, y_{2}\right) ; y_{1}, y_{2} \in Y\right\}
$$

A ray $R \subset X$ is a connected subset with $\operatorname{diam}(R)=\infty$ such that there exists a sequence $\left(x_{i}\right)_{i \geqslant 0}$ in R with $x_{i} \in S\left(x_{0}, x_{i+1}\right)$ for all i and $U_{i=0}^{\infty} S\left(x_{0}, x_{i}\right)=R$. Two rays R, R^{\prime} are called equivalent if $\operatorname{diam}\left(R \cap R^{\prime}\right)=\infty$. (This is indeed an equivalence relation since $\operatorname{diam}\left(R \cap R^{\prime}\right)=\infty$ implies that $R \cap R^{\prime}$ is again a ray.) An equivalence class of rays in X is called an ond of X.

An axis in X is a connected subset $A \subset X$ such that there are two rays R_{1}, R_{2} in X with $R_{1} \cup R_{2}=A$ and $R_{1} \cap R_{2}$ is a single point. Thus the axes in X are in 1-1 correspondence with those pairs (E_{1}, E_{2}) of ends of X for which $E_{1} \neq E_{2}$.

The isometries of a treelike metric space can be characterized very much like the automorphisms of a tree (see [3]) because of the fnllowing observation :

If (X, d) is a treelike metric space and $\overline{\mathrm{j}}$ an isnmetry of (x, d) there always exists a treelike extension space (\tilde{X}, \tilde{d}) of (X, d) (i. e. there is a distance-preserving injection $X \longrightarrow \longrightarrow \tilde{X}$) and a continuation $\tilde{\Phi}$ of $\bar{\Phi}$ such that

$$
\inf _{x \in \tilde{X}} \tilde{d}(x, \tilde{q}(x))=\inf _{x \in X} d\left(x, \frac{\delta}{\bar{c}}(x)\right)
$$

is attained in \tilde{X}.
LEMMA 2. - If is an isometry of (X, d) such that there is $\mathrm{y} \in \mathrm{X}$ with $d(y, \Phi(y))=\inf _{x \in X} d(x, \Phi(x))$ then Φ has exactly one of the following pmperties:
(a) is has a fixed point in X,
(b) there is $y \in X$ with $\bar{\Phi}(y) \neq y, S(y, \xi(\bar{y}))=\{y, \delta(y))\}=\delta(S(y, \delta(y)))$,
(c) there is an axis $A \subset X$ on which Φ acts by nontrivial translation.

In (b) and (c) the pair (y, $\Phi(y)$) (resp. A) are unique. Of cnurse (b) is impossible if X is everywhere dense, i. e. fnr any $x \neq y \in X$ exists $z \in S(x, y)$, $\mathbf{x} \neq \mathrm{z} \neq \mathrm{y}$ -

Pmof. - If Φ has neither pmperty (a) nnr (b), then it is easily checked that $U_{n=0}^{\infty} \Phi^{n}(S(y, \Phi(y)))$ and $U_{n=-1}^{\infty} \S^{n}(S(y, \Phi(y)))$ are rays defining an exis on which Φ acts by tranalation by $d(y, \Phi(y))>0$.

2. Generalization of the Bruhat-Tits-tree.

For a field k with a non archinedean valuation $|$.$| , let$

$$
火(k):=\left\{B(a, r) ; a \in k ; r \in\left|k^{*}\right|\right\},
$$

where $B(a, r)=\{z \in k ;|z-a| \leqslant r\}$. Fnr $B_{i}=B\left(a_{i}, r_{i}\right) \in x(k), i=1,2$, define

$$
d\left(B_{1}, B_{2}\right):=\log \frac{r_{12}^{2}}{r_{1} r_{2}}
$$

where $r_{12}:=\max \left\{\left|b_{1}-b_{2}\right| ; b_{1} \in B_{1} ; b_{2} \in B_{2}\right\}$.
PROPOSITION 2. - For any nonarchimedean valued field $k,(\%(k), d)$ is a treer like metric space.

Proof.
(i) Since $r_{12} \geqslant \max \left(r_{1}, r_{2}\right)$, for B_{1} and B_{2} as above we have $d\left(B_{1}, B_{2}\right) \geqslant 0$, and $d\left(B_{1}, B_{2}\right)=0$ if, and nnly if, $r_{12}=r_{1}=r_{2}$, i. e. $B_{1}=B_{2}$. For any $B_{1}, B_{2}, B_{3} \in K(k)$, we have $r_{12} \leqslant \max \left(r_{13}, r_{23}\right)$ which implies

$$
\frac{r_{12}^{2}}{r_{1} r_{2}} \leqslant \frac{r_{13}^{2}}{r_{1} r_{3}} \times \frac{r_{23}^{2}}{r_{2} r_{3}}
$$

and thus proves the triangle inequality.
(ii) Tn prove (T1) note that for $B_{1}, B_{2} \in K(k)$, we have

$$
\begin{aligned}
& S\left(B_{1}, B_{2}\right)=\left\{B_{3} \in \Re(k) ; r_{3} r_{12}=r_{13} r_{23}\right\} \\
&=\left\{B_{3} \in\left\{(k) ; r_{12}=\max \left(r_{13}, r_{23}\right) ; r_{3}=\min \left(r_{13}, r_{23}\right)\right\}\right.
\end{aligned}
$$

Thus if $B_{3}, B_{4} \in S\left(B_{1}, B_{2}\right)$ and $r_{13}<\max \left(r_{14}, r_{34}\right)$, then $r_{14}=r_{34}$, and $r_{12}=\max \left(r_{34}, r_{24}\right)=r_{23}$ and $r_{4}=\min \left(r_{14}, r_{24}\right)=\min \left(r_{34}, r_{24}\right)$, sn $B_{4} \in S\left(B_{2}, B_{3}\right)$.

If $B_{1}, B_{2}, B_{3} \in \mathcal{K}(k)$, chonse the indices s, that $r_{12} \leqslant \min \left(r_{13}, r_{23}\right)$. Then it is easily verified that $B_{4}:=B\left(a_{1}, r_{12}\right) \in S\left(B_{1}, B_{2}\right) \cap S\left(B_{1}, B_{3}\right) \cap S\left(B_{2}, B_{3}\right)$ so (T2) also holds.

If the valuation of k is discrete, the Bruhat-Tits-tree for k can be reonnstructed fme $K(k)$ by letting the prints of $\mathcal{*}(k)$ be the vertices of a graph and by drawing edges between points on minimal distance.

If on the other hand k is algebraically clnsed $k(k)$ is everywhere dense (but not complete).

An extension $k^{\prime}: k$ of ultrametric fields gives a naturel distance preserving embedding $\mathbb{K}(k) \subset \rightarrow K\left(k^{\prime}\right)$. Thus if k is algebraically closed, we may view $k(k)$ as the direct limit of the Bruhat-Tits-trees for the discrete subfields $\cap f \mathbf{k}$.

For the completion \hat{k} of k, we always have $\hat{k}(\hat{k})=\cdots(k)$. If R is a ray in $K(k)$, and $B_{0}, B_{1}, B_{2}, \ldots$ is a sequence of points on R with $d\left(B_{0}, B_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$ then either $r_{n} \rightarrow \infty$ or $r_{C_{n}}=r_{0 n+1}$ for $n \geqslant n_{0}$ and $r_{n} \rightarrow 0$. Therefore the ends of $k(k)$ conrespond to the points $\cap f \mathcal{P}^{1}(\hat{k})$.
$\mathrm{PGL}_{2}(\mathrm{k})$ acts isnmetrically on $k(k)$ if we make the follnwing convention : if $\gamma^{-1}(\infty) \in B$ for a $B \in \mathcal{K}_{k}(k)$ and a $\gamma \in \mathrm{PGL}_{2}(k)$, let γB be the affinnid hull (= genmetric closure) of the "open" disk $\underset{\sim}{P}(k)-\gamma(B)$. This action commutes with field extensinns.
$Y \in \mathrm{PGL}_{2}(k)$ is hyperbolic if, and only if, it is of type (c) of lemma 2 ; the axis A_{Y} is determined by the fixed pnints of γ in $\underline{P}^{1}(k)$, the shift v_{Y} on A_{Y} is given by $v_{Y}=-\log \left|t_{Y}\right|$, where t_{Y} is the multiplier of Y.

Let $\pi_{Y}: \mathscr{K}_{h}(k) \rightarrow A_{\gamma}$ denote the projection ; this is meaningful also for ends of $\mathcal{K}(k)$ different from the fixed points of γ. γ defines an orientation $<\gamma$ on A_{γ} such that $B<_{\gamma} \gamma^{B}$ for all $B \in \Lambda$.

Let $Y_{1}, Y_{2} \in \mathrm{PGL}_{2}(k)$ be hyperbolic with mutually different fixed points \mathbf{x}_{1}, x_{-1}, x_{2}, x_{-2} such that the translatinn $\cap f \quad \gamma_{i}$ nn $\Lambda_{i}:=\Lambda_{\gamma_{1}}$ is towards x_{i}. Let

$$
v_{i}:=v_{\gamma_{i}}, \quad<_{i}:=<_{\gamma_{i}}, \quad \pi_{i}:=\pi_{\gamma_{i}} ;
$$

let

$$
\mathrm{B}_{12}:=\pi_{1}\left(\mathrm{x}_{-2}\right), \quad \mathrm{B}_{12}^{\prime}:=\pi_{1}\left(\mathrm{x}_{2}\right) \text { and } \mathrm{d}_{12}:=\mathrm{d}\left(\mathrm{~B}_{12}, \mathrm{~B}_{12}^{\prime}\right) .
$$

Call Y_{1}, Y_{2} parallel if $B_{12}<_{1} B_{12}^{\prime}$, otherwise antiparallel. Finally assume $\mathrm{v}_{1} \leqslant \mathrm{v}_{2}$.

LEMMA 3. - With the above nntatinns and assumptinns, we have :
(i) $\gamma_{1} \gamma_{2}$ is not hyperbnlicif r_{1}, r_{2} are antiparallel, and $v_{1}=v_{2} \leqslant d_{12}$.
(ii) $\gamma_{1} \gamma_{2}$ is possibly not hyperbnlic if γ_{1}, γ_{2} are antiparallel and $\mathrm{v}_{1}=\mathrm{d}_{12}<\mathrm{v}_{2}$
(iii) $Y_{1} Y_{2}$ is hyperbnlic in all nther cases.

Pronf. - In the first case, B_{12} is fixed point of $Y_{1} Y_{2}$, in (ii) $Y_{1} \gamma_{2}$ may have fixed points on $S\left(B_{12}, Y_{2}^{-1} B_{12}^{\prime}\right)$, in all other cases one easily sees that

$$
S \cap \gamma_{1} \gamma_{2} S=\left\{\gamma_{1} \gamma_{2} B_{12}\right\} \text { with } S=S\left(B_{12}, \gamma_{1} \gamma_{2} B_{12}\right)
$$

In view of the pronf of lemma 2, this shows that $\gamma_{1} \gamma_{2}$ is hyperbolic.

3. p-adic Teichmiller space ε_{2}

In this section, k is assumed to be algebraically closed and complete. We briefly recall frmm [2] the definition of the p-adic Teichmiller space ${ }^{6} g, g \geqslant 2$ an integer.

Let $G:=P_{G L}(k)$; for $\zeta=\left(\gamma_{1}, \ldots, Y_{g}\right) \in G^{g}$, let $\Gamma(\tau)$ be the subgmup of G generated by $\gamma_{1}, \ldots, \gamma_{g}$. Then

$$
\tau_{\mathrm{g}}:=\tilde{r}_{\mathrm{g}} \text { mad } \mathrm{G}
$$

where $\tilde{\tau}_{g}:=\left\{\zeta=\left(\gamma_{1}, \ldots, \gamma_{g}\right) \in G^{g} ; \Gamma(\zeta)\right.$ is Schottky group of rank $\left.g\right\}$, and G acts on τ_{g} by componentwise conjugaition. Fnr the Teichmiller modular group and the connection with the space of Mumfnrd curves, we refer to [2].

Recall that a subgroup $\Gamma \subset G$ is a Schnttky group if, and only if, every element $\gamma \in \Gamma, \gamma \neq i d, i s h y p e r b n l i c$. As conrdinates on $\tilde{\sigma}_{g}$, we use the maltipliers t_{i}, the attracting and repelling fixed pnints x_{i} and $x_{-i} \cap f$ the hyperbolic transfor mation Y_{i}. For G_{g}, we take the set of representatives nnrmalized by the conditions $x_{1}=0, x_{-1}=\infty, \quad x_{2}=1$.

In order to replace the condition that $\Gamma(\zeta)$ be a Schn'tky group by inequaities involving rational functions of the conrdinates on τ_{g}, we introduce the following notations :

Let F_{g} be a nonabelian free group of rank g, e_{1}, \ldots, e_{g} a fixed base of F_{g}, and $\alpha^{g}: F_{g} \rightarrow \Gamma(\zeta), e_{i} \rightarrow \gamma_{i}$, the canonical homomorphism for any $\epsilon_{G} \in G^{g}$. If $\gamma=\left(\begin{array}{ll}a & \zeta_{b} \\ c & d\end{array}\right) \in{\stackrel{G}{G} L_{2}(k), ~ l e t ~}_{T}(\gamma):=(a+d)^{2} / a d-b c$. Obviously $T(\lambda \gamma)=T(\gamma)$, so T is a rational functinn on $G . \gamma \in G$ is hyperbolic if, and only if, $|T(\gamma)|>1$.

Therefore

$$
\begin{aligned}
& \tau_{g}=\left\{\left(t_{1}, \ldots, t_{g} ; x_{-2}, x_{3}, x_{-3}, \ldots, x_{g}, x_{-g}\right) \in k^{3 g-3} ;\right. \\
& \left.\quad 0<\left|t_{i}\right|<1 ; i=1, \ldots, g ;|T(x(w))|>1 \text { for all w } \in F_{g} ; w \neq 1\right\} .
\end{aligned}
$$

Note that since γ_{i} can be represented by the matrix

$$
\left(\begin{array}{ll}
x_{i}-t_{i} x_{-i} & \left(t_{i}-1\right) x_{i} x_{-i} \\
1-t_{i} & t_{i} x_{i}-x_{-i}
\end{array} \quad(i \geqslant 2),\right.
$$

$T(\alpha(w))$ is indeed rational in the t_{i}, x_{i} and x_{-i}.
Every Schottky group $\Gamma \subset G$ has a Schrttky base $\gamma_{1}, \ldots, \gamma_{g}$, i. e. there are $B_{1}, B_{1}^{\prime}, \ldots, B_{g}, B_{g}^{\prime} \in \mathbb{K}(k)$ such that $Y_{i} B_{i}=B_{i}^{\prime}$ and there is am $x \in \underset{\sim}{P^{1}}(k)$
such that $\pi_{i}(x) \in S\left(B_{i}, B_{i}^{\prime}\right), i=1, \ldots, g$. One sees imediately that hyper bnlic transformations $\gamma_{1}, \cdots, Y_{g}$ form a Schottky base if, and only if, for $\mathbf{i}=1, \ldots, g$,

$$
\mathrm{d}\left(\pi_{i}\left(x_{j}\right), \pi_{i}\left(x_{k}\right)\right)<v_{i} \text { for all } i, k \neq \pm i
$$

If $g=2$, this reduces to the following description of the space \mathbb{B}_{2} of Schnttky bases of rank 2 (cf. [1], 子 2) :

$$
\mathbb{B}_{2}=\left\{\left(t_{1}, t_{2}, y\right) \in k^{3} ; y \neq 1 ; d_{12}<v_{i} ; i=1,2\right\}
$$

(where $d_{12}=d\left(\pi_{1}\left(x_{2}\right), \pi_{1}\left(x_{-2}\right)\right.$) as in lemma 3).
The following lemma is crucial in the proof of the main result :
IEMMA 4. - Let $\zeta=\left(\gamma_{1}, \gamma_{2}\right) \in \mathbb{B}_{2}$ be a normed Schottky base and

$$
v:=\min \left\{v_{\gamma} ; \quad \gamma \in\left\{\gamma_{1}, \gamma_{2}, \gamma_{1} \gamma_{2}, \gamma_{1} \gamma_{2}^{-1}\right\}\right\}
$$

Then $v_{\gamma} \geqslant v$ for any $\gamma \in \Gamma(\zeta)$.
Proof. - By replacing if necessary γ_{1} or γ_{2} by $\gamma_{1} \gamma_{2}$ or $\gamma_{1} \gamma_{2}^{-1}$ or by taking inverses, we may assume that γ_{1}, γ_{2} are antiparallel and that $2 d_{12} \leqslant v_{1} \leqslant v_{2}$, so $v=v_{1}$. As conjugation doesn't change the multiplier we only have to consider elements of the form

$$
\gamma=\gamma_{1}^{\nu_{1}}{ }_{\gamma_{2}}^{\mu_{1}} \ldots \gamma_{1}^{\nu_{r}}{ }_{\gamma_{2}}^{\mu_{r}}, \nu_{i}, \mu_{i} \sim \underset{Z}{Z} \backslash\{0\}, r \geqslant 1 .
$$

By induction on \mathbf{r}, one easily verifies
(i) $\pi_{1}\left(\gamma B_{12}\right) \notin S\left(\gamma_{1} B_{12}^{\prime}, \gamma_{1}^{-1} B_{12}\right) \backslash\left\{\gamma_{1} B_{12}^{\prime}, \gamma_{1}^{-1} B_{12}\right\}$,
(ii) $d\left(\gamma B_{12}, \Lambda_{1}\right) \geqslant v_{2}-d_{12} \geqslant v_{1}-d_{12}$,
(iii) $B_{12} \in A_{Y}$
which shows that

$$
v_{Y}=d\left(B_{12}, r B_{12}\right) \geqslant v_{1}-d_{12}+v_{1}-d_{12} \geqslant v_{1}
$$

THEOREM. - G_{2} is a Stein domain.
More precisely : Let $\epsilon \in\left|k^{*}\right|, 0<|\epsilon|<1$. Then the following affinnid dnmains $\tau_{2}^{(n)} \subset k^{3}, n \geqslant 1$, exhaust τ_{2} :

$$
\begin{aligned}
& \sigma_{2}^{(n)}:=\left\{\left(t_{1}, t_{2}, y\right) \in k^{3} ;\right. \\
& \epsilon^{n} \leqslant\left|t_{i}\right| \leqslant \epsilon^{1 / n}, i=1,2, \\
& \varepsilon^{n} \leqslant|y| \leqslant \epsilon^{-n}, \epsilon^{n} \leqslant|1-y|, \\
&\left|t_{1} t_{2}\right| \leqslant \epsilon^{1 / n}|y|^{\alpha}, \alpha= \pm 1, \\
&\left|T\left(r_{i} \gamma_{j}^{\nu}\right)\right| \geqslant \epsilon^{-1 / n}, i, j=1,2, i \neq j, \nu= \pm 1, \ldots, \pm n^{2}, \\
& \mid T\left(\gamma_{1}\left(\gamma_{i} \gamma_{j}^{\nu}\right)^{\mu}\right) \geqslant \epsilon^{-1 / n}, i, j, 1=1,2, \\
&\left.i \neq j, \nu= \pm 1, \ldots, \pm n^{2}, \mu= \pm 1, \ldots, \pm\left(n^{2}-1\right)\right\}
\end{aligned}
$$

Pmof. - The conditions can be rephrased in terms $\cap \mathrm{f} \mathrm{v}_{\mathrm{i}}, \mathrm{d}_{12}$, etc. :
(1) $n \cdot \epsilon^{\prime} \geqslant v_{i} \geqslant \epsilon^{\prime} / n, i=1,2$ (where $\epsilon^{\prime}:=-\log \epsilon$),
(2) $d_{12} \leqslant n \epsilon^{\prime}, d\left(A_{1}, A_{2}\right) \leqslant n e^{\prime}$,
(3) $v_{1}+v_{2} \leqslant \epsilon^{\prime} / n d_{12}$,
(4) $v_{\gamma} \leqslant \epsilon^{\prime} / n$ for the γ listed above.

Now we divide the pronf intn several steps :
$10 \tau_{2} \subset U_{n=1}^{\infty} \tau_{2}^{(n)}$: let $\zeta=\left(\gamma_{1}, \gamma_{2}\right) \in \tau_{2}$. (1), (2) are nbvinusly sati凶fied for large n.
Lemma 3 shows that $v_{1}+v_{2}<d_{12}$ is necessary to ensure that $r_{1} r_{2} r_{1}^{-1} r_{2}^{-1}$ and $\gamma_{1} \gamma_{2}^{-1} r_{1}^{-1} \gamma_{2}$ are hyperbnlic, and (4) results from lemma 4.
$\Sigma^{\circ} \tau_{2}^{(n)} \subset \tau_{2}$: Let $\zeta=\left(\gamma_{1}, \gamma_{2}\right) \in \tau_{2}^{(n)}$. Ne may again assume $v_{1} \leqslant v_{2}$ and r_{1}, r_{2} antiparallel. Then $d_{12} \leqslant n^{2} v_{1}$ because $\cap f(1)$, (2), and $d_{12}<2 v_{2}$ because of (3). Let $m \in\left\{0, \ldots, n^{2}\right\}$ such that $\operatorname{mv}_{1} \leqslant d_{12}<(m+1) v_{i}$.

We consider the following cases :
(a) $m v_{1} \leqslant d_{12}<v_{2}$. - Here $\gamma_{2}^{\prime}:=\gamma_{2} \gamma_{1}^{m}$ is hyperbnlic by lemma 3 (resp. by condition (4)), and $v_{2}^{\prime}:=v_{\gamma 1} \leqslant v_{2}-m v_{1}$, with equality if $m v_{1}<d_{12}$.

$$
d_{12}^{\prime}:=d\left(\pi_{1}\left(x_{2}^{\prime}\right), \pi_{1}\left(x_{-2}^{\prime}\right)\right)=d_{12}-\operatorname{mv}_{1}<\max \left(v_{1}, v_{2}^{\prime}\right),
$$

so $\left(r_{1}, r_{2}^{\prime}\right) \in \mathbb{B}_{2}$.
(b) $\operatorname{mv}_{1} \leqslant v_{2} \leqslant d_{12}$ - Again $\gamma_{1}^{\prime}:=\gamma_{1} \gamma_{2}^{m}$ is hyperbolic because of condition (4), and $v_{1}^{\prime} \geqslant \epsilon^{\prime} / n$. Therefore $d_{12}^{\prime}=d_{12}-\operatorname{mv}_{1}<v_{1} \leqslant n \epsilon \leqslant n^{2} v_{1}^{\prime}$, so $\gamma_{1}^{\prime}, \gamma_{1}$ lead to case (a) with an $m^{\prime} \leqslant n^{2}-1$; the r listed in condition (4) are now precisely those needed to show that $\gamma_{1}^{\prime}, \gamma_{1}\left(\gamma_{1}^{\prime}\right)^{m^{\prime}}$ is a Schottky base.
(c) $\mathrm{v}_{2}<\mathrm{mv}_{1} \leqslant \mathrm{~d}_{12}$ - - There similar to case (b) $\gamma_{\mathrm{r}_{1}^{\prime}}^{\prime}=\gamma_{2} \mathrm{r}_{1}^{\mathrm{m}}$ and γ_{2} lead to case (a) with an $m^{2} \leqslant n^{2}-1$, so that $\gamma_{1}^{\prime}, \gamma_{2}\left(r_{1}^{\prime}\right)^{m^{1}}$ is a Schottky base.
$30 \sigma_{2}^{(n)} \subset \sigma_{2}^{(n+1)}$: Inspection of the construction in 20 shows that any $\zeta \in \sigma_{2}^{(n)}$ has a Schottky base satisfying the condition of lema 4 with $v \geqslant \epsilon^{1 / n}$. So an applicatinn of this lemma concludes the pronf of the theoreno

REFERENTCES

[1] GERRITZEN (Le). - Zur analytischen Beschreibung des Raumes der Schnttky-MumfordKurven, Math. Annalen, t. 255, 1981, p. 259-271.
[2] GERRITZEN (L.). - p-adic Teichmilller space end Siegel helf space, Gmupe d'etude d'Analyse ultramétrique, 9e année, 1981/82, fasc. 3, no J-26, 15 p .
[3] TITS (J.). - Sur le groupe des autnmirphismes d'un arbre. Essays on tnpology a and related tnpics, Mémires dédiés à G. de Rham. - Berlin, Heidelberg, New Vort, Springer-Verlag, 1970.

[^0]: © Groupe de travail d'analyse ultramétrique
 (Secrétariat mathématique, Paris), 1981-1982, tous droits réservés.
 L'accès aux archives de la collection « Groupe de travail d'analyse ultramétrique » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

[^1]: (*) Frank HERRLICH, Institut ffir Mathematik, Universität Bochum, Postfach 102148, D-4630 BCCHUM 1 (i,llemagne fédérale).

