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Over an algebraically closed complete nonarchimedean field k ~ like over the

complex numbers, one has, for every integer g  2 , an analytic manifold C and
g

a group Y 
g 

of analytic automorphisms 
g 

acting discontinuously on C
g 

such

that the quotient space is isomorphic to the space of Mumford curves of genus
g

g. 0 is called the p-adic Teichmüller space, 03A8 the p-adic Teichmüller modu-

lar group (see [2]).

In this paper, we shall mainly consider the case g = 2 . Here we have the result

that °2 is a Stein demain. The proof relies on an effective algorithm to decide

whether or not a given pair of hyperbolic trauaformations generates a Schottky group.
It seems not very likely that a similar algorithm can be found for higher genus,

although 0 g is probably a Stein domain for arbitrary g .

begin with the study of treelike metric spaces, a generalization of the trees

used in graph theory which possibly has some interest in itself.

In the second part of the paper, we construct for any uitrametric field a treelike

metric space which for discrète fields coincides with the Bruhat-Tits-tree. Investi-

gation of the action of hyperbolic linear transformations on this space is the main

tool in proving that °2 is a Stein demain.

1. Treelike metric spaces .

Let ~X ~ d) be a metric space. For x, define the section S(x, y) to

be

Definition. - A metric space (X , d) is called treelike if, for any 

(Tl) S(x, y) n S(x , z) n S(y , z) ~ ~ .

(T2) If Z E S(x , y) , then z) u S(z , y) = S(x , y) .

This définition is justified by the following property :

( ) Frank HERRLICH, Institut für Mathematik, Universität Bochum, Postfach 102148,
D-46.30 BOCHUM 1 (Allemagne fédérale).
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Let G be a connected graph without loops and multiple edges, G0 the set of

vertices of G ~ and d the metric on GO defined by the minimal number of edges
between two vertices. Then we have :

PROPOSITION 1. - d) is treelike if, and if~ G is a tree.

Proof. - If G is a tree, for any x, y E the section S(x , y) consists

of the unique simple path in G joining x and y, whence (T2). The first proper-
ty results from the fact that the subtree of G spanned ’oy x, y and z is 

morphic to
x

Conversely suppose (G , d) is treelike, and assume there is a circle C of mi-

nimal length n ~ 3 in G .

If n = 2m is even, let x, y E C, such that d(x, y) = m (this is possible
due to the minimality of C ). Since m ~ 2 there are z2 E C, such that

d( z  x) = d(z2 ’ x) and y ~ z . Obviously, z~ ~ S(x, zl) u S(z~ , y) .

If n = 2m + 1 is odd, choose x, y E C with d(x, y) = 1 , and let z ~ C be

the unique vertex such that d(x, z) = d(y , z) = m . Then S(x,y) rS(x, 
and the proposition is proved. A trivial example for a non discrete treelike metric

space are the real numbers with the usual metric y further, any subset of a treelike

metric space is itself treelike.

Next we list some fnrmal properties of the sections in a treelike metric space :

1. - Let (X , d) be a treelike metri c sp ac e and x, y , z e X . Then

(i) if z e S(x , y) , then 

and

(ii) there is u E X such that

and

Proof.

(i) is a straight forward application nf (T2).
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(ii) Let S := S(x , y) n S(x , z). we have

Because of (Tl) and (i) of this there exists a unique u e S such that

d(x , u) = supv~S d(x, v) . This u is the only élément of S such that

d(y , z) = d(u , y) + d(u , z) , i. e. the only elament of S n S(z , y) . The last
identity follows from (i).

A subset Y of a treelike metric space (x ~ d) is called connected if 

implies S(y 1 ’ Y . Note that the intersection of connected subsets of X is

again connected.

For a connected subset let

A R c X is a connected subset with diam(R) = co such that there exists a

sequence (x.) .~ in R with S(x.- . x. 1) for all i and U~ 0 ~ 
1 0 ’ 1+ :L==0 0" i

Two rays R ~ R’ are called équivalent if diam(R n R’) = 0153 . (This is indeed an

équivalence relation since diam(R n Rf) = 00 implies that R n R’ is again a ray. )
An équivalence class of rays in X is called an end of X .

An axis in X is a connected subset A C X such that there are two rays R
in X with R2 = A and R n R2 As a single point. Thus the axes in X are

in correspondence with thnse pairs (E1 , E2) of ends nf X for which 

The isometries of a treelike metric space can be characterized very duch like the

autonnrphisms nf a tree (see [3]) because of the fnllowing observation :

If (X , d) is a treelike metric space and 03A6 an isnmetry of (X , d) there

always exists a treelike extension space (X, d) of (X , d) (i. e. there is a

di stance-preserving injectinn X X ) and a continuation $ such that

is attained in X.

LEMMA 2. -.!! Q is an isometry of (X , d) such that there is y e X with

d(y , 03A6(y)) = infx~X d(x , 03A6(x)) then ç has exactly one of the following proper-
ties :

(a) ç has a fixed point in X ,

(b) there is y E X with $(y) ~ y , S(y , ~(y)) = §(y))? = §(S(y , ~C~~~~ ~
(c) there is an on which ç acts by nontrivial translation.

In (b) and (c) t he pair (y , 03A6(y)) (resp. A) are unique. Of course (b) i s

impossible if X is everywhere dense, i. e. for any x ~ y ~ X exists z ~ S(x , y)
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Proof. - If ~ has neither property (a) nor (b), then it is easily checked that

U~ ~(S(y ~ ~ (y))) and ~(S(y ~ ~(y) )) are rays defining an axis on which

03A6 acts by translation by d(y , 03A6(y)) &#x3E; 0 .

2. Generalizatinn of the Bruhat-Tits-tree.

For a field le with a nnn archimedean valuation |.| , let

where

define

where

PROPOSITION 2. - For any nonarchimedean valued field k , (K(k) , d) is a tree-

like metric space.

Proof.

(i) r. - ~ for B and B as we hâve d(B~ ~ 13 ) ~, 0,
and B ) = 0 if, and only if, r = r == r2 , i. e. B1 = B . For any
B ~ B ~ B.. e~(k) y we hâve r $ 

and thus proves the triengle inequality.

(ii) To prove (Tl) note that fnr B2 = ~ (le) ~ have

Thus if B4 OE B2) and r13  r34) , then r14 == r34 , and

r12 = r24) = ~23 and r4 = r24) = r24) , so
B~ ~ S(B~ , B3) .

If’ B1’ B2’ x(k) , thé indices sr, that rl2 ~ r2)) . Then
it is easily verified that B~ := B(a , r12) e 3(B1 ’ B2) n S(B , B)) ri 3(B2 ’ B )
so (T2) also holds.

If the valuation of k is discrete, the Bruhat-Tits-tree for k can be recons-

tructed fmm X (k) by letting thé points of K (k) be the vertices of a graph and

by drawing edges between points on minimal distance.
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If on the other hand k is algebraically closed K (k) is everywhere dense (but
not complete).

An extension k’ : k of ultrametric fields gives a natural distance preserving

embedding K(k) ~2014&#x3E; ~(k’) . Thus if k is algebraically closed, we may view ~{k)
as the direct limit of the Bruhat-Tits-trees for the discrete subfields of k .

~ A

For t he completion k of k , we always "."(k) . If R is a ray in

K(k) , and B2 ’ ... is a séquence nf points on R with Bn) 
as n 2014&#x3E; co then either rn -&#x3E; 00 or for n  n0 and rn 2014&#x3E; 0 .

Therefore the ends of correspond to the points of P (le) .

PGL2(k) acts isnmetrically (k) if we make the following convention: if

’(-1 E B for a B E x(k) and a ~y e let yB be the affinoid hull

( = géométrie closure) of the "open" disk P 1 (le) - y(B) . This action commutes with
field extensions.

03B3 e PGL2(k) is hyperbolic if, and only if, it is nf type (c) of lemma 2 ; the

axis A is determined by the fixed points nf y in P 1 (k) , the shift v on

A 
Y 

is given by v 
Y 
= - log t ) , where t 

Y 
is the multiplier of y . 

~

Let n : X(k) 2014&#x3E; A 
y 

dénote the projection $ this is meaningful also for ends
of X(k) différent from the fixed points of y. y defines an orientation  

Y 
on

AY such that B  
Y 

03B3B for all 

Let Y1’ y 
E PGL2(k) be hyperbolic with mutually different fixed points x1 ,

x 1 ’ X2 ’ x 2 such that the translation cf y. on A. :== h is towards x..

Let

let

Call Yl’ Y2 parallol if B12 1 Br2 ’ otherwise antiparallel. Finally assume

v2 .

LEMMA 3. - With thé above notations and assumptions, we hâve :

(i) ’Y1"Y 2 is not hyperbolic if 03B31 , 03B32 are antiparallel, and vi = v2  d12 .
(ii) 03B31 "2 is possibly Mot hyperbolic if 03B32 are antiparallel and

"1 = d12  v2
(iii) ’Y 1 Y 2 

is hyperbolic in all other cases.

Proof. - In the first case, B12 1s fixed point nf Yi Y2 ’ in (ii) Yi 03B32 may

have fixed points on S(B12’ 03B3-12 B’12) , in a1l other cases one easily sees that
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Tn view of the proof of lemma. 2, this shows that 03B31 03B32 is 

30 p-adic Teichmiiller s ace G2
In this section, k is assumed to be algebraically closed snd complete. We brief-

ly recall from [2] the definition of the Teichmiiller space Gg , g  2 an

integer.

= (03B31 , ... , Y / e Gg , let be the subgroup o f

G by ~yl , ... , Then

= ~’Y 1 , ... , yj E Gg; r(ç) is Schottky group of rank g} , and

G acts on G
g 

by componentwise conjugaition. For thé Teichmüller modular group and

the connection with the space of Mumford curves, we refer 

Recall that a subgroup 0393 ~ G is a Schottky group if, and only if, every élément

03B3 ~ id, is hyperbnlic. As coordinates we use the multipliers ti’
the attracting and repelling fixed points x. ]. and x - i 0f the hyperbolic transfor-

mation y.. For Gg , we take the set of représentatives normalized by the conditions

"1 = ° ~ :r:-l = 00, "2 == 1 .

In order to replace the condition that r(ç) be a Schottky group by inequslities

involving rational functions of the coordinates on ?; , we introduce the following
g

notations :

Let F 
g 

be a nonabelian free group of rank g , e, 1 ’ ..... ’ 
e 

g 
a fixed base of 

g
F j F 

g 
--&#x3E; r (03B6) , e. 2014&#x3E; 03B3i , the canonical homomorphism for any 

If 03B3 = (c b E GL2(k) , let := (a + d) bc . Obviously T(B-Y) = T(y) ,
so T is a rations! function on G . y c G i3 hyperbolic if, and only if, J T( y) (&#x3E;1.

Therefore

Note that since y. can be represented by the matrix

is indeed rational in thé ti , x. snd x_..

Every Scbottky group 0393 ~ G haa a Schottky base 03B31 , * .. , *Y , i. e. there sure

1 ~ G such that 03B3i B. = Bj: and there is an x 
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such that TT.(x) = S(Bi , B’i) , i = 1 , ... , g . One sees immediately that hyper-
~L 1 1

transformations ’Y. y ... ~ ~ form a base if~ and if~ for

i = 1 ~ ... ~ g ~

If g = 2 , this reduces to the following description nf the space ~2 of Schottky
bases of rank 2 ( cf. [1], § 2) :

(where d12 = TI1(X-2)) as in lemma 3).

The following lemma is crucial in the proof of the main result :

(Y1’ Y2) be anormed Schottky base and

Then v for any y E r(03B6) .

Proof. - By replacing if necessary y or y by y Y 2 or y 1 03B3-12 or by ta-

king inverses, we may assume that Y 2 are antiparallel and that 

SO v = v.. As conjugation doesn’t change the multiplier we only have tn consider

éléments of the fnrm

By induction on r , one easily vérifies

which shows that

THEDR£&#x3E;î. - r; 2 is a Stein domain.

More precisely : Let c E 1 k * 1 , 0  1 e 1 . 1 . Then the following a.ffinnid domains

Gt C k , n u 1 , exhaust r; 2 : 
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Proof. - The conditions can be rephrased in terms of d12 ’ etc. :

(4) v.Y ~ for thé Y listed above.

Now we di vide thé proof into several steps :

1° °2 c C(n)2 : let 03B6 = (Y1 ’ Y2) E 02 . (1). (2) are obviously satisfied

for large n.

-1 -1
Lemma 3 shows that v 

1 
+ v 2  d12 is necessary to ensure that y 1 y 2 Y 1 Y 2

and y 1 Y 2 y 1 Y 2 are hyperbolic, and (4) results from lemma 4.

ZJ ’G~n) c ’(;2: (y l’ vJ ~ ~ ~ - ~ may again assume v2 and

’1 ’ ’Y2 antiparallel. Then d12 ~ n2 v1 because o:f (1), (2), and d12  2v2 ba-

cause of (3). Let m E ... y n} such that d ~  (m + l) v~ .

We consider thé following cases :

(a) mv1  d12  v2 . - Here Y2:= y 2 03B3m1 is hyperbolic by lemma .3 (resp. by con-

dition (4»), and v2:= v03B31  v2 - mv1 , with equality if mV1  

so (y~ ~ y~) E (B 2 .

(b) mv1  v2  d12 . - :..gain Yi :=y’ 1 03B3m2 is hyperbolic because of condition (4),

and e’/n * Therefore == d12 - mv  ne ’  n 
2 

v’ , sc 03B31 lead

to case (a) with an n - 1 ; thé ï listed in condition (4) are now precisely
those needed to show that 

t 

Schottky base.

Cc) v2  d12 . ; There similar ta case (b) = Y2 t. and Y2 lead ta

case (a) with an n - 1 , so that 03B3’1 , 03B32(03B3’1) is a Schottky base.
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~ ~~"  ’G~n+l) : Inspection of the construction in 2~ shows that any ç E 

has a Schottky base satisfying the condition of lemma 4 with v  £ 1/n . So an appli-
cation of this leana concludes the proof of the theorem.
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