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[ Universitdt Bochum]

Over an algebraically closed complete nonarchimedean field k , like over the
complex numbers, one has, for every integer g > 2 , an znalytic manifold & and
a group ‘i’g of analytic automorphisms of Gg acting discontinuously on Zg such
that the quotient space is isomorphic to the space ;mg of Mumford curves of genus

g e Gg is called the p-adic Teichmiiller space, { the p-adic Teichmiller modu-
lar group (see [2]).

In this paper, we shall meinly consider the case g = 2 . Here we have the result
that ’62 is a Stein domain. The proof relies on an effective algorithm to decide
whether or not e given pair of hyperbolic trenchrmations generates a Schottky group.
It seems not very likely that a similar algorithm can be found for higher genus,

although Cg is probably a Stein domain for arbitrary g .

We begin with the study of treelike metric spaces, a generalization of the trees

used in graph theory which possibly has some interest in itself.

In the second part of the paper, we construct for any uitrametric field a treelike
metric space which for discrete fields coincides with the Bruhat-Tits-tree. Investi-

gation of the action of hyperbolic linear transformations on this space is the main

tool in proving that G is a Stein domein.

2

l. Treelike metric spaces .

Let (X, d) be a metric space. For x , y € X define the sesction S(x, y) to
be

S(x, y) s={z€e X; dlx, y)=dx, z) + dly, 2z)} .

Definition. —~ A metric space (X, d) is called treelike if, for any x,y,z€X ,
(T1) S(x, y) nS(x, 2) nS(y, 2) #0 .

(1T2) If ze S(x, y) , then S(x, 2)u S(z, y) = S(x, y) .

This definition is justified by the following property :

*
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Let G be a connected graph without lonps and mltiple edges, Go the set of

vertices of G, and d the metric on GO defined by the minimal number of edges
between two vertices. Then we have :

PROPOSITION 1. - (GO , d) is trealike if, and only if, G is a tree.

Proof. — If G is a tree, for any x, y € GO s the section S(x, y) consists

of the unique simple path in G joining x and y , whence (T2). The first proper-
ty results from the fact that the subtree of G spanned by x, y and
morphic to

z 1is 1so-

X
[

y/ z

Conversely suppose (GO s d) is treelike, and assume there is a circle C of mi-
nimal length n> 3 in G.

|

If n=2m is even, let x, ye C, such that d(x, y) = m (this is possible
due to the minimality of C ). Since m > 2 there are z, # z, € G, such that
d(z1 , X) = d(z2 , X) and z, # y # z, . Obviously, Z2'é S(x , Zl) U S(z1 , V) e
If n=2m+ 1 is odd, chonse x, y e C with d(x, y) =1, and let 2z € C be
the unique vertex such that d(x, z) = d(y , 2) = m . Then S(x,y)nS(x,2z)nS(y,z)=0

and the proposition is proved. A trivial example for a non discrete treeclike metric

]

space are the real numbers with the usuel metric ; further, any subset of a treelike
metric space is itself treelike.

Next we list some formal properties of the sections in a treelike metric space :

LEMMA 1. - Let (X, d)

be a treelike metric space and x, y, 2 € X « Then

(i) if z e S(x, y) , then

S(x, y) ={vesS(x, y); dalx, y) gdlx, 2)}

8(x, 2z) n3(z, y) = {2},
(ii) there is u €X such that

S(x, y) nS(x, 2) nS(y, 2) = {u}

S(x, y) n 8(x, 2) =58(x, u) .

Proof.

(i) is a straight forward spplication of (7T2).
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(ii) Let S :=S(x, y)n S(x, 2) . For v €S, we have
Ay, z) gdlv, y) +d(v, 2) =d(x, y) + d(x, 2z) - 2d(x, v) .

Because of (T1) and (i) of this lemms, there exists a2 unique u € S such that
d(x , u) = Sup_eq d(x, v) « This u is the only element of S such that

d(ly , 2) = d(u, y) + d(u, 2z) , i. e. the only element of S nS(z, y) . The last
identity follows from (i).

A subset Y of a treelike metric space (X, d) is called connected if yl,yzeY

implies S(y1 , yz) © Y . Note that the intersection of connected subsets of X is
again connected.

For a connected subset Y < X , let
dian(Y) := sup{d(y, , ¥,) 5 ¥, » ¥y, €1} »

A ray R< X is a cnnnected subset with diam(R) = » such that there exists a

sequence (xi)i?,O in R with x, e S(xo , xi+1) for all i and Ui:O S(xo,xi)zR .

Two rays R, R' are called equivalent if diam(R nR') = » . (This is indeed an
equivalence relation since diam(R nR') = » implies thet R nR' is again a ray.)
M equivalence class of rays in X is called an end of X .

M axis in X is a connected subset A © X such that there are two rays Rl , R2
in X with R1 U R2 = A and R1 n R2 s a single point. Thus the axes in X are

in 1-1 ecorrespondence with thnse peirs (E1 ’ EZ) nf ends of X for which ElgéEz.

The isnmetries of a treelike metric space can be characterized very much like the

automorphisms of a tree (see [3]) because of the fnllowing observation :

If (X, d) is a treelike metric space and & an isometry of (X, d) there

always exists a treelike extension space (X, d) of (X, d) (i. e. there is a

distance-preserving injection X S—> X ) and a ceontinuetion 3 of & such that
inf = da(x , a(x)) = inf _y a(x , a(x))

is attained in X .

LEMMA 2. - E 2 1is an isometry of (X R d) such that there is y € X with

d(y , a(y)) = inf _y d(x , a(x)) then ¢ has exactly one of the following proper-
ties 3

(a) & has a fixed point in X,

(b) there is y € X with a(y) 4y, S(y, ¢(y)) =y, a(»)} = a(s(y, 2(»)) ,

(c) there is an 2xis A< X on which & acts by nontrivial translation.

In (b) and (c) the pair (y , &(y)) (resp. A) are unique. Of corurse (b) is
impossible if X 1is everywhere dense, i. e. for any x £ y € X exists 3 € S(x, y),
x£z2#£y.

7
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Proof. = If & has neither property (a) nor (b), then it is easily checked that

[=~]

U::O 3 (s(y , 2(y))) end Upeot "(8(y , 2(y))) are rays defining =n exis on which
$ acts by tramslation by d(y , 3(y)) > 0 .

2. Generalizatinn of the Bruhat-Tits-trec.

For a field k with a non archimedean valuation |.| , let

%(k) := {Bla, r) ; ack; re|k|},

where B(a, r) = {ze k; |z-2a <r} . For B, = B(a; , ri) ex(k) , i=1, 2,
define
2t
d(B1 , B2) := log R, T,

where r. _ 3= max{lbl -b

12 5 b eB

NEEN L5 b, eB}.

PROPOSITION 2. - For any nonarchimedean valued field k , (%(k) , d)
like metric space.

is a trece=

Proof.

(i) Since r

12am,zm(rl , r2) , for B, and B, as above we have d(B1 , Bz) > 0,
and d(B

) Bz) =0 if, end only if, r ,=r =r,, i. e« B = B, . For any

B, By, By e%(k) , we have r , < max(r13 , r23) which implies
2 2 2
f12 T3 a3
T r, ST, r.* T, r"
172 173 273

and thus proves the triengle inequality.
(ii) To prove (Tl) note that for B, B, €¥ (k) , we have

S(Bl , Bz) = {B3 e (k) ; ryT 5= T r23}

I
'

5 € k) ; r,= ma.x(r13 , r23) 3 ry= m:’l.n(::'13 , r23)} .

Thus if By, By € s(B, , B,)) and ri3 < max(r 4 , r24) , then r ,=ry, , and
r,= max(r34 , r24) =ry; and r, = mn(rl4 y Top) = mn(r}4 , r24) , S0
B, € S(B2 , B3) .

If B, , By, By e ¥(k) , choose the indices s» that r o, & nxin(r13 y r23) . Then
it is easily verified that B, := B(al , rlz) € S(B1 , 52) n S(B1 , BB) n S(B2 , 83)
so (T2) also hnlds.

If the valuation of k is discrete, the Bruhet-Tits-tree for k can be reenns-
tructed from X (k) by letting the points of ¥ (k)

be the vertices nf a graph and
by drawing edges between points on minimal distance.
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If on the other hand k is slgebraically clnsed ¥ (k) is everywhere dense (but
not complete).

M extension k' : k of ultrametric fields gives a naturzl distance preserving

embedding ¥(k) <—> ¥(k') . Thus if k is algebraically closed, we may view X(k)
as the direct limit of the Bruhat-Tits-trees for the discrete subfields nf k .

For the completion k of k , we always have % k) = (k) « If R is a ray in

Wk) , and BO ’ Bl s 82 » vee 1s a sequence of points on R with d(B0 , Bn) —_— ©

as n —> « then either r —> o or r. =r for n>n znd r -—>0.
n Cn On+1 l"‘ (0] n
Therefore the ends of ¥(k) correspond to the points nf P (k) .
PGLz(k) acts isometrically on % (k)

if we make the following conveation : if
y-l(w) € B for a B e (k)

and a y € PGL2(k) , let B be the affinnid hull
( = gecmetric closure) of the "open" disk El(k) —~ y(B) . This action commutes with
field extensinns.

Y e PGLz(k) is hyperbolic if, and only if, it is of type (c¢) of lemma 2 ; the
axis A is determined by the fixed points of y in P'(k) , the shift v

on
Y
AY is given by v, = - log |t'YI , where tY is the mltiplier of vy .

Let m, ¥(k) —> AY denote the projection ; this is meaningful also for ends

of ¥(k) different from the fixed points of vy .

vy defines an orientation <Y on
AY such that B <Y yB for s11 B € A .

Let Yy 0 Yy € PGLz(k) be hyperbolic with mutuelly different fixed points x

1 ?
X 19 X5 X_o such that the translation nf Y; on Ai = A’Y; is towards Xg e
Let
V., 3=V y <, =< y T, =TT H
i Y4 1 Y4 1 Yy
let
o= r . - ' .
Bp=m(x ), B, :=m(x,) end 4, :=d(B,, B,

. ' . . ‘ .
Call Y1 Yo parallecl if B12 < 812 , otherwise entiparallel. Finally assume
MENAFI

LEMMA 3. — With the above nntatinns and assumptions, we have :

(1) Y, Y, 1is not hyperbolic if v, , v, are antiparallel, and v, = v, < d

1 23
(ii) Y; Y, is possibly not hyperbolic if vy, , v, are antiparallel and

v, = d12< v,

12 °

(iid) Y, Y, is hyperbolic in all other cases.

Proof. = In the first case, B}2 is fixed point of vy, Y, , in (ii) Y, 1, Day

have fixed points on S(Bl2 , y-z' B'12) , in all other cases one easily sees that
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S ny, Y, S = {Yl Yo Bl.?.} with S = 3(812 s Yy Yo 512) o

In view of the pronf of lemma 2, this shows that Y; Yo is hyperbolic.

3. p-adic Teichmiiller space 62

In this section, k 1is assumed to be algebraically closed end complete. We brief-
1y recall from [2] the definition of the p-adic Teichmiller space gg sy 8>2 an

integer.

Let G := PGLz(k) 3 for ¢ = (Yl y see Yg) e G& , let T(r) be the subgroup of
G generated by v, , «ee , Yg Then

z =7 md G
g g

where Gg = {r= (Yl y see yg) e G& ; Ir'(¢) is Schottky group of rank g} , end
G acts on Eg by compopentwise conjugaition. For the Teichmiiller modular group and
the connection with the space of Mumfnrrd curves, we refer to [2].

Recall that a subgroup T' < G is a Schnttky group if, and only if, every element
yeTl, vy #id, is hyperbolic. 4s conrdinates on gg s, we use the multipliers ti ’
the attracting and repelling fixed perints Xs and x_5 of the hyperbnlic transfor-
mation Yy ¢ For Gg s, we take the set of representatives nnrmalized by the conditions

}:1:0, nw, =, x,=1.,

-1 2
In order to replace the condition thet T'(g) be a Scho'tky group by inequ-lities
involving rational functions of the cnordinates on Gg , we intrnduce the following

notations :

Let F_ Dbe a nonabelian free group of reamk g, € 5 see , € 2 fixed base of
Fg ,and o : F_ -=>T(() , e; —> Y; » the canonical homomorphisz for any geGg.
If y= (2 e GL(® , let T(y) := (a+ d)%/ad - be . Obviously T(vy) = T(y) ,
so T is a ration2l functimn on G . y € G is hyperbolic if, and only if, |T(y)|>1.

Therefore

3g-3
Gg: {(tl 9 oo tvg; x_2, x3, x-3’ coe o Xg, I_g)e kg ;

0<|ti|<1; i=1, eee, g3 |T@(w)| >1 for all weF,; w# 1} .

Note that since Y; can be represented by the matrix

X; =ty x (ti - 1) X, X o
( ) (122,
1 - ti ti :s:i - x__i

T(e(w)) 4is indeed rational in the t; » x; s=ad x_

i L]
Every Schottky group ' © G has a Schntiky base Yy cee s Y, i. e« there are

B B', ... , B B' € (k) such that vy, B, = B! and theregisan xePl(k)
1 ? 1 » g, g i i i =
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such that ﬂi(x) e S(Bi , B:!L) , i=1, eee , g+ One sees i-mediately that hyper-

brlic transformations Yp o9 see s Yg form a Schottky base if, =nd only if, for

i:].’c-.,g,

. 4 s
d(ni(xj) , ni(xk)) <v; for a1l 3, k< +1i.

v 9
If g= 2, this reduces to the following description of the space 8, of Schottky
bases of rank 2 (cf. [1], 3 2) =

3 .
(82={(t1,t2,y)ek; y£1; d12<Vi; i=1, 2}

(where d, = d(n‘l(xz) s ﬂ1(x—-2)) as in lerma 3).

The following lemma ig crucial in the proof of the main result :

LEMMA 4. - Let (¢ = (yl , y2) e 8, be anormed Schottky base and

. R -1
vie=min{v gy € {y; 5 Yo, v Y Yy vy 3
Then v, 2V for any vy €I'(g) »

Proof. — By replacing if necessary Y, or Y, by Y, Y, or v, yzl or by ta-
king inverses, we may assume that vy, , y, are antiparallel and that 2dIZSV1gv2 ’
80 V=V . As conjugstdon doesn't change the multiplier we only have to consider
elements of the form

Vi M1 Vr Pr

(Y:Y]_ Y2 "‘Yl Yz’ Vi,ui"_z_\{o}, r>1.

By induction on r , one easily verifies

. , , -1 o -1

(1) m (vB,) € S(y; Bj,, ¥ B Ny, By vy Bl
(11) a(yBj,, &) 2 vy =d 2 v = dp,,

(iii) B, e A

which shows that

v, =d(B,, ¥Bp) 2 v = v = djp 27 -

THEOREM. - 62 is a Stein domain.

More precisely : Let ¢ € |k | , O < |e| <1 . Then the following affinnid domains

Gén)CkB, n> 1, exhaust G, :
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ng) {(t, , 2,y)ek3
® < |t Un -1, 2,
vl s, felt-yl
[t bl <21y, a=x1,
|T(yi-y‘5)|ae"1/n, i,j=1,2, 143, \)=il,.-.,in2,

. _1 . .
|T('Y1(Yi Y\;;)p) 2 € /o » 1,3,1=1,2,

. . 2
113, V:-ﬁl,...,:tn, pzil,.oo’i(nz-l)}

Proof, - The conditions can be rephrased in terms of vi , d12 , etce 3

(1) nee' > Vi>,e'/n, i=1, 2 (where ¢' := -1loge),
() 4,, <ne', d(a
(3) v

1
1+V2§€/nd12,

(4) v, < ¢'/n for the Yy listed above.

Now we divide the prnnf intn several steps :
® (n) .
1° s S Up—y 62 : let (= (yl , y2) € 52 . (1), (2) are nbvinusly satiefied
for learge n .
Lemma 3 shnws that v+ Y, < d is necessary to ensure that Yy Yo y;l Y;l
and v, Y2 Yl Y, are hyperbollc, and (4) results from lemma 4.

(n) . _ ) (n) . .
2 6,7 €%, Let g_(yl,yz)eCz . ‘e may again assume v < v, and

Y, » Y, entiparallel. Then d,, <n” v, because of (1), (2), and d,, < 2v, be-
cause of (3)e Let me {0, oes , n2} such that mv, < d12 < (m+ 1) v, .

We consider the following cases :

(a) mv, <d . - Here V! := v, 7. is hyperbolic by lemma 3 (resp. by con-
12 2 2 2 1

dition (4)), and v}, := Vi S, -, vith equality if mv, < d

1 12

1 . ' — - '
dj, 3= d(nl(x2) , nl(x_z)) =d,-m < max(v1 , v2) ,

so (‘Yl , Y:‘Z)e<B2 .

(b) mv, < v, < d12 s = igain Yi =Yy yg is hyperbnlic because of condition (4),
2
' [ - < ' ' ' 2
and v} > e'/n . Therefore dj,=d;,-mv) <v <ne' <n” Vi, 80 v], Y, lecad
to case (a) with an m' < n“ - 1 ; the v listed in condition (4) are now precisely
L

those needed to show that v! , Yl(‘yi)m is e Schottky base.

(c) vy<mv, <dj, .- There similar to case (b) y, =Y, ,? and Y, lead to
case (2) with an m' < n% -1 , so that vy}, Y2(’1) is a Schnitky base.
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Py : Inspectinn of the crnstruction in 2° shows that any ¢ eﬁ(n)

has a Schottky base satisfying the condition of lema 4 with v > el/n « So an appli-
catirn of this lemma concludes the proof of the theorem.

(1]
(2]
(3]
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